Gene Summary

Gene:DAXX; death domain associated protein
Aliases: DAP6, EAP1, BING2, SMIM40
Summary:This gene encodes a multifunctional protein that resides in multiple locations in the nucleus and in the cytoplasm. It interacts with a wide variety of proteins, such as apoptosis antigen Fas, centromere protein C, and transcription factor erythroblastosis virus E26 oncogene homolog 1. In the nucleus, the encoded protein functions as a potent transcription repressor that binds to sumoylated transcription factors. Its repression can be relieved by the sequestration of this protein into promyelocytic leukemia nuclear bodies or nucleoli. This protein also associates with centromeres in G2 phase. In the cytoplasm, the encoded protein may function to regulate apoptosis. The subcellular localization and function of this protein are modulated by post-translational modifications, including sumoylation, phosphorylation and polyubiquitination. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:death domain-associated protein 6
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DAXX (cancer-related)

Buentzel J, Yao S, Elakad O, et al.
Expression and prognostic impact of alpha thalassemia/mental retardation X-linked and death domain-associated protein in human lung cancer.
Medicine (Baltimore). 2019; 98(31):e16712 [PubMed] Related Publications
Molecular characterization of lung cancer specimens after radical surgery offers additional prognostic information and may help to guide adjuvant therapeutic procedures. The transcriptional regulators alpha thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) have recently been described in different cancer entities as a useful prognostic biomarker. This study was initiated to explore their protein expression patterns and prognostic value in patients with operable lung cancer disease.The protein abundance (in the following text also named protein expression) of ATRX and DAXX were analyzed by immunohistochemistry in 194 samples of squamous cell lung carcinoma (SQCLC), 111 samples of pulmonary adenocarcinoma (AC) and 40 samples of small cell lung cancer (SCLC). The protein levels of ATRX and DAXX were correlated with clinicopathological characteristics and patient outcome.ATRX showed strong protein expression in 16.2% of AC, 11.9% of SQCLC, and 42.5% of SCLC. DAXX was highly expressed in 54.9% of AC, 76.2% of SQCLC, and 82.5% of SCLC. Immunostaining of both ATRX and DAXX were seen in 14.4% of AC, 11.3% of SQCLC, and 42.5% of SCLC. High protein expression of ATRX was a favorable prognostic marker for patients with AC (hazard ratio 0.38, P = .02). Sub-group analyses showed a significant correlation between ATRX and the clinical stage of SQCLC and SCLC. Histological grading and ATRX were also significantly associated in cases of SQCLC.The presence of ATRX and DAXX are correlated with lung cancer histology. Strong ATRX protein expression is associated with a significantly longer overall survival in patients with AC.

Ziv E, Rice SL, Filtes J, et al.
DAXX Mutation Status of Embolization-Treated Neuroendocrine Tumors Predicts Shorter Time to Hepatic Progression.
J Vasc Interv Radiol. 2018; 29(11):1519-1526 [PubMed] Related Publications
PURPOSE: To identify common gene mutations in patients with neuroendocrine liver metastases (NLM) undergoing transarterial embolization (TAE) and establish relationship between these mutations and response to TAE.
MATERIALS AND METHODS: Patients (n = 51; mean age 61 y; 29 men, 22 women) with NLMs who underwent TAE and had available mutation analysis were identified. Mutation status and clinical variables were recorded and evaluated in relation to hepatic progression-free survival (HPFS) (Cox proportional hazards) and time to hepatic progression (TTHP) (competing risk proportional hazards). Subgroup analysis of patients with pancreatic NLM was performed using Fisher exact test to identify correlation between mutation and event (hepatic progression or death) by 6 months. Changes in mutation status over time and across specimens in a subset of patients were recorded.
RESULTS: Technical success of TAE was 100%. Common mutations identified were MEN1 (16/51; 31%) and DAXX (13/51; 25%). Median overall survival was 48.7 months. DAXX mutation status (hazard ratio = 6.21; 95% confidence interval [CI], 2.67-14.48; P < .001) and tumor grade (hazard ratio = 3.05; 95% CI, 1.80-5.17; P < .001) were associated with shorter HPFS and TTHP on univariate and multivariate analysis. Median HPFS was 3.6 months (95% CI, 1.7-5.3) for patients with DAXX mutation compared with 8.9 months (95% CI, 6.6-11.4) for patients with DAXX wild-type status. In patients with pancreatic NLMs, DAXX mutation status was associated with hepatic progression or death by 6 months (P = .024). DAXX mutation status was concordant between primary and metastatic sites.
CONCLUSIONS: DAXX mutation is common in patients with pancreatic NLMs. DAXX mutation status is associated with shorter HPFS and TTHP after TAE.

Chan CS, Laddha SV, Lewis PW, et al.
ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.
Nat Commun. 2018; 9(1):4158 [PubMed] Free Access to Full Article Related Publications
The commonly mutated genes in pancreatic neuroendocrine tumors (PanNETs) are ATRX, DAXX, and MEN1. We genotyped 64 PanNETs and found 58% carry ATRX, DAXX, and MEN1 mutations (A-D-M mutant PanNETs) and this correlates with a worse clinical outcome than tumors carrying the wild-type alleles of all three genes (A-D-M WT PanNETs). We performed RNA sequencing and DNA-methylation analysis to reveal two distinct subgroups with one consisting entirely of A-D-M mutant PanNETs. Two genes differentiating A-D-M mutant from A-D-M WT PanNETs were high ARX and low PDX1 gene expression with PDX1 promoter hyper-methylation in the A-D-M mutant PanNETs. Moreover, A-D-M mutant PanNETs had a gene expression signature related to that of alpha-cells (FDR q-value < 0.009) of pancreatic islets including increased expression of HNF1A and its transcriptional target genes. This gene expression profile suggests that A-D-M mutant PanNETs originate from or transdifferentiate into a distinct cell type similar to alpha cells.

