CD86

Gene Summary

Gene:CD86; CD86 molecule
Aliases: B70, B7-2, B7.2, LAB72, CD28LG2
Location:3q13.33
Summary:This gene encodes a type I membrane protein that is a member of the immunoglobulin superfamily. This protein is expressed by antigen-presenting cells, and it is the ligand for two proteins at the cell surface of T cells, CD28 antigen and cytotoxic T-lymphocyte-associated protein 4. Binding of this protein with CD28 antigen is a costimulatory signal for activation of the T-cell. Binding of this protein with cytotoxic T-lymphocyte-associated protein 4 negatively regulates T-cell activation and diminishes the immune response. Alternative splicing results in several transcript variants encoding different isoforms.[provided by RefSeq, May 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:T-lymphocyte activation antigen CD86
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • CD Antigens
  • CD40 Antigens
  • Survival Rate
  • Immunotherapy
  • B7-1 Antigen
  • Young Adult
  • Genetic Vectors
  • CTLA-4 Antigen
  • Apoptosis
  • S100 Proteins
  • Tumor Antigens
  • Cancer Gene Expression Regulation
  • Mutation
  • Interferon-gamma
  • Messenger RNA
  • Dendritic Cells
  • Case-Control Studies
  • Cancer Vaccines
  • BAK1
  • Stomach Cancer
  • Flow Cytometry
  • Biomarkers, Tumor
  • Genetic Therapy
  • Cell Proliferation
  • Gene Expression Profiling
  • Cultured Cells
  • Virus Replication
  • Gene Expression
  • Chromosome 3
  • Lymphocyte Activation
  • fas Receptor
  • Phenotype
  • Reed-Sternberg Cells
  • Chronic Lymphocytic Leukemia
  • Interleukin-12
  • Plasma Cells
  • B7-2 Antigen
  • Immunophenotyping
  • RTPCR
  • Cytokines
  • Melanoma
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD86 (cancer-related)

Liu C, Zheng Y, Tang J, et al.
Stimulation of DC-CIK with PADI4 Protein Can Significantly Elevate the Therapeutic Efficiency in Esophageal Cancer.
J Immunol Res. 2019; 2019:6587570 [PubMed] Free Access to Full Article Related Publications
Background: PADI4 has extensive expression in many tumors. This study applied PADI4 as a tumor marker to stimulate DC- (dendritic cell-) CIK (cytokine-induced killer), an immunotherapy approach.
Methods: A PADI4 expression plasmid was transfected into EC-originating ECA-109 cells. PADI4 gene was also inserted into a prokaryotic expression vector to produce recombinant protein. Lysate from PADI4-overexpressing cells or the purified recombinant PADI4 protein was used to load DCs, and the cells were then coincubated with CIK cells. DC and CIK cell phenotypes were determined using flow cytometry. The proliferation and viability of CIK cells were analyzed using trypan blue staining. The cytotoxic effect of DC-CIK cells on cultured ECA-109 cells was determined using CCK8 assays. Tumor-bearing mice were prepared by injection of ECA-109 cells. DC-CIK cells stimulated with lysate from PADI4-overexpressing cells or the PADI4 recombinant protein were injected into the tumor-bearing mice. The tumor growth was measured with magnetic resonance imaging (MRI).
Results: Following incubation with lysate from PADI4-overexpressing cells, the ratio of CD40
Conclusion: This study demonstrates that stimulation of DC-CIK cells with PADI4 significantly suppressed tumor growth in tumor-bearing mice by promoting DC maturation, CIK cell proliferation, and cytotoxicity. PADI4 may be a potential tumor marker that could be used to improve the therapeutic efficiency of DC-CIK cells.

Kori M, Yalcin Arga K
Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective.
PLoS One. 2018; 13(7):e0200717 [PubMed] Free Access to Full Article Related Publications
The malignant neoplasm of the cervix, cervical cancer, has effects on the reproductive tract. Although infection with oncogenic human papillomavirus is essential for cervical cancer development, it alone is insufficient to explain the development of cervical cancer. Therefore, other risk factors such as host genetic factors should be identified, and their importance in cervical cancer induction should be determined. Although gene expression profiling studies in the last decade have made significant molecular findings about cervical cancer, adequate screening and effective treatment strategies have yet to be achieved. In the current study, meta-analysis was performed on cervical cancer-associated transcriptome data and reporter biomolecules were identified at RNA (mRNA, miRNA), protein (receptor, transcription factor, etc.), and metabolite levels by the integration of gene expression profiles with genome-scale biomolecular networks. This approach revealed already-known biomarkers, tumor suppressors and oncogenes in cervical cancer as well as various receptors (e.g. ephrin receptors EPHA4, EPHA5, and EPHB2; endothelin receptors EDNRA and EDNRB; nuclear receptors NCOA3, NR2C1, and NR2C2), miRNAs (e.g., miR-192-5p, miR-193b-3p, and miR-215-5p), transcription factors (particularly E2F4, ETS1, and CUTL1), other proteins (e.g., KAT2B, PARP1, CDK1, GSK3B, WNK1, and CRYAB), and metabolites (particularly, arachidonic acids) as novel biomarker candidates and potential therapeutic targets. The differential expression profiles of all reporter biomolecules were cross-validated in independent RNA-Seq and miRNA-Seq datasets, and the prognostic power of several reporter biomolecules, including KAT2B, PCNA, CD86, miR-192-5p and miR-215-5p was also demonstrated. In this study, we reported valuable data for further experimental and clinical efforts, because the proposed biomolecules have significant potential as systems biomarkers for screening or therapeutic purposes in cervical carcinoma.

