Gene Summary

Gene:FANCM; FA complementation group M
Aliases: POF15, SPGF28, FAAP250, KIAA1596
Summary:The Fanconi anemia complementation group (FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (also called BRIP1), FANCL, FANCM and FANCN (also called PALB2). The previously defined group FANCH is the same as FANCA. Fanconi anemia is a genetically heterogeneous recessive disorder characterized by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and defective DNA repair. The members of the Fanconi anemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. This gene encodes the protein for complementation group M. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:Fanconi anemia group M protein
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Exome
  • Exons
  • Alleles
  • Sequence Deletion
  • Risk Factors
  • Triple Negative Breast Cancer
  • DNA Helicases
  • Young Adult
  • DNA Repair
  • Germ-Line Mutation
  • Genetic Association Studies
  • Chromosome 14
  • Codon, Nonsense
  • Breast Cancer
  • Nucleic Acid Heteroduplexes
  • Ovarian Cancer
  • Risk Assessment
  • Pedigree
  • Genetic Variation
  • Staging
  • BRCA1 Protein
  • Biomarkers, Tumor
  • Fanconi Anaemia
  • BRCA2 Protein
  • Genetic Predisposition
  • Genotype
  • MicroRNAs
  • Mutation
  • Genetic Testing
  • Adolescents
  • DNA Mutational Analysis
  • DNA Damage
  • BRCA1
  • Survival Rate
  • Case-Control Studies
  • BRCA2
  • Finland
  • High-Throughput Nucleotide Sequencing
  • Phenotype
  • Whole Exome Sequencing
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Fanconi Anemia - Complementation Group M

Latest Publications

Ramanagoudr-Bhojappa R, Carrington B, Ramaswami M, et al.
Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility.
PLoS Genet. 2018; 14(12):e1007821 [PubMed] Free Access to Full Article Related Publications
Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orchestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologs for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss-of-function mutants for 17 FA genes: fanca, fancb, fancc, fancd1/brca2, fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, and two genes encoding FA-associated proteins: faap100 and faap24. We selected two indel mutations predicted to cause premature truncations for all but two of the genes, and a total of 36 mutant lines were generated for 19 genes. Generating two independent mutant lines for each gene was important to validate their phenotypic consequences. RT-PCR from homozygous mutant fish confirmed the presence of transcripts with indels in all genes. Interestingly, 4 of the indel mutations led to aberrant splicing, which may produce a different protein than predicted from the genomic sequence. Analysis of RNA is thus critical in proper evaluation of the consequences of the mutations introduced in zebrafish genome. We used fluorescent reporter assay, and western blots to confirm loss-of-function for several mutants. Additionally, we developed a DEB treatment assay by evaluating morphological changes in embryos and confirmed that homozygous mutants from all the FA genes that could be tested (11/17), displayed hypersensitivity and thus were indeed null alleles. Our multiplexing strategy helped us to evaluate 11 multiple gene knockout combinations without additional breeding. Homozygous zebrafish for all 19 single and 11 multi-gene knockouts were adult viable, indicating FA genes in zebrafish are generally not essential for early development. None of the mutant fish displayed gross developmental abnormalities except for fancp-/- fish, which were significantly smaller in length than their wildtype clutch mates. Complete female-to-male sex reversal was observed in knockouts for 12/17 FA genes, while partial sex reversal was seen for the other five gene knockouts. All adult females were fertile, and among the adult males, all were fertile except for the fancd1 mutants and one of the fancj mutants. We report here generation and characterization of zebrafish knockout mutants for 17 FA disease-causing genes, providing an integral resource for understanding the pathophysiology associated with the disrupted FA pathway.

Moder M, Velimezi G, Owusu M, et al.
Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia.
Nat Commun. 2017; 8(1):1238 [PubMed] Free Access to Full Article Related Publications
Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.