Demicco EG, Wani K, Ingram D, et al.
TERT promoter mutations in solitary fibrous tumour.
Histopathology. 2018; 73(5):843-851 [PubMed] Related Publications
AIMS: TERT promoter mutations have been reported in 22% of solitary fibrous tumours (SFT) and have been associated with poor outcomes. We performed testing for TERT hot-spot mutations in a large series of SFT in order to confirm this finding and explore clinicopathological correlates of mutation status.
METHODS AND RESULTS: PCR for TERT hot-spot mutations C250T and C228T was performed on DNA extracted from 216 SFT and mutation status correlated with clinicopathological factors, including predicted risk for metastasis using a previously published model. Testing was successful in 189 tumours from 172 patients, and mutations were present in 29%. The presence of TERT promoter mutation was associated with larger primary tumour size, necrosis and older patient age. TERT promoter mutations were most common in high-risk tumours (nine of 20, 45%), and were present in 11 of 26 (42%) moderate-risk tumours and 14 of 67 (21%) low-risk tumours (P = 0.004). Overall, TERT mutations were associated with shorter time to first metastasis (P = 0.04), but had no impact on overall survival. TERT promoter mutation status was found not to provide additional prognostic information in low- and high-risk SFT, but did identify a group of patients with intermediate risk SFT who had an increased risk of metastasis.
CONCLUSIONS: TERT promoter mutations were more frequent in SFT with higher risk of metastasis, but TERT promoter mutation status was not a reliable predictor of clinical outcome by itself. However, mutations in the TERT promoter may be useful in further stratifying patients with intermediate risk tumours.

Haase S, Garcia-Fabiani MB, Carney S, et al.
Mutant ATRX: uncovering a new therapeutic target for glioma.
Expert Opin Ther Targets. 2018; 22(7):599-613 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: ATRX is a chromatin remodeling protein whose main function is the deposition of the histone variant H3.3. ATRX mutations are widely distributed in glioma, and correlate with alternative lengthening of telomeres (ALT) development, but they also affect other cellular functions related to epigenetic regulation. Areas covered: We discuss the main molecular characteristics of ATRX, from its various functions in normal development to the effects of its loss in ATRX syndrome patients and animal models. We focus on the salient consequences of ATRX mutations in cancer, from a clinical to a molecular point of view, focusing on both adult and pediatric glioma. Finally, we will discuss the therapeutic opportunities future research perspectives. Expert opinion: ATRX is a major component of various essential cellular pathways, exceeding its functions as a histone chaperone (e.g. DNA replication and repair, chromatin higher-order structure regulation, gene transcriptional regulation, etc.). However, it is unclear how the loss of these functions in ATRX-null cancer cells affects cancer development and progression. We anticipate new treatments and clinical approaches will emerge for glioma and other cancer types as mechanistic and molecular studies on ATRX are only just beginning to reveal the many critical functions of this protein in cancer.

Lee M, Teber ET, Holmes O, et al.
Telomere sequence content can be used to determine ALT activity in tumours.
Nucleic Acids Res. 2018; 46(10):4903-4918 [PubMed] Free Access to Full Article Related Publications
The replicative immortality of human cancer cells is achieved by activation of a telomere maintenance mechanism (TMM). To achieve this, cancer cells utilise either the enzyme telomerase, or the Alternative Lengthening of Telomeres (ALT) pathway. These distinct molecular pathways are incompletely understood with respect to activation and propagation, as well as their associations with clinical outcomes. We have identified significant differences in the telomere repeat composition of tumours that use ALT compared to tumours that do not. We then employed a machine learning approach to stratify tumours according to telomere repeat content with an accuracy of 91.6%. Importantly, this classification approach is applicable across all tumour types. Analysis of pathway mutations that were under-represented in ALT tumours, across 1,075 tumour samples, revealed that the autophagy, cell cycle control of chromosomal replication, and transcriptional regulatory network in embryonic stem cells pathways are involved in the survival of ALT tumours. Overall, our approach demonstrates that telomere sequence content can be used to stratify ALT activity in cancers, and begin to define the molecular pathways involved in ALT activation.