Santos JM, Cervera-Carrascon V, Havunen R, et al.
Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy.
Mol Ther. 2018; 26(9):2243-2254 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
Lymphodepleting preconditioning with high-dose chemotherapy is commonly used to increase the clinical efficacy of adoptive T cell therapy (ACT) strategies, however, with severe toxicity for patients. Conversely, oncolytic adenoviruses are safe and, when engineered to express interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α), they can achieve antitumor immunomodulatory effects similar to lymphodepletion. Therefore, we compare the safety and efficacy of such adenoviruses with a cyclophosphamide- and fludarabine-containing lymphodepleting regimen in the setting of ACT. Human adenovirus (Ad5/3-E2F-D24-hTNF-α-IRES-hIL-2; TILT-123) replication was studied using a Syrian hamster pancreatic tumor model (HapT1) infused with tumor-infiltrating lymphocytes (TILs). Using the oncolytic virus instead of lymphodepletion resulted in superior efficacy and survival. Immune cells responsive to TNF-α IL-2 were studied using an immunocompetent mouse melanoma model (B16.OVA) infused with ovalbumin-specific T (OT-I) cells. Here, the adenovirus approach improved tumor control together with increased intratumoral Th1 cytokine levels and infiltration of CD8+ T cells and CD86+ dendritic cells. Similar to humans, lymphodepleting preconditioning caused severe cytopenias, systemic inflammation, and damage to vital organs. Toxicity was minimal in adenovirus- and OT-I-treated mice. These findings demonstrate that ACT can be effectively facilitated by cytokine-coding adenovirus without requiring lymphodepletion, a rationale being clinically investigated.

Iwata TN, Ishii C, Ishida S, et al.
A HER2-Targeting Antibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model.
Mol Cancer Ther. 2018; 17(7):1494-1503 [PubMed] Related Publications
Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate with a topoisomerase I inhibitor exatecan derivative (DX-8951 derivative, DXd), has been reported to exert potent antitumor effects in xenograft mouse models and clinical trials. In this study, the immune system-activating ability of DS-8201a was assessed. DS-8201a significantly suppressed tumor growth in an immunocompetent mouse model with human HER2-expressing CT26.WT (CT26.WT-hHER2) cells. Cured immunocompetent mice rejected not only rechallenged CT26.WT-hHER2 cells, but also CT26.WT-mock cells. Splenocytes from the cured mice responded to both CT26.WT-hHER2 and CT26.WT-mock cells. Further analyses revealed that DXd upregulated CD86 expression on bone marrow-derived dendritic cells (DC)

Karabon L, Markiewicz M, Chrobot K, et al.
The Influence of Genetic Variations in the
J Immunol Res. 2018; 2018:3826989 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
CD86 molecule is the ligand for both costimulatory (CD28) and coinhibitory (CTLA-4) molecules, and it regulates immune response after allogeneic hematopoietic stem cell transplantation (alloHSCT). Therefore, we postulate that

Bae J, Hideshima T, Tai YT, et al.
Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors.
Leukemia. 2018; 32(9):1932-1947 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
Histone deacetylases (HDAC) are therapeutic targets in multiple cancers. ACY241, an HDAC6 selective inhibitor, has shown anti-multiple myeloma (MM) activity in combination with immunomodulatory drugs and proteasome inhibitors. Here we show ACY241 significantly reduces the frequency of CD138