Catucci I, Osorio A, Arver B, et al.
Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility.
Genet Med. 2018; 20(4):452-457 [PubMed] Related Publications
PurposeMonoallelic germ-line mutations in the BRCA1/FANCS, BRCA2/FANCD1 and PALB2/FANCN genes confer high risk of breast cancer. Biallelic mutations in these genes cause Fanconi anemia (FA), characterized by malformations, bone marrow failure, chromosome fragility, and cancer predisposition (BRCA2/FANCD1 and PALB2/FANCN), or an FA-like disease presenting a phenotype similar to FA but without bone marrow failure (BRCA1/FANCS). FANCM monoallelic mutations have been reported as moderate risk factors for breast cancer, but there are no reports of any clinical phenotype observed in carriers of biallelic mutations.MethodsBreast cancer probands were subjected to mutation analysis by sequencing gene panels or testing DNA damage response genes.ResultsFive cases homozygous for FANCM loss-of-function mutations were identified. They show a heterogeneous phenotype including cancer predisposition, toxicity to chemotherapy, early menopause, and possibly chromosome fragility. Phenotype severity might correlate with mutation position in the gene.ConclusionOur data indicate that biallelic FANCM mutations do not cause classical FA, providing proof that FANCM is not a canonical FA gene. Moreover, our observations support previous findings suggesting that FANCM is a breast cancer-predisposing gene. Mutation testing of FANCM might be considered for individuals with the above-described clinical features.

Bogliolo M, Bluteau D, Lespinasse J, et al.
Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia.
Genet Med. 2018; 20(4):458-463 [PubMed] Related Publications
PurposeMutations in genes involved in Fanconi anemia (FA)/BRCA DNA repair pathway cause cancer susceptibility diseases including familial breast cancer and Fanconi anemia (FA). A single FA patient with biallelic FANCM mutations was reported in 2005 but concurrent FANCA pathogenic mutations precluded assignment of FANCM as an FA gene. Here we report three individuals with biallelic FANCM truncating mutations who developed early-onset cancer and toxicity to chemotherapy but did not present congenital malformations or any hematological phenotype suggestive of FA.MethodsChromosomal breakages, interstrand crosslink sensitivity, and FANCD2 monoubiquitination were assessed in primary fibroblasts. Mutation analysis was achieved through Sanger sequencing. Genetic complementation of patient-derived cells was performed by lentiviral mediated transduction of wild-type FANCM complementary DNA followed by functional studies.ResultsPatient-derived cells exhibited chromosomal fragility, hypersensitivity to interstrand crosslinks, and impaired FANCD2 monoubiquitination. We identified two homozygous mutations (c.2586_2589del4; p.Lys863Ilefs*12 and c.1506_1507insTA; p.Ile503*) in FANCM as the cause of the cellular phenotype. Patient-derived cells were genetically complemented upon wild-type FANCM complementary DNA expression.ConclusionLoss-of-function mutations in FANCM cause a cancer predisposition syndrome clinically distinct from bona fide FA. Care should be taken with chemotherapy and radiation treatments in these patients due to expected acute toxicity.

Slavin TP, Neuhausen SL, Nehoray B, et al.
The spectrum of genetic variants in hereditary pancreatic cancer includes Fanconi anemia genes.
Fam Cancer. 2018; 17(2):235-245 [PubMed] Free Access to Full Article Related Publications
Approximately 5-10% of all pancreatic cancer patients carry a predisposing mutation in a known susceptibility gene. Since >90% of patients present with late stage disease, it is crucial to identify high risk individuals who may be amenable to early detection or other prevention. To explore the spectrum of hereditary pancreatic cancer susceptibility, we evaluated germline DNA from pancreatic cancer participants (n = 53) from a large hereditary cancer registry. For those without a known predisposition mutation gene (n = 49), germline next generation sequencing was completed using targeted capture for 706 candidate genes. We identified 16 of 53 participants (30%) with a pathogenic (P) or likely pathogenic (LP) variant that may be related to their hereditary pancreatic cancer predisposition; seven had mutations in genes associated with well-known cancer syndromes (13%) [ATM (2), BRCA2 (3), MSH2 (1), MSH6 (1)]. Many had mutations in Fanconi anemia complex genes [BRCA2 (3 participants), FANCF, FANCM]. Eight participants had rare protein truncating variants of uncertain significance with no other P or LP variants. Earlier age of pancreatic cancer diagnosis (57.5 vs 64.8 years) was indicative of possessing a P or LP variant, as was cancer family history (p values <0.0001). Our multigene panel approach for identifying known cancer predisposing genetic susceptibility in those at risk for hereditary pancreatic cancer may have direct applicability to clinical practice in cases with mutations in actionable genes. Future pancreatic cancer predisposition studies should include evaluation of the Fanconi anemia genes.