Tamura A, Ogasawara T, Fujii Y, et al.
Glucagonoma With Necrolytic Migratory Erythema: Metabolic Profile and Detection of Biallelic Inactivation of DAXX Gene.
J Clin Endocrinol Metab. 2018; 103(7):2417-2423 [PubMed] Related Publications
Context: Necrolytic migratory erythema (NME) occurs in approximately 70% of patients with glucagonoma syndrome. Excessive stimulation of metabolic pathways by hyperglucagonemia, which leads to hypoaminoacidemia, contributes to NME pathogenesis. However, the molecular pathogenesis of glucagonoma and relationships between metabolic abnormalities and clinical symptoms remain unclear.
Patient: A 53-year-old woman was referred to our hospital with a generalized rash and weight loss. NME was diagnosed by histopathological examination of skin biopsy tissue. Laboratory tests revealed diabetes, hyperglucagonemia, marked insulin resistance, severe hypoaminoacidemia, ketosis, and anemia. Enhanced computed tomography scans detected a 29-mm pancreatic hypervascular tumor, which was eventually diagnosed as glucagonoma. Preoperative treatment with octreotide long-acting release reduced the glucagon level, improved the amino acid profile, and produced NME remission. Surgical tumor excision normalized the metabolic status and led to remission of symptoms, including NME.
Interventions: Whole-exome sequencing (WES) and subsequent targeted capture sequencing, followed by Sanger sequencing and pyrosequencing, identified biallelic alteration of death-domain associated protein (DAXX) with a combination of loss of heterozygosity and frameshift mutations (c.553_554del:p.R185fs and c.1884dupC:p.C629fs) in the glucagonoma. Consistently, immunohistochemistry confirmed near-absence of DAXX staining in the tumor cells. Tumor expression of glucagon and somatostatin receptor subtype 2 and 3 messenger RNA was markedly upregulated.
Conclusions: This is a report of glucagonoma with biallelic inactivation of DAXX determined by WES. The tumor manifested as glucagonoma syndrome with generalized NME. This case showed the relationship between hypoaminoacidemia and NME status. Further investigations are required to elucidate the underlying mechanisms of NME onset and glucagonoma tumorigenesis.

Udugama M, Sanij E, Voon HPJ, et al.
Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers.
Proc Natl Acad Sci U S A. 2018; 115(18):4737-4742 [PubMed] Free Access to Full Article Related Publications
ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.

Ueda H, Akiyama Y, Shimada S, et al.
Tumor suppressor functions of DAXX through histone H3.3/H3K9me3 pathway in pancreatic NETs.
Endocr Relat Cancer. 2018; 25(6):619-631 [PubMed] Related Publications
Pancreatic neuroendocrine tumors (PanNETs) have considerable malignant potential. Frequent somatic mutations and loss of DAXX protein expression have been found in PanNETs. DAXX is known as a transcriptional repressor; however, molecular functions underlying DAXX loss remain unclear in PanNETs. We evaluated DAXX expression by immunohistochemistry in 44 PanNETs.

Konukiewitz B, Jesinghaus M, Steiger K, et al.
Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3.
Hum Pathol. 2018; 77:70-79 [PubMed] Related Publications
Pancreatic neuroendocrine carcinoma is a rare aggressive tumor commonly harboring TP53 and RB1 alterations and lacking neuroendocrine-related genetic changes such as mutations in MEN1 and ATRX/DAXX. Little is known about its genetic profile with regard to that of pancreatic ductal adenocarcinoma. We therefore conducted a detailed genetic study in 12 pancreatic neuroendocrine carcinomas of large cell (n = 9) and small cell type (n = 3) using massive parallel sequencing applying a 409-gene panel on an Ion Torrent system. The genetic data were compared with known data of pancreatic ductal adenocarcinoma and correlated with exocrine lineage marker expression. A similar analysis was performed in 11 pancreatic neuroendocrine tumors G3. Neuroendocrine carcinomas harbored 63 somatic mutations in 45 different genes, affecting most commonly TP53 (8/12 cases), KRAS (5/12 cases), and RB1 (loss of expression with or without deletion in 4/12 cases). Five carcinomas had both TP53 and KRAS mutations. Neuroendocrine tumors G3 only shared singular mutations in 5 different genes with neuroendocrine carcinomas, including TP53, CDKN2A, ARID1A, LRP1B, and APC, affecting 5 different cases. Most KRAS-positive neuroendocrine carcinomas also expressed MUC1 (4/5) and carcinoembryonic antigen (3/5) as markers of ductal differentiation. Our data indicate that almost half of the pancreatic neuroendocrine carcinomas are genetically and phenotypically related to pancreatic ductal adenocarcinoma, and might therefore respond to chemotherapies targeting the latter carcinomas.

Martin DR, LaBauve E, Pomo JM, et al.
Site-Specific Genomic Alterations in a Well-Differentiated Pancreatic Neuroendocrine Tumor With High-Grade Progression.
Pancreas. 2018; 47(4):502-510 [PubMed] Free Access to Full Article Related Publications
The major categories of pancreatic neuroendocrine tumor (PanNET) are well-differentiated NET and poorly differentiated neuroendocrine carcinoma. Sequencing of these tumors has identified multiple important genes in the pathogenesis of PanNETs, such as DAXX/ATRX, MEN1, TP53, RB, and mTOR pathway genes. We identified a case of well-differentiated PanNET with high-grade progression with simultaneous low- and high-grade histologic regions containing variable genomic profiles. We performed tumor microdissection and analyzed both regions using a 409-gene comprehensive cancer panel using next-generation sequencing in addition to immunohistochemical and morphologic studies. The low-grade region showed a change in the DAXX gene as a copy number variant (CNV) deletion. The high-grade region showed CNV deletion changes in the DAXX gene as well as the MEN1 gene. We observed additional mutational changes in the PTEN gene and SMAD4 gene in the high-grade region. Our data support that high-grade progression in PanNETs may be the result of the progressive accumulation of genetic changes (CNVs and point mutational changes) within the body of the tumor. Next generation sequencing may provide pathologists and clinicians with ancillary information to accurately characterize and treat these tumors.