Peyravian N, Gharib E, Moradi A, et al.
Evaluating the expression level of co-stimulatory molecules CD 80 and CD 86 in different types of colon polyps.
Curr Res Transl Med. 2018; 66(1):19-25 [PubMed] Related Publications
PURPOSE OF THE STUDY: Co-stimulatory molecules CD80 and CD86 are the members of B7 family, which stimulate the T lymphocytes in response to the malignant colon polyps. However, the expression of these molecules is depressed in cancers. In the present study, the transcription levels of CD80 and CD86 genes in the colon polyps (Precancerous lesions) and its association with the clinical features were examined.
PATIENTS AND METHODS: Forty-nine biopsies samples from patients with the colorectal polyps and 10 healthy subjects were collected by the colonoscopy. Questionnaires including clinical and demographic data were filled for all cases. Using Real-time PCR, the mucosal mRNA expression levels of CD80 and CD86 genes were quantified.
RESULTS: Adenoma and hyperplastic polyps were reported in 69.3 and 30.7 percent of 49 patients, respectively. Unlike hyperplastic polyps, the expression of CD86 was increased in adenoma polyps compared to controls (RQ=2.75 vs. 0.837, respectively). The data from CD80 showed noticeable reduction about 0.31 and 0.11 in adenoma and hyperplastic polyps, respectively, in response to control group (RQ=0.729). Also, analyzing colon and rectum polyps depicted a marked increment in CD86 level, in contrast to CD80.
CONCLUSION: Examining the mRNA expression levels of CD80 and CD86 genes between colon polyps with the rectal polyps shows that the enhanced level of CD86 in adenoma samples could be considered as a valuable biomarker for distinguishing the adenoma from hyperplastic polyps and the masses located in the colon from the rectum.

Song E, Song W, Ren M, et al.
Identification of potential crucial genes associated with carcinogenesis of clear cell renal cell carcinoma.
J Cell Biochem. 2018; 119(7):5163-5174 [PubMed] Related Publications
Clear cell renal cell carcinoma (ccRCC) is a common genitourinary malignancy with high mortality. However, the molecular pathogenesis of ccRCC remains unclear and effective biomarkers for daily practice are still limited. Thus, we aimed to identify the potential crucial genes and pathways associated with carcinogenesis of ccRCC and further analyze the molecular mechanisms implicated in tumorigenesis. In the present study, expression profiles GSE 66270, GSE 53757, GSE 36895, and GSE 76351 were downloaded from GEO database, including 244 matched primary and adjacent normal tissues, furthermore, the level 3 RNAseq dataset (RNAseqV2 RSEM) of KIRC was also downloaded from The Cancer Genome Atlas (TCGA), which consist of 529 ccRCC tumors and 72 normal tissues. Then, differentially expressed genes (DEGs) and pathway enrichment were analyzed by using R software. A total of 129 up- and 123 down-regulated genes were identified, which were aberrantly expressed both in GEO and TCGA data. Second, Gene ontology (GO) analyses revealed that most of the DEGs were significantly enriched in integral component of membrane, extracellular exosome, plasma membrane, cell adhesion, and receptor binding. Signaling pathway analyses indicated that DEGs had common pathways in signal transduction, metabolism, and immune system. Third, hub genes were identified with protein-protein interaction (PPI) network, including PTPRC, TGFB1, EGF, MYC, ITGB2, CTSS, FN1, CCL5, KNG1, and CD86. Additionally, sub-networks analyse was also performed by using MCODE plugin. In conclusion, the novel DEGs and pathways in ccRCC identified in this study may provide new insight into the underlying molecular mechanisms that facilitates RCC carcinogenesis.

Panda A, Mehnert JM, Hirshfield KM, et al.
Immune Activation and Benefit From Avelumab in EBV-Positive Gastric Cancer.
J Natl Cancer Inst. 2018; 110(3):316-320 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
Response to immune checkpoint therapy can be associated with a high mutation burden, but other mechanisms are also likely to be important. We identified a patient with metastatic gastric cancer with meaningful clinical benefit from treatment with the anti-programmed death-ligand 1 (PD-L1) antibody avelumab. This tumor showed no evidence of high mutation burden or mismatch repair defect but was strongly positive for presence of Epstein-Barr virus (EBV) encoded RNA. Analysis of The Cancer Genome Atlas gastric cancer data (25 EBV+, 80 microsatellite-instable [MSI], 310 microsatellite-stable [MSS]) showed that EBV-positive tumors were MSS. Two-sided Wilcoxon rank-sum tests showed that: 1) EBV-positive tumors had low mutation burden (median = 2.07 vs 3.13 in log10 scale, P < 10-12) but stronger evidence of immune infiltration (median ImmuneScore 2212 vs 1295, P < 10-4; log2 fold-change of CD8A = 1.85, P < 10-6) compared with MSI tumors, and 2) EBV-positive tumors had higher expression of immune checkpoint pathway (PD-1, CTLA-4 pathway) genes in RNA-seq data (log2 fold-changes: PD-1 = 1.85, PD-L1 = 1.93, PD-L2 = 1.50, CTLA-4 = 1.31, CD80 = 0.89, CD86 = 1.31, P < 10-4 each), and higher lymphocytic infiltration by histology (median tumor-infiltrating lymphocyte score = 3 vs 2, P < .001) compared with MSS tumors. These data suggest that EBV-positive low-mutation burden gastric cancers are a subset of MSS gastric cancers that may respond to immune checkpoint therapy.