Voter AF, Manthei KA, Keck JL
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
J Biomol Screen. 2016; 21(6):626-33 [PubMed] Free Access to Full Article Related Publications
Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol.

Castella M, Jacquemont C, Thompson EL, et al.
FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2.
PLoS Genet. 2015; 11(10):e1005563 [PubMed] Free Access to Full Article Related Publications
The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway.

Xue X, Sung P, Zhao X
Functions and regulation of the multitasking FANCM family of DNA motor proteins.
Genes Dev. 2015; 29(17):1777-88 [PubMed] Free Access to Full Article Related Publications
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.

Bogliolo M, Surrallés J
Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics.
Curr Opin Genet Dev. 2015; 33:32-40 [PubMed] Related Publications
Fanconi anemia (FA) is characterized by bone marrow failure, malformations, and chromosome fragility. We review the recent discovery of FA genes and efforts to develop genetic therapies for FA in the last five years. Because current data exclude FANCM as an FA gene, 15 genes remain bona fide FA genes and three (FANCO, FANCR and FANCS) cause an FA like syndrome. Monoallelic mutations in 6 FA associated genes (FANCD1, FANCJ, FANCM, FANCN, FANCO and FANCS) predispose to breast and ovarian cancer. The products of all these genes are involved in the repair of stalled DNA replication forks by unhooking DNA interstrand cross-links and promoting homologous recombination. The genetic characterization of patients with FA is essential for developing therapies, including hematopoietic stem cell transplantation from a savior sibling donor after embryo selection, gene therapy, or genome editing using genetic recombination or engineered nucleases. Newly acquired knowledge about FA promises to provide therapeutic strategies in the near future.

Stoepker C, Ameziane N, van der Lelij P, et al.
Defects in the Fanconi Anemia Pathway and Chromatid Cohesion in Head and Neck Cancer.
Cancer Res. 2015; 75(17):3543-53 [PubMed] Related Publications
Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.

Aarts M, Bajrami I, Herrera-Abreu MT, et al.
Functional Genetic Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects in Fanconi Anemia and HR Pathways.
Mol Cancer Ther. 2015; 14(4):865-76 [PubMed] Free Access to Full Article Related Publications
WEE1 kinase regulates CDK1 and CDK2 activity to facilitate DNA replication during S-phase and to prevent unscheduled entry into mitosis. WEE1 inhibitors synergize with DNA-damaging agents that arrest cells in S-phase by triggering direct mitotic entry without completing DNA synthesis, resulting in catastrophic chromosome fragmentation and apoptosis. Here, we investigated how WEE1 inhibition could be best exploited for cancer therapy by performing a functional genetic screen to identify novel determinants of sensitivity to WEE1 inhibition. Inhibition of kinases that regulate CDK activity, CHK1 and MYT1, synergized with WEE1 inhibition through both increased replication stress and forced mitotic entry of S-phase cells. Loss of multiple components of the Fanconi anemia (FA) and homologous recombination (HR) pathways, in particular DNA helicases, sensitized to WEE1 inhibition. Silencing of FA/HR genes resulted in excessive replication stress and nucleotide depletion following WEE1 inhibition, which ultimately led to increased unscheduled mitotic entry. Our results suggest that cancers with defects in FA and HR pathways may be targeted by WEE1 inhibition, providing a basis for a novel synthetic lethal strategy for cancers harboring FA/HR defects.