Roy S, LaFramboise WA, Liu TC, et al.
Loss of Chromatin-Remodeling Proteins and/or CDKN2A Associates With Metastasis of Pancreatic Neuroendocrine Tumors and Reduced Patient Survival Times.
Gastroenterology. 2018; 154(8):2060-2063.e8 [PubMed] Free Access to Full Article Related Publications
Despite prognostic grading and staging systems, it is a challenge to predict outcomes for patients with pancreatic neuroendocrine tumors (PanNETs). Sequencing studies of PanNETs have identified alterations in death domain-associated protein (DAXX) and alpha-thalassemia/mental retardation X-linked chromatin remodeler (ATRX). In tumors, mutations in DAXX or ATRX and corresponding loss of protein expression correlate with shorter times of disease-free survival and disease-specific survival of patients. However, DAXX or ATRX proteins were lost in only 50% of distant metastases analyzed. We performed whole-exome sequencing analyses of 20 distant metastases from 20 patients with a single nonsyndrome, nonfunctional PanNET. We found distant metastases contained alterations in multiple endocrine neoplasia type 1 (MEN1) (n = 8), ATRX (n = 5), DAXX (n = 5), TSC2 (n = 3), and DEP domain containing 5 (DEPDC5) (n = 3). We found copy number loss of cyclin dependent kinase inhibitor 2A (CDKN2A) in 15 metastases (75%) and alterations in genes that regulate chromatin remodeling, including set domain containing 2 (SETD2) (n = 4), AT-rich interaction domain 1A (ARID1A) (n = 2), chromodomain helicase DNA binding protein 8 (CHD8) (n = 2), and DNA methyl transferase 1 (DNMT1) (n = 2). In a separate analysis of 347 primary PanNETs, we found loss or deletion of DAXX and ATRX, disruption of SETD2 function (based on loss of H3 lysine 36 trimethylation), loss of ARID1A expression or deletions in CDKN2A in 81% of primary PanNETs with distant metastases. Among patients with loss or deletion of at least 1 of these proteins or genes, 39% survived disease-free for 5 years and 44% had disease-specific survival times of 10 years. Among patients without any of these alterations, 98% survived disease-free for 5 years and 95% had disease-specific survival times of 10 years. Therefore, primary PanNETs with loss of DAXX, ATRX, H3 lysine 36 trimethylation, ARID1A, and/or CDKN2A associate with shorter survival times of patients. Our findings indicate that alterations in chromatin-remodeling genes and CDKN2A contribute to metastasis of PanNETs.

Mafficini A, Scarpa A
Genomic landscape of pancreatic neuroendocrine tumours: the International Cancer Genome Consortium.
J Endocrinol. 2018; 236(3):R161-R167 [PubMed] Free Access to Full Article Related Publications
Neuroendocrine tumours (NETs) may arise throughout the body and are a highly heterogeneous, relatively rare class of neoplasms difficult to study also for the lack of disease models. Despite this, knowledge on their molecular alterations has expanded in the latest years, also building from genetic syndromes causing their onset. Pancreatic NETs (PanNETs) have been among the most studied, and research so far has outlined a series of recurring features, as inactivation of

Oh SE, Mouradian MM
Regulation of Signal Transduction by DJ-1.
Adv Exp Med Biol. 2017; 1037:97-131 [PubMed] Free Access to Full Article Related Publications
The ability of DJ-1 to modulate signal transduction has significant effects on how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy to adapt to changing environmental stimuli and stresses. Perturbations of DJ-1 levels or function can disrupt the equilibrium of homeostatic signaling networks and set off cascades that play a role in the pathogenesis of conditions such as cancer and Parkinson's disease.DJ-1 plays a major role in various pathways. It mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. It attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation as well as by inhibiting mitogen-activated protein kinase kinase kinase 1 (MEKK1/MAP3K1) activation of downstream apoptotic cascades. It also modulates autophagy through the ERK, Akt, or the JNK/Beclin1 pathways. In addition, DJ-1 regulates the transcription of genes essential for male reproductive function, such as spermatogenesis, by relaying nuclear receptor androgen receptor (AR) signaling. In this chapter, we summarize the ways that DJ-1 regulates these pathways, focusing on how its role in signal transduction contributes to cellular homeostasis and the pathologic states that result from dysregulation.

Wong HL, Yang KC, Shen Y, et al.
Molecular characterization of metastatic pancreatic neuroendocrine tumors (PNETs) using whole-genome and transcriptome sequencing.
Cold Spring Harb Mol Case Stud. 2018; 4(1) [PubMed] Free Access to Full Article Related Publications
Pancreatic neuroendocrine tumors (PNETs) are a genomically and clinically heterogeneous group of pancreatic neoplasms often diagnosed with distant metastases. Recurrent somatic mutations, chromosomal aberrations, and gene expression signatures in PNETs have been described, but the clinical significance of these molecular changes is still poorly understood, and the clinical outcomes of PNET patients remain highly variable. To help identify the molecular factors that contribute to PNET progression and metastasis, and as part of an ongoing clinical trial at the BC Cancer Agency (clinicaltrials.gov ID: NCT02155621), the genomic and transcriptomic profiles of liver metastases from five patients (four PNETs and one neuroendocrine carcinoma) were analyzed. In four of the five cases, we identified biallelic loss of