Mittal D, Vijayan D, Putz EM, et al.
Interleukin-12 from CD103
Cancer Immunol Res. 2017; 5(12):1098-1108 [PubMed] Related Publications
Several host factors may affect the spread of cancer to distant organs; however, the intrinsic role of dendritic cells (DC) in controlling metastasis is poorly described. Here, we show in several tumor models that although the growth of primary tumors in Batf3-deficient mice, which lack cross-presenting DCs, was not different from primary tumors in wild-type (WT) control mice, Batf3-deficient mice had increased experimental and spontaneous metastasis and poorer survival. The increased metastasis was independent of CD4

Scarpa M, Kotsafti A, Fassan M, et al.
Immunonutrition before esophagectomy: Impact on immune surveillance mechanisms.
Tumour Biol. 2017; 39(10):1010428317728683 [PubMed] Related Publications
Preoperative oral immunonutrition was demonstrated to improve immune response and to decrease the infection rate in patients with cancer. This study aimed to assess how immunonutrition could influence the immune cell response in the mucosal microenvironment of esophageal adenocarcinoma. Therefore, A prospective cohort of consecutive patients undergoing esophagectomy for esophageal adenocarcinoma was enrolled. A subgroup of them was given preoperative oral immunonutrition with Oral Impact® and was compared to those who received no preoperative supplementation. Mucosal samples from healthy esophagus were obtained at esophagectomy. Histology, immunohistochemistry, gene expression analysis, and cytofluorimetry were performed. Markers of activation of antigen-presenting cells (CD80, CD86, and HLA-I), innate immunity (TLR4 and MyD88), and cytotoxic lymphocyte infiltration and activation (CD8, CD38, CD69, and CD107) were measured. In all, 50 patients received preoperative Oral Impact® and 129 patients received no nutritional support. CD80, CD86, MyD88, and CD69 messenger RNA expression was significantly increased in patients receiving immunonutrition compared to controls. In the subgroup of patients with stages I-II cancer, the rate of epithelial cells expressing CD80 and HLA-ABC was significantly higher in those receiving immunonutrition compared to controls as well as CD8+ CD28+ cell rate. Immunonutrition administration before surgery was significantly associated to increased degranulating CD8 and natural killer cells (CD107+) infiltrating the healthy esophageal mucosa. All the comparisons were adjusted for cancer stage and preoperative therapy. In conclusion, in healthy esophageal mucosa of patients undergoing esophagectomy, a 5-day course of immunonutrition enhances expression of antigen-presenting cells activity and increased CD8+ T cell activation and degranulating activity. Further studies are warranted to understand the clinical implication in terms of cancer recurrence.

Bianco TM, Abdalla DR, Desidério CS, et al.
The influence of physical activity in the anti-tumor immune response in experimental breast tumor.
Immunol Lett. 2017; 190:148-158 [PubMed] Related Publications
This study aimed to investigate the influence of physical activity in innate immunity to conduce to an effective antitumoral immune response analyzing the phenotype and activation status of infiltrating cells. We analysed the intracellular cytokines and the transcription factors of tumor infiltrating lymphocytes (TILS) and spleen leukocytes. The Nos2 gene expression was evaluated in spleen cells and futhermore the ROS production was measured and spleen cells; another cell evaluated was dendritic cells (TIDCs), their cytokines expression and membrane molecules; finally to understood the results obtained, we analysed the dendritic cells obtained from bone marrow. Were used female Balb/c mice divided into 4 groups: two controls without tumor, sedentary (GI) and trained (GII) and two groups with tumor, sedentary (GIII) or trained (GIV). The physical activity (PA) was realized acoording swimming protocol. Tumor was induced by injection of 4T1 cells. All experiments were performed in biological triplicate. After the experimental period, the tumor was removed and the cells were identified by flow cytometry with labeling to CD4, CD8, CD11c, CD11b, CD80, CD86 and Ia, and intracelular staining IL-10, IL-12, TNF-α, IFN-γ, IL-17, Tbet, GATA3, RORγt and FoxP3. The bone marrow of the animals was obtained to analyse the derivated DCs by flow cytometry and culture cells to obtain the supernatant to measure the cytokines. Our results demonstrated that the PA inhibit the tumoral growth although not to change the number of TILS, but reduced expression of GATA-3, ROR-γT, related with poor prognosis, and TNF-α intracellular; however occur one significantly reduction in TIDCS, but these cells expressed more co-stimulatory and presentation molecules. Furthermore, we observed that the induced PA stimulated the gene expression of Tbet and the production of inflammatory cytokines suggesting an increase of Th1 systemic response. The results evaluating the systemic influence in DCs showed that the PA improve significantly the number of those cells in bone marrow as well the number of co-stimulatory molecules. Therefore, we could conclude that PA influence the innate immunity by interfering to promote in process of maturation of DCs both in tumor and systemically, that by its turn promote a modification in acquired immune cells, representing by T helper to induce an important alteration transcription factors that are responsible to maintain a suppressive microenviroment, and thereby, allowing the latter cells can thus activate antitumor immune response. The PA was able improve the Th1 systemic response by enhance to Tbet gene expression, promote a slightly increased of Th1-type cytokines and decrease Gata3 and Foxp3 gene expression in which can inhibit the Th1 immune response.