Stoepker C, Faramarz A, Rooimans MA, et al.
DNA helicases FANCM and DDX11 are determinants of PARP inhibitor sensitivity.
DNA Repair (Amst). 2015; 26:54-64 [PubMed] Related Publications
The encouraging response rates of BRCA1- and BRCA2-mutated cancers toward PARP inhibitors make it worthwhile to identify other potential determinants of PARP inhibitor responsiveness. Since the Fanconi anemia (FA) pathway coordinates several DNA repair pathways, including homologous recombination in which BRCA1 and BRCA2 play important roles, we investigated whether this pathway harbors other predictors of PARP inhibitor sensitivity. Lymphoblastoid cell lines derived from individuals with FA or clinically related syndromes, such as Warsaw breakage syndrome, were tested for PARP inhibitor sensitivity. Remarkably, we found a strong variability in PARP inhibitor sensitivity among different FANCD1/BRCA2-deficient lymphoblasts, suggesting that PARP inhibitor response depends on the type of FANCD1/BRCA2 mutation. We identified the DNA helicases FANCM and DDX11 as determinants of PARP inhibitor response. These results may extend the utility of PARP inhibition as effective anticancer treatment.

Luo Y, Hartford SA, Zeng R, et al.
Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling.
PLoS Genet. 2014; 10(7):e1004471 [PubMed] Free Access to Full Article Related Publications
Genome maintenance in germ cells is critical for fertility and the stable propagation of species. While mechanisms of meiotic DNA repair and chromosome behavior are well-characterized, the same is not true for primordial germ cells (PGCs), which arise and propagate during very early stages of mammalian development. Fanconi anemia (FA), a genomic instability syndrome that includes hypogonadism and testicular failure phenotypes, is caused by mutations in genes encoding a complex of proteins involved in repair of DNA lesions associated with DNA replication. The signaling mechanisms underlying hypogonadism and testicular failure in FA patients or mouse models are unknown. We conducted genetic studies to show that hypogonadism of Fancm mutant mice is a result of reduced proliferation, but not apoptosis, of PGCs, resulting in reduced germ cells in neonates of both sexes. Progressive loss of germ cells in adult males also occurs, overlaid with an elevated level of meiotic DNA damage. Genetic studies indicated that ATM-p53-p21 signaling is partially responsible for the germ cell deficiency.

Chang L, Yuan W, Zeng H, et al.
Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.
BMC Med Genomics. 2014; 7:24 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients.
METHODS: We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing.
RESULTS: Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents.
CONCLUSIONS: Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

Fox D, Yan Z, Ling C, et al.
The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability.
Cell Res. 2014; 24(5):560-75 [PubMed] Free Access to Full Article Related Publications
Histone-fold proteins typically assemble in multiprotein complexes to bind duplex DNA. However, one histone-fold complex, MHF, associates with Fanconi anemia (FA) protein FANCM to form a branched DNA remodeling complex that senses and repairs stalled replication forks and activates FA DNA damage response network. How the FANCM-MHF complex recognizes branched DNA is unclear. Here, we solved the crystal structure of MHF and its complex with the MHF-interaction domain (referred to as MID) of FANCM, and performed structure-guided mutagenesis. We found that the MID-MHF complex consists of one histone H3-H4-like MHF heterotetramer wrapped by a single polypeptide of MID. We identified a zinc atom-liganding structure at the central interface between MID and MHF that is critical for stabilization of the complex. Notably, the DNA-binding surface of MHF was altered by MID in both electrostatic charges and allosteric conformation. This leads to a switch in the DNA-binding preference - from duplex DNA by MHF alone, to branched DNA by the MID-MHF complex. Mutations that disrupt either the composite DNA-binding surface or the protein-protein interface of the MID-MHF complex impaired activation of the FA network and genome stability. Our data provide the structural basis of how FANCM and MHF work together to recognize branched DNA, and suggest a novel mechanism by which histone-fold complexes can be remodeled by their partners to bind special DNA structures generated during DNA metabolism.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FANCM, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999