Hathaway-Schrader JD, Doonan BP, Hossain A, et al.
Autophagy-dependent crosstalk between GILT and PAX-3 influences radiation sensitivity of human melanoma cells.
J Cell Biochem. 2018; 119(2):2212-2221 [PubMed] Free Access to Full Article Related Publications
Melanoma represents an ever-increasing problem in the western world as incidence rates continue to climb. Though manageable during early stages, late stage metastatic disease is highly resistant to current intervention. We have previously shown that gamma-interferon-inducible lysosomal thiol-reductase (GILT) enhances HLA class II antigen processing and immune detection of human melanoma cells. Here we report that GILT expression inhibits a potential target, paired box-3 (PAX-3) protein, in late stage human metastatic melanoma. We also show that GILT transfection or induction by IFN-γ, decreases PAX-3 protein expression while upregulating the expression of Daxx, which is also a repressor of PAX-3. Confocal microscopic analysis demonstrated that GILT co-localizes with PAX-3 protein, but not with Daxx within melanoma cells. Immunoprecipitation and immunoblotting studies suggest that GILT expression negatively regulates PAX-3 through the autophagy pathway, potentially resulting in increased susceptibility to conventional treatment in the form of chemotherapy or radiotherapy. While high-dose radiation is a common treatment for melanoma patients, our data suggest that GILT expression significantly increased the susceptibility of melanoma cells to low-dose radiation therapy via upregulation of tumor suppressor protein p53. Overall, these data suggest that GILT has multiple roles in inducing human melanoma cells as better targets for radiation and immunotherapy.

Xu JF, Zhao ZG, Ye LL, et al.
Prognostic significance of Daxx NCR (Nuclear/Cytoplasmic Ratio) in gastric cancer.
Cancer Med. 2017; 6(9):2063-2075 [PubMed] Free Access to Full Article Related Publications
In addition to regulating apoptosis via its interaction with the death domain of Fas receptor, death domain associated protein 6 (Daxx) is also known to be involved in transcriptional regulation, suggesting that the function of Daxx depends on its subcellular localization. In this study, we aimed to explore Daxx subcellular localization in gastric cancer (GC) cells and correlate the findings with clinical data in GC patients. Seventy pairs of tissue samples (GC and adjacent normal tissue) were analyzed immunohistochemically for Daxx expression and localization (nuclear and cytoplasmic). The Daxx Nuclear/Cytoplasmic ratio (Daxx NCR) values in tissue microarray data with 522 tumor samples were further analyzed. The defined Prior cohort (n = 277, treatment between 2006 and 2009) and Recent cohort (n = 245, treatment between 2010 and 2011) were then used to examine the relationship between Daxx NCR and clinical data. The Daxx NCR was found to be clinically informative and significantly higher in GC tissue. Using Daxx NCR (risk ratio = 2.0), both the Prior and Recent cohorts were divided into high- and low-risk groups. Relative to the low-risk group, the high-risk patients had a shorter disease free survival (DFS) and overall survival (OS) in both cohorts. Importantly, postoperative chemotherapy was found having differential effect on high- and low-risk patients. Such chemotherapy brought no survival benefit, (and could potentially be detrimental,) to high-risk patients after surgery. Daxx NCR could be used as a prognosis factor in GC patients, and may help select the appropriate population to benefit from chemotherapy after surgery.

Casar-Borota O, Botling J, Granberg D, et al.
Serotonin, ATRX, and DAXX Expression in Pituitary Adenomas: Markers in the Differential Diagnosis of Neuroendocrine Tumors of the Sellar Region.
Am J Surg Pathol. 2017; 41(9):1238-1246 [PubMed] Related Publications
Differential diagnosis based on morphology and immunohistochemistry between a clinically nonfunctioning pituitary neuroendocrine tumor (NET)/pituitary adenoma and a primary or secondary NET of nonpituitary origin in the sellar region may be difficult. Serotonin, a frequently expressed marker in the NETs, has not been systematically evaluated in pituitary NETs. Although mutations in ATRX or DAXX have been reported in a significant proportion of pancreatic NETs, the mutational status of ATRX and DAXX and their possible pathogenetic role in pituitary NETs are unknown. Facing a difficult diagnostic case of an invasive serotonin and adrenocorticotroph hormone immunoreactive NET in the sellar region, we explored the immunohistochemical expression of serotonin, ATRX, and DAXX in a large series of pituitary endocrine tumors of different types from 246 patients and in 2 corticotroph carcinomas. None of the pituitary tumors expressed serotonin, suggesting that serotonin immunoreactive sellar tumors represent primary or secondary NETs of nonpituitary origin. Normal expression of ATRX and DAXX in pituitary tumors suggests that ATRX and DAXX do not play a role in the pathogenesis of pituitary endocrine tumors that remain localized to the sellar and perisellar region. A lack of ATRX or DAXX in a sellar NET suggests a nonpituitary NET, probably of pancreatic origin. One of the 2 examined corticotroph carcinomas, however, demonstrated negative ATRX immunolabeling due to an ATRX gene mutation. Further studies on a larger cohort of pituitary carcinomas are needed to clarify whether ATRX mutations may contribute to the metastatic potential in a subset of pituitary NETs.