Herrmann A, Lahtz C, Nagao T, et al.
CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity.
Cancer Res. 2017; 77(18):5118-5128 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival.

Wang LT, Chiou SS, Chai CY, et al.
Intestine-Specific Homeobox Gene
Cancer Res. 2017; 77(15):4065-4077 [PubMed] Related Publications
The intestine-specific homeobox transcription factor intestine-specific homeobox (ISX) is an IL6-inducible proto-oncogene implicated in the development of hepatocellular carcinoma, but its mechanistic contributions to this process are undefined. In this study, we provide evidence that ISX mediates a positive feedback loop integrating inflammation, tryptophan catabolism, and immune suppression. We found that ISX-mediated IL6-induced expression of the tryptophan catabolic enzymes Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase in hepatocellular carcinoma cells, resulting in an ISX-dependent increase in the tryptophan catabolite kynurenine and its receptor aryl hydrocarbon receptor (AHR). Activation of this kynurenine/AHR signaling axis acted through a positive feedback mechanism to increase ISX expression and enhance cellular proliferation and tumorigenic potential. RNAi-mediated attenuation of ISX or AHR reversed these effects. In an IDO1-dependent manner, ectopic expression of ISX induced expression of genes encoding the critical immune modulators CD86 (B7-2) and programmed death ligand-1 (PD-L1), through which ISX conferred a significant suppressive effect on the CD8

De Almeida CV, Zamame JA, Romagnoli GG, et al.
Treatment of colon cancer cells with 5-fluorouracil can improve the effectiveness of RNA-transfected antitumor dendritic cell vaccine.
Oncol Rep. 2017; 38(1):561-568 [PubMed] Related Publications
Non-cytotoxic concentrations of selected chemotherapeutic agents amplify the antigen presentation capacity of dendritic cells (DCs) and are able to increase the immunogenicity of the colon cancer cell lineage HCT‑116, as previously demonstrated by our group. Since this functional alteration was associated with changes in gene expression, we aimed to evaluate whether transcriptional changes of tumor cells can be transferred to DCs, increasing their ability to induce a specific antitumor response. Therefore, HCT‑116 cells were treated with two different concentrations of 5-fluorouracil (5-FU), and their total RNA was transfected into human monocyte-derived DC, which function was evaluated through their ability to stimulate the proliferation of normal allogeneic T lymphocytes (MLR), and to generate cytolytic T cells. The transfected DCs demonstrated an increased percentage of CD83+, HLA-DR+, CD80+ and CD86+ cells. These phenotypical changes were followed by functional improvement demonstrated by the increased capacity of these DC to induce allogeneic T cell proliferation and to generate specific anti-HCT‑116 cytolytic T cells, as demonstrated by IFN-γ production following in vitro challenge with tumor cells. Our results allow us to conclude that treatment of tumor cells with a non-toxic concentration of 5-FU induces immunogenic changes that are transferred to DC by transfection of total RNA.

Liu X, Jiang S, Fang C, et al.
Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation.
Protein Cell. 2017; 8(7):514-526 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB). The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

Kim S
Identifying dynamic pathway interactions based on clinical information.
Comput Biol Chem. 2017; 68:260-265 [PubMed] Related Publications
In this paper, we introduce approaches for inferring dynamic pathway interactions by converting static datasets into dynamic datasets using patients' clinical information. One approach uses survival time-based dynamic datasets, and the other uses grade- and stage-based dynamic datasets. Based on cancer grades and stages, we generated six dynamic levels and obtained two pairs of significant pathways out of twelve enriched pathways. One pair of the pathways included CELL ADHESION MOLECULES CAMS and SYSTEMIC LUPUS ERYTHEMATOSUS (correlation coefficient=1.00), in which CD28, CD86, HLA-DOA, and HLA-DOB were identified as common genes in the pathways. The other pair of the pathways included SPLICEOSOME and PRIMARY IMMUNODEFICIENCY (correlation coefficient=0.94) with no common genes identified.