DeLair DF, Burke KA, Selenica P, et al.
The genetic landscape of endometrial clear cell carcinomas.
J Pathol. 2017; 243(2):230-241 [PubMed] Free Access to Full Article Related Publications
Clear cell carcinoma of the endometrium is a rare type of endometrial cancer that is generally associated with an aggressive clinical behaviour. Here, we sought to define the repertoire of somatic genetic alterations in endometrial clear cell carcinomas (ECCs), and whether ECCs could be classified into the molecular subtypes described for endometrial endometrioid and serous carcinomas. We performed a rigorous histopathological review, immunohistochemical analysis and massively parallel sequencing targeting 300 cancer-related genes of 32 pure ECCs. Eleven (34%), seven (22%) and six (19%) ECCs showed abnormal expression patterns for p53, ARID1A, and at least one DNA mismatch repair (MMR) protein, respectively. Targeted sequencing data were obtained from 30 of the 32 ECCs included in this study, and these revealed that two ECCs (7%) were ultramutated and harboured mutations affecting the exonuclease domain of POLE. In POLE wild-type ECCs, TP53 (46%), PIK3CA (36%), PPP2R1A (36%), FBXW7 (25%), ARID1A (21%), PIK3R1 (18%) and SPOP (18%) were the genes most commonly affected by mutations; 18% and 11% harboured CCNE1 and ERBB2 amplifications, respectively, and 11% showed DAXX homozygous deletions. ECCs less frequently harboured mutations affecting CTNNB1 and PTEN but more frequently harboured PPP2R1A and TP53 mutations than non-POLE endometrioid carcinomas from The Cancer Genome Atlas (TCGA). Compared to endometrial serous carcinomas (TCGA), ECCs less frequently harboured TP53 mutations. When a surrogate model for the molecular-based TCGA classification was used, all molecular subtypes previously identified in endometrial endometrioid and serous carcinomas were present in the ECCs studied, including POLE, MMR-deficient, copy-number high (serous-like)/p53 abnormal, and copy-number low (endometrioid)/p53 wild-type, which were significantly associated with disease-free survival in univariate analysis. These findings demonstrate that ECCs constitute a histologically and genetically heterogeneous group of tumours with varying outcomes. Furthermore, our data suggest that the classification of ECCs as being generally 'high-grade' or 'type II' tumours may not be warranted. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Di Domenico A, Wiedmer T, Marinoni I, Perren A
Genetic and epigenetic drivers of neuroendocrine tumours (NET).
Endocr Relat Cancer. 2017; 24(9):R315-R334 [PubMed] Related Publications
Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as

Shrestha RL, Ahn GS, Staples MI, et al.
Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells.
Oncotarget. 2017; 8(29):46781-46800 [PubMed] Free Access to Full Article Related Publications
Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability.

Park JK, Paik WH, Lee K, et al.
DAXX/ATRX and MEN1 genes are strong prognostic markers in pancreatic neuroendocrine tumors.
Oncotarget. 2017; 8(30):49796-49806 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: PanNETs shows heterogeneous biological behaviors. The aim was to investigate prognostic markers based on most frequently mutated genes in PanNETs.
RESULTS: There was a total of 76 patients (M: 39, F: 37) with pathologically proven PanNETs. ATRX/DAXX and MEN1 protein expression was detected in 16 (21%) and 31 (41%) patients, respectively. The mean OS of the total study patients was 16 years, and DFS was 17 years among the 68 patients with curative resections. PanNETs presented with distant metastasis or loss of ATRX/DAXX protein expression was the independent prognostic factors associated with poor OS. In curative resected PanNETs, there was no significant difference in the mean DFS according to ATRX/DAXX or MEN1 protein. However, there was statistically significant difference in survival after the recurrence according to the expression of ATRX/DAXX protein; Y/N: 10 vs. 15 years, p < 0.001. In metastatic PanNETs, we could find out OS was significantly longer in negative protein expression of ATRX/DAXX and MEN1 groups; 7 vs. 1 years, p < 0.001, 6 vs. 2 years, p = 0.02, respectively.
MATERIALS AND METHODS: The histologically proven PanNETs were enrolled and the clinicopathologic and genetic alterations were evaluated.
CONCLUSIONS: Protein expression of MEN1 and DAXX/ATRX can be prognostic markers for PanNETs. Further investigation in genetic alterations of PanNETs may give us insights understanding the behavior of PanNETs.

Benitez JA, Ma J, D'Antonio M, et al.
PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3.
Nat Commun. 2017; 8:15223 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is the most lethal type of human brain cancer, where deletions and mutations in the tumour suppressor gene PTEN (phosphatase and tensin homolog) are frequent events and are associated with therapeutic resistance. Herein, we report a novel chromatin-associated function of PTEN in complex with the histone chaperone DAXX and the histone variant H3.3. We show that PTEN interacts with DAXX and, in turn PTEN directly regulates oncogene expression by modulating DAXX-H3.3 association on the chromatin, independently of PTEN enzymatic activity. Furthermore, DAXX inhibition specifically suppresses tumour growth and improves the survival of orthotopically engrafted mice implanted with human PTEN-deficient glioma samples, associated with global H3.3 genomic distribution changes leading to upregulation of tumour suppressor genes and downregulation of oncogenes. Moreover, DAXX expression anti-correlates with PTEN expression in GBM patient samples. Since loss of chromosome 10 and PTEN are common events in cancer, this synthetic growth defect mediated by DAXX suppression represents a therapeutic opportunity to inhibit tumorigenesis specifically in the context of PTEN deletion.

VandenBussche CJ, Allison DB, Graham MK, et al.
Alternative lengthening of telomeres and ATRX/DAXX loss can be reliably detected in FNAs of pancreatic neuroendocrine tumors.
Cancer Cytopathol. 2017; 125(7):544-551 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pancreatic neuroendocrine tumors (PanNETs) frequently use the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT is strongly correlated with α thalassemia-mental retardation, X linked (ATRX), and death domain-associated protein 6 (DAXX) alterations and a poor prognosis in patients with primary PanNET. Because fine-needle aspiration (FNA) is a noninvasive way to sample tumors, the authors evaluated whether they could accurately detect ALT and loss of ATRX/DAXX in a primary PanNET cohort of FNAs.
METHODS: All preoperative FNA cytology cases (2005-2016) with adequate remnant FNA cell block material were assessed for ALT by telomere-specific fluorescence in situ hybridization and for ATRX and DAXX protein expression by immunohistochemistry. For 21 patients who underwent tumor resection, the resected specimen also was assessed to determine the concordance between the FNA and surgical specimens.
RESULTS: In the primary PanNET cohort of 65 FNAs, ALT was detected in 15 specimens (23%). Although all ATRX-negative and DAXX-negative tumors were ALT-positive, 3 of 14 (21%) ALT-positive tumors did not exhibit nuclear loss of either ATRX or DAXX. The ALT-positive tumors were associated with larger radiographic size (4.9 vs 2.4 cm, on average; P < .05) and higher grade (P < .05). Overall, there was 100% concordance in ALT status and ATRX/DAXX immunohistochemistry results between the FNA and surgical specimens.
CONCLUSIONS: Both ALT and loss of ATRX/DAXX can be accurately performed on FNA specimens with adequate material. Because ALT is a fundamental mechanism of pathogenesis, the ability to determine ALT in small biospecimens has implications for the design of clinical trials. Cancer Cytopathol 2017;125:544-51. © 2017 American Cancer Society.

Backman S, Norlén O, Eriksson B, et al.
Detection of Somatic Mutations in Gastroenteropancreatic Neuroendocrine Tumors Using Targeted Deep Sequencing.
Anticancer Res. 2017; 37(2):705-712 [PubMed] Related Publications
Mutations affecting the mechanistic target of rapamycin (MTOR) signalling pathway are frequent in human cancer and have been identified in up to 15% of pancreatic neuroendocrine tumours (NETs). Grade A evidence supports the efficacy of MTOR inhibition with everolimus in pancreatic NETs. Although a significant proportion of patients experience disease stabilization, only a minority will show objective tumour responses. It has been proposed that genomic mutations resulting in activation of MTOR signalling could be used to predict sensitivity to everolimus.
PATIENTS AND METHODS: Patients with NETs that underwent treatment with everolimus at our Institution were identified and those with available tumour tissue were selected for further analysis. Targeted next-generation sequencing (NGS) was used to re-sequence 22 genes that were selected on the basis of documented involvement in the MTOR signalling pathway or in the tumourigenesis of gastroenterpancreatic NETs. Radiological responses were documented using Response Evaluation Criteria in Solid Tumours.
RESULTS: Six patients were identified, one had a partial response and four had stable disease. Sequencing of tumour tissue resulted in a median sequence depth of 667.1 (range=404-1301) with 1-fold coverage of 95.9-96.5% and 10-fold coverage of 87.6-92.2%. A total of 494 genetic variants were discovered, four of which were identified as pathogenic. All pathogenic variants were validated using Sanger sequencing and were found exclusively in menin 1 (MEN1) and death domain associated protein (DAXX) genes. No mutations in the MTOR pathway-related genes were observed.
CONCLUSION: Targeted NGS is a feasible method with high diagnostic yield for genetic characterization of pancreatic NETs. A potential association between mutations in NETs and response to everolimus should be investigated by future studies.

Barthel FP, Wei W, Tang M, et al.
Systematic analysis of telomere length and somatic alterations in 31 cancer types.
Nat Genet. 2017; 49(3):349-357 [PubMed] Free Access to Full Article Related Publications
Cancer cells survive cellular crisis through telomere maintenance mechanisms. We report telomere lengths in 18,430 samples, including tumors and non-neoplastic samples, across 31 cancer types. Telomeres were shorter in tumors than in normal tissues and longer in sarcomas and gliomas than in other cancers. Among 6,835 cancers, 73% expressed telomerase reverse transcriptase (TERT), which was associated with TERT point mutations, rearrangements, DNA amplifications and transcript fusions and predictive of telomerase activity. TERT promoter methylation provided an additional deregulatory TERT expression mechanism. Five percent of cases, characterized by undetectable TERT expression and alterations in ATRX or DAXX, demonstrated elongated telomeres and increased telomeric repeat-containing RNA (TERRA). The remaining 22% of tumors neither expressed TERT nor harbored alterations in ATRX or DAXX. In this group, telomere length positively correlated with TP53 and RB1 mutations. Our analysis integrates TERT abnormalities, telomerase activity and genomic alterations with telomere length in cancer.

Ohmoto A, Rokutan H, Yachida S
Pancreatic Neuroendocrine Neoplasms: Basic Biology, Current Treatment Strategies and Prospects for the Future.
Int J Mol Sci. 2017; 18(1) [PubMed] Free Access to Full Article Related Publications
Pancreatic neuroendocrine neoplasms (pNENs) are rare tumors accounting for only 1%-2% of all pancreatic tumors. pNENs are pathologically heterogeneous and are categorized into three groups (neuroendocrine tumor: NET G1, NET G2; and neuroendocrine carcinoma: NEC) on the basis of the Ki-67 proliferation index and the mitotic count according to the 2010 World Health Organization (WHO) classification of gastroenteropancreatic NENs. NEC in this classification includes both histologically well-differentiated and poorly differentiated subtypes, and modification of the WHO 2010 classification is under discussion based on genetic and clinical data. Genomic analysis has revealed NETs G1/G2 have genetic alterations in chromatin remodeling genes such as