Le Goux C, Damotte D, Vacher S, et al.
Correlation between messenger RNA expression and protein expression of immune checkpoint-associated molecules in bladder urothelial carcinoma: A retrospective study.
Urol Oncol. 2017; 35(5):257-263 [PubMed] Related Publications
OBJECTIVES: Immunotherapy for bladder cancer seems to have promising results. Here, we evaluated the association between messenger RNA (mRNA) and protein levels and possible prognostic value of the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immune checkpoint pathways during bladder carcinogenesis.
METHODS AND MATERIALS: Tumor samples were obtained from 155 patients (84 with muscle-invasive bladder cancer [MIBC], and 71 non-muscle-invasive bladder cancer [NMIBC]) and normal bladder tissue from 15 patients. We evaluated the mRNA expression of 3 genes in the PD-1 pathway (PD-1, PD-L1, and PD-L2) and 4 in the CTLA4 pathway (CTLA4, CD28, CD80, and CD86) in normal and tumoral human bladder samples by quantitative real-time reverse transcription polymerase chain reaction, with immunohistochemistry used to evaluate the protein expression of PD-1 and PD-L1 in tumor and immune cells. Results of molecular analyses were compared with survival analyses.
RESULTS: As compared with normal bladder tissue, MIBC tissue showed PD-1, PD-L1, CTLA4, and CD80 overexpression (59.5%, 60.7%, 84.5%, and 92.9%, respectively), whereas overexpression was lower in NMIBC tissue (22.5%, 4.2%, 35.2%, and 46.5%, respectively). The results of reverse transcription polymerase chain reaction analysis were confirmed by immunohistochemistry, with a high correlation between mRNA and protein expression. On multivariate analyses, overexpression of the studied genes was not associated with prognosis in relapse or progression of NMIBC or in recurrence-free and overall survival of MIBC.
CONCLUSIONS: The CTLA4 pathway appears to be deregulated along with the PD-1/PD-L1 pathway in bladder carcinogenesis, with good correlation between mRNA and protein expression endorsing the useful role of immune checkpoints, especially for a large subgroup of MIBC.

Schütz C, Inselmann S, Saussele S, et al.
Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML.
Leukemia. 2017; 31(4):829-836 [PubMed] Related Publications
It is unknown, why only a minority of chronic myeloid leukemia (CML) patients sustains treatment free remission (TFR) after discontinuation of tyrosine kinase inhibitor (TKI) therapy in deep molecular remission (MR). Here we studied, whether expression of the T-cell inhibitory receptor (CTLA-4)-ligand CD86 (B7.2) on plasmacytoid dendritic cells (pDC) affects relapse risk after TKI cessation. CML patients in MR displayed significantly higher CD86

Takahashi H, Sakakura K, Kudo T, et al.
Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages.
Oncotarget. 2017; 8(5):8633-8647 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
Stromal cells in the tumor microenvironment (TME) closely interact with tumor cells and affect tumor cell behavior in diverse manners. We herein investigated the mechanisms by which cancer-associated fibroblasts (CAFs) affect the functional polarization of tumor-associated macrophages (TAMs) in oral squamous cell carcinoma (OSCC) in vitro and in human cancer samples. The expression of CD68, CD14, CD163, CD200R, CD206, HLA-G, CD80, and CD86 was higher in CD14-positive cells co-cultured with the culture supernatants of CAFs established from OSCC specimens (CAF-educated cells) than in control cells. The gene expression level of ARG1, IL10, and TGFB1 was increased in CAF-educated cells. CAF-educated cells suppressed T cell proliferation more strongly than control cells, and the neutralization of TGF-β IL-10, or arginase I significantly restored T cell proliferation. We then investigated the relationship between the infiltration of CAFs and TAMs using tissue samples obtained from patients with OSCC. The infiltration of CAFs was associated with the numbers of CD68-positive and CD163-positive macrophages. It also correlated with lymphatic invasion, vascular invasion, lymph node involvement, and the TNM stage. The infiltration of CAFs was identified as an independent prognostic factor in OSCC. Our results indicate that CAFs play important roles in shaping the tumor immunosuppressive microenvironment in OSCC by inducing the protumoral phenotype of TAMs. Therapeutic strategies to reverse CAF-mediated immunosuppression need to be considered.

Circelli L, Petrizzo A, Tagliamonte M, et al.
Immunological effects of a novel RNA-based adjuvant in liver cancer patients.
Cancer Immunol Immunother. 2017; 66(1):103-112 [PubMed] Related Publications
Evaluation of biological effects of adjuvants on immune cells has been assessed in a limited number of studies. Moreover, no data are available on samples derived from cancer patients who may have a severe immune impairment. The effects of a novel RNA-based adjuvant (RNAdjuvant

Ozkazanc D, Yoyen-Ermis D, Tavukcuoglu E, et al.
Functional exhaustion of CD4
Immunology. 2016; 149(4):460-471 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
To cope with immune responses, tumour cells implement elaborate strategies such as adaptive resistance and induction of T-cell exhaustion. T-cell exhaustion has been identified as a state of hyporesponsiveness that arises under continuous antigenic stimulus. Nevertheless, contribution of co-stimulatory molecules to T-cell exhaustion in cancer remains to be better defined. This study explores the role of myeloid leukaemia-derived co-stimulatory signals on CD4

Lorenzo D, Duarte A, Mundiñano J, et al.
A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells.
PLoS One. 2016; 11(9):e0162456 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed.

Du SH, Li Z, Chen C, et al.
Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy.
PLoS One. 2016; 11(9):e0161820 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer.

Xu X, Gao Y, Wen L, et al.
Methionine enkephalin regulates microglia polarization and function.
Int Immunopharmacol. 2016; 40:90-97 [PubMed] Related Publications
Methionine enkephalin (MENK), an opioid peptide, is known to function as a regulator in the immune system. As microglia are considered the most important immune cells in the central nervous system (CNS), we aimed to assess the function of MENK on microglia polarization and tumoricidal responses. Initially, we chose the most optimal condition of 10

Srivastava RM, Trivedi S, Concha-Benavente F, et al.
CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer.
Clin Cancer Res. 2017; 23(3):707-716 [PubMed] Article available free on PMC after 05/09/2019 Related Publications
PURPOSE: Cetuximab, an EGFR-specific antibody (mAb), modestly improves clinical outcome in patients with head and neck cancer (HNC). Cetuximab mediates natural killer (NK) cell:dendritic cell (DC) cross-talk by cross-linking FcγRIIIa, which is important for inducing antitumor cellular immunity. Cetuximab-activated NK cells upregulate the costimulatory receptor CD137 (4-1BB), which, when triggered by agonistic mAb urelumab, might enhance NK-cell functions, to promote T-cell-based immunity.
EXPERIMENTAL DESIGN: CD137 expression on tumor-infiltrating lymphocytes was evaluated in a prospective cetuximab neoadjuvant trial, and CD137 stimulation was evaluated in a phase Ib trial, in combining agonistic urelumab with cetuximab. Flow cytometry and cytokine release assays using NK cells and DC were used in vitro, testing the addition of urelumab to cetuximab-activated NK, DC, and cross presentation to T cells.
RESULTS: CD137 agonist mAb urelumab enhanced cetuximab-activated NK-cell survival, DC maturation, and tumor antigen cross-presentation. Urelumab boosted DC maturation markers, CD86 and HLA DR, and antigen-processing machinery (APM) components TAP1/2, leading to increased tumor antigen cross-presentation. In neoadjuvant cetuximab-treated patients with HNC, upregulation of CD137 by intratumoral, cetuximab-activated NK cells correlated with FcγRIIIa V/F polymorphism and predicted clinical response. Moreover, immune biomarker modulation was observed in an open label, phase Ib clinical trial, of patients with HNC treated with cetuximab plus urelumab.
CONCLUSIONS: These results suggest a beneficial effect of combination immunotherapy using cetuximab and CD137 agonist in HNC. Clin Cancer Res; 23(3); 707-16. ©2016 AACR.

Kunert A, van Brakel M, van Steenbergen-Langeveld S, et al.
MAGE-C2-Specific TCRs Combined with Epigenetic Drug-Enhanced Antigenicity Yield Robust and Tumor-Selective T Cell Responses.
J Immunol. 2016; 197(6):2541-52 [PubMed] Related Publications
Adoptive T cell therapy has shown significant clinical success for patients with advanced melanoma and other tumors. Further development of T cell therapy requires improved strategies to select effective, yet nonself-reactive, TCRs. In this study, we isolated 10 TCR sequences against four MAGE-C2 (MC2) epitopes from melanoma patients who showed clinical responses following vaccination that were accompanied by significant frequencies of anti-MC2 CD8 T cells in blood and tumor without apparent side effects. We introduced these TCRs into T cells, pretreated tumor cells of different histological origins with the epigenetic drugs azacytidine and valproate, and tested tumor and self-reactivities of these TCRs. Pretreatment of tumor cells upregulated MC2 gene expression and enhanced recognition by T cells. In contrast, a panel of normal cell types did not express MC2 mRNA, and similar pretreatment did not result in recognition by MC2-directed T cells. Interestingly, the expression levels of MC2, but not those of CD80, CD86, or programmed death-ligand 1 or 2, correlated with T cell responsiveness. One of the tested TCRs consistently recognized pretreated MC2(+) cell lines from melanoma, head and neck, bladder, and triple-negative breast cancers but showed no response to MHC-eluted peptides or peptides highly similar to MC2. We conclude that targeting MC2 Ag, combined with epigenetic drug-enhanced antigenicity, allows for significant and tumor-selective T cell responses.