Lee J, Solomon DA, Tihan T
The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children.
J Neurooncol. 2017; 132(1):1-11 [PubMed] Free Access to Full Article Related Publications
Genetic profiling is an increasingly useful tool for sub-classification of gliomas in adults and children. Specific gene mutations, structural rearrangements, DNA methylation patterns, and gene expression profiles are now recognized to define molecular subgroups of gliomas that arise in distinct anatomic locations and patient age groups, and also provide a better prediction of clinical outcomes for glioma patients compared to histologic assessment alone. Understanding the role of these distinctive genetic alterations in gliomagenesis is also important for the development of potential targeted therapeutic interventions. Mutations including K27M and G34R/V that affect critical amino acids within the N-terminal tail of the histone H3 variants, H3.3 and H3.1 (encoded by H3F3A and HIST1H3B genes), are prime examples of mutations in diffuse gliomas with characteristic clinical associations that can help diagnostic classification and guide effective patient management. These histone H3 mutations frequently co-occur with inactivating mutations in ATRX in association with alternative lengthening of telomeres. Telomere length can also be maintained through upregulation of telomerase reverse transcriptase (TERT) expression driven by mutation within the TERT gene promoter region, an alteration most commonly found in oligodendrogliomas and primary glioblastomas arising in adults. Interestingly, the genetic alterations perturbing histone and telomere function in pediatric gliomas tend to be different from those present in adult tumors. We present a review of these mutations affecting the histone code and telomere length, highlighting their importance in prognosis and as targets for novel therapeutics in the treatment of diffuse gliomas.

Konukiewitz B, Schlitter AM, Jesinghaus M, et al.
Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20.
Mod Pathol. 2017; 30(4):587-598 [PubMed] Related Publications
Somatostatin receptor 2A expression is a feature of well-differentiated neuroendocrine neoplasms and is important for their diagnosis and therapy. Little is known about somatostatin receptor 2A expression in poorly differentiated neuroendocrine neoplasms in relation to TP53 and RB1 status and how these features may contribute to the separation of well from poorly differentiated neuroendocrine neoplasms with a proliferation index above 20%. This study investigates the expression of somatostatin receptors, p53 and Rb1, and TP53 alterations in pancreatic and extrapancreatic well and poorly differentiated neuroendocrine neoplasms (Ki67-index >20%). Thirty-seven poorly differentiated neuroendocrine neoplasms of pancreatic (n=12) and extrapancreatic origin (n=25) as well as 10 well-differentiated neuroendocrine neoplasms of the pancreas (n=9) and rectum (n=1) with a Ki67-index >20% were immunostained for synaptophysin, chromogranin A, Ki67, CD56, p53, Rb1, ATRX, DAXX, progesterone receptor, somatostatin receptor 2A, somatostatin receptor 5, and cytokeratin 20, and sequenced for TP53, exons 5-9. Somatostatin receptor 2A was positive in 6/37 of poorly differentiated and in 8/10 of well-differentiated neuroendocrine neoplasms. One well-differentiated and two poorly differentiated neuroendocrine neoplasms expressed somatostatin receptor 5. Abnormal nuclear p53 and Rb1 staining was found in 29/37 and 22/37 poorly differentiated neuroendocrine neoplasms, respectively, whereas all well-differentiated neuroendocrine neoplasms showed normal p53 and Rb1 expression. TP53 gene alterations were restricted to poorly differentiated neuroendocrine neoplasms (24/34) and correlated well with p53 expression. All cases were progesterone receptor negative. Somatostatin receptor 2A expression is not limited to well-differentiated neuroendocrine neoplasms but also occurs in 16% of poorly differentiated neuroendocrine neoplasms from various sites. Most poorly differentiated neuroendocrine neoplasms are characterized by TP53 alterations and Rb1 loss, usually in the absence of somatostatin receptor 2A expression. In the pancreas, these criteria contribute to separate well-differentiated neuroendocrine neoplasms with a Ki67-index above 20% from poorly differentiated neuroendocrine neoplasms.

Brügger F, Dettmer MS, Neuenschwander M, et al.
TERT Promoter Mutations but not the Alternative Lengthening of Telomeres Phenotype Are Present in a Subset of Ependymomas and Are Associated With Adult Onset and Progression to Ependymosarcoma.
J Neuropathol Exp Neurol. 2017; 76(1):61-66 [PubMed] Related Publications
Genetic signatures related to telomere maintenance have emerged as powerful classifiers among CNS tumors. These include the alternative lengthening of telomeres (ALT) phenotype associated with mutations in the ATRX and DAXX genes and recurrent point mutations in the TERT gene promoter. We investigated a patient cohort covering the entire spectrum of childhood and adult ependymomas (n = 128), including subependymomas and myxopapillary ependymomas, for the presence of TERT promoter mutations, for loss of ATRX or DAXX expression by immunohistochemistry (as surrogates as underlying gene mutations), and for the ALT phenotype by fluorescence in situ hybridization (FISH). TERT promoter mutations were identified in 9/120 (7%) of tumors, all of which were conventional ependymomas occurring in adults. TERT promoter mutations were associated with older age and intracranial localization. Remarkably, 2 of these tumors progressed to ependymosarcoma upon recurrence. No tumors displayed an ALT phenotype by FISH or were ATRX or DAXX deficient by immunohistochemistry. In sum, TERT promoter mutations are present in a subset of mostly intracranial conventional ependymomas in adults and may be relevant for the uncommon progression to ependymosarcoma. Loss of ATRX immunoreactivity is a useful marker to rule out ependymoma in specific diagnostic settings.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DAXX, Cancer Genetics Web: http://www.cancer-genetics.org/DAXX.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999