Schmohl JU, Nuebling T, Wild J, et al.
Expression of 4-1BB and its ligand on blasts correlates with prognosis of patients with AML.
J Investig Med. 2016; 64(8):1252-1260 [PubMed] Related Publications
Costimulatory ligands (COLs) and their receptors (COR) regulate immune reactions and cellular survival and might be relevant in acute myeloid leukemia (AML). This study evaluated the clinical relevance of 4-1BBL, glucocorticoid-induced TNFR-related protein (GITR) and ligand (GITRL), CD80, and CD86 in case of expression on AML blasts. 98 patients were evaluated at initial diagnosis. Immunophenotypically evaluated specific fluorescence index (SFI) levels of COR and COL on blasts were correlated with morphological, cytogenetic, and several prognostic parameters. Significantly higher COR expression was seen in monocytic versus non-monocytic AML subtypes; GITR, p=0.05; GITRL, p=0.005; CD86, p=0.001). Cut-off values for two COR and their ligands were evaluated: cases presenting with 4-1BB values above cut-off 1.2 SFI levels correlated (tendentially) significantly with a higher probability for disease-free survival (DFS, p=0.06) and a favorable HR of 0.2; p=0.04 for relapse. HR for death was also significantly lower in this group (0.12; p=0.04). In contrast, a lower probability for DFS and overall survival was seen in cases with 4-1BBL expression above 2.2 SFI levels (p=0.08 and p=0.09). In addition, multivariate analysis showed a significantly higher probability of death in this group (HR 10.3, p=0.04). Expression of CD80 and CD86 did not show significant prognostic relevance. On initial diagnosis, 4-1BB and 4-1BBL qualify as markers for prediction of patients' course and represent a valuable screening target for patients with AML at initial diagnosis.

Bergkvist KS, Nørgaard MA, Bøgsted M, et al.
Characterization of memory B cells from thymus and its impact for DLBCL classification.
Exp Hematol. 2016; 44(10):982-990.e11 [PubMed] Related Publications
The rare memory B cells in thymus (Thy) are considered the cells of origin for primary mediastinal large B-cell lymphoma. The objectives of the present study were to characterize the normal memory B-cell compartment in Thy and to support its association with primary mediastinal B-cell lymphoma. Seven paired human tissue samples from Thy and sternum bone marrow (BM) were harvested during cardiac surgery. B-cell subsets were phenotyped by Euroflow standard and fluorescence-activated cell sorting for microarray analysis on the Human Exon 1.0 ST Arrays platform. Differentially expressed genes between Thy and BM memory B cells were identified and correlated with the molecular subclasses of diffuse large B-cell lymphoma. Within Thy, 4% (median; range 2%-14%) of the CD45(+) hematopoietic cells were CD19(+) B cells, with a major fraction being CD27(+)/CD38(-) memory B cells (median 80%, range 76%-93%). The BM contained 14% (median; range 3%-27%), of which only a minor fraction (median 5%, range 2%-10%) were memory B cells. Global gene expression analysis of the memory B-cell subsets from the two compartments identified 133 genes upregulated in Thy, including AICDA, REL, STAT1, TNF family, SLAMF1, CD80, and CD86. In addition, exons 4 and 5 in the 3' end of AICDA were more highly expressed in Thy than in BM. The Thy memory B-cell gene profile was overexpressed in primary mediastinal B-cell lymphoma compared with other diffuse large B-cell lymphoma subclasses. The present study describes a Thy memory B-cell subset and its gene profile correlated with primary mediastinal B-cell lymphomas, suggesting origin from Thy memory B cells.

Fišerová A, Richter J, Čapková K, et al.
Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors.
Int J Oncol. 2016; 49(2):763-72 [PubMed] Related Publications
To elucidate the immunological mechanisms critical for tumor progression, we bred novel mouse strains, different in the NKC and H-2D domains. We used inbreeding to generate hybrids of Balb/c and C57BL/6 of stable H-2Db+d-NK1.1neg and H-2Db-d+NK1.1high phenotypes. We analyzed the growth of three established MHC class I-deficient tumor cell lines: TC-1/A9 tumor (HPV-associated) and B16F10 melanoma, both syngeneic to C57BL/6, and the MCB8 (3-methycholanthrene-induced tumor) syngeneic to Balb/c. Furthermore, we induced colorectal carcinoma by azoxymethane-DSS treatment to test the susceptibility to chemically-induced primary cancer. We found that the novel strains spontaneously regressed the tumor transplants syngeneic to both Balb/c (MCB8) and C57BL/6 (B16F10 and TC-1/A9) mice. The H2-Db+d-NK1.1neg, but not the H2-Db-d+NK1.1high strain was also highly resistant to chemically-induced colorectal cancer in comparison to the parental mice. The immune changes during TC-1/A9 cancer development involved an increase of the NK cell distribution in the peripheral blood and spleen along with higher expression of NKG2D activation antigen; this was in correlation with the time-dependent rise of cytotoxic activity in comparison to C57BL/6 mice. The TC-1/A9 cancer regression was accompanied by higher proportion of B cells in the spleen and B220+/CD86+ activated antigen-presenting B cells distributed in the lymphoid organs, as well as in the periphery. The changes in the T-cell population were represented mainly by the prevalence of T helper cells reflected by grown CD4/CD8 ratio, most prominent in the b+d-NK1.1neg strain. The results of the present study imply usefulness of the two novel mouse strains as an experimental model for further studies of tumor resistance mechanisms.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD86, Cancer Genetics Web: http://www.cancer-genetics.org/CD86.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999