BLM

Gene Summary

Gene:BLM; Bloom syndrome RecQ like helicase
Aliases: BS, RECQ2, RECQL2, RECQL3
Location:15q26.1
Summary:The Bloom syndrome gene product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities. Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3'-5' helicase activity. The normal protein may act to suppress inappropriate recombination. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:Bloom syndrome protein
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (45)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA Sequence Analysis
  • Mutation
  • DNA-Binding Proteins
  • Genotype
  • Ubiquitin-Protein Ligases
  • bcl-2-Associated X Protein
  • Chromosome 15
  • Protein-Serine-Threonine Kinases
  • Tumor Suppressor Proteins
  • Translational Medical Research
  • RecQ Helicases
  • Nuclear Proteins
  • Cancer Gene Expression Regulation
  • Smoking
  • SUMO-1 Protein
  • DNA Helicases
  • Colorectal Cancer
  • Sister Chromatid Exchange
  • Breast Cancer
  • Skin Cancer
  • DNA Repair
  • Melanoma
  • Telomere
  • Exodeoxyribonucleases
  • Single Nucleotide Polymorphism
  • Bloom Syndrome
  • Transcription Factors
  • U937 Cells
  • Receptor, erbB-2
  • Neoplastic Cell Transformation
  • Heterozygote
  • Loss of Heterozygosity
  • Sequence Deletion
  • Cell Cycle Proteins
  • Risk Factors
  • Case-Control Studies
  • Saccharomyces cerevisiae Proteins
  • BLM
  • Adenosine Triphosphatases
  • Genetic Predisposition
  • Ukraine
  • Genetic Recombination
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Bloom SyndromeBLM mutations in Bloom Syndrome
Bloom syndrome is an autosomal recessive inherited disorder characterized by sort stature, sun-sensitivity, hyperpigmented skin and predisposition to a wide range of different types of cancer.
View Publications467
Breast CancerBLM and Breast Cancer View Publications12
Colorectal CancerBLM and Colorectal Cancer View Publications11
MelanomaBLM and Melanoma View Publications1
Skin CancerBLM and Skin Cancer View Publications1

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: BLM (cancer-related)

Vartholomaiou E, Echeverría PC, Picard D
Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis.
Adv Cancer Res. 2016; 129:1-30 [PubMed] Related Publications
The molecular chaperone Hsp90 has attracted a lot of interest in cancer research ever since cancer cells were found to be more sensitive to Hsp90 inhibition than normal cells. Why that is has remained a matter of debate and is still unclear. In addition to increased Hsp90 dependence for some mutant cancer proteins and modifications of the Hsp90 machinery itself, a number of other characteristics of cancer cells probably contribute to this phenomenon; these include aneuploidy and overall increased numbers and levels of defective and mutant proteins, which all contribute to perturbed proteostasis. Work over the last two decades has demonstrated that many cancer-related proteins are Hsp90 clients, and yet only few of them have been extensively investigated, selected either on the basis of their obvious function as cancer drivers or because they proved to be convenient biomarkers for monitoring the effects of Hsp90 inhibitors. The purpose of our review is to go beyond these "usual suspects." We established a workflow to select poorly studied proteins that are related to cancer processes and qualify as Hsp90 clients. By discussing and taking a fresh look at these "unusual suspects," we hope to stimulate others to revisit them as novel therapeutic targets or diagnostic markers.

Laitman Y, Boker-Keinan L, Berkenstadt M, et al.
The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers.
Cancer Genet. 2016; 209(3):70-4 [PubMed] Related Publications
Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer.

Tkáč J, Xu G, Adhikary H, et al.
HELB Is a Feedback Inhibitor of DNA End Resection.
Mol Cell. 2016; 61(3):405-18 [PubMed] Related Publications
DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.

de Voer RM, Hahn MM, Mensenkamp AR, et al.
Deleterious Germline BLM Mutations and the Risk for Early-onset Colorectal Cancer.
Sci Rep. 2015; 5:14060 [PubMed] Free Access to Full Article Related Publications
Bloom syndrome is an autosomal recessive disorder characterized by chromosomal instability and increased cancer risk, caused by biallelic mutations in the RECQL-helicase gene BLM. Previous studies have led to conflicting conclusions as to whether carriers of heterozygous BLM mutations have an increased risk to develop colorectal cancer (CRC). We recently identified two carriers of a pathogenic BLM mutation in a cohort of 55 early-onset CRC patients (≤45 years of age), suggesting an overrepresentation compared to the normal population. Here, we performed targeted sequencing using molecular inversion probes to screen an additional cohort of 185 CRC patients (≤50 years of age) and 532 population-matched controls for deleterious BLM mutations. In total, we identified three additional CRC patients (1.6%) and one control individual (0.2%) that carried a known pathogenic BLM mutation, suggesting that these mutations are enriched in early-onset CRC patients (P = 0.05516). A comparison with local and publically available databases from individuals without suspicion for hereditary cancer confirmed this enrichment (P = 0.003534). Analysis of family members of the five BLM mutation carriers with CRC suggests an incomplete penetrance for CRC development. Therefore, these data indicate that carriers of deleterious BLM mutations are at increased risk to develop CRC, albeit with a moderate-to-low penetrance.

Sajesh BV, McManus KJ
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.
Oncotarget. 2015; 6(29):27907-22 [PubMed] Free Access to Full Article Related Publications
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.

McIlhatton MA, Murnan K, Carson D, et al.
Genetic Manipulation of Homologous Recombination In Vivo Attenuates Intestinal Tumorigenesis.
Cancer Prev Res (Phila). 2015; 8(7):650-6 [PubMed] Free Access to Full Article Related Publications
Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of Apc(Min/+) and Apc(Min/+);Msh2(-/-) mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our Apc(Min/) (+) model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in Apc(Min/) (+);Msh2(-/-) mice. We used the pink-eyed unstable (p(un)) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP.

Arora A, Abdel-Fatah TM, Agarwal D, et al.
Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer.
Mol Cancer Ther. 2015; 14(4):1057-65 [PubMed] Related Publications
Bloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1,950) and validated in an external dataset of 2,413 tumors. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1,650 breast tumors. BLM mRNA overexpression was significantly associated with high histologic grade, larger tumor size, estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative phenotypes (ps < 0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes, including PAM50.Her2 (P < 0.0001), PAM50.Basal (P < 0.0001), and PAM50.LumB (P < 0.0001) and Genufu subtype (ER(+)/Her2(-)/high proliferation; P < 0.0001). PAM50.LumA tumors and Genufu subtype (ER(+)/Her2(-)/low proliferation) were more likely to express low levels of BLM mRNA (ps < 0.0001). Integrative molecular clusters (intClust) intClust.1 (P < 0.0001), intClust.5 (P < 0.0001), intClust.9 (P < 0.0001), and intClust.10 (P < 0.0001) were also more likely in tumors with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer-specific survival (BCSS; ps < 0.000001). At the protein level, altered subcellular localization with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS. This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer.

Kwakman R, de Cuba EM, de Winter JP, et al.
Tailoring heated intraperitoneal mitomycin C for peritoneal metastases originating from colorectal carcinoma: a translational approach to improve survival.
Br J Cancer. 2015; 112(5):851-6 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Patients with peritoneal metastases (PMs) originating from colorectal carcinoma (CRC) are curatively treated by cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) with mitomycin C (MMC). We aim to improve patient selection for HIPEC by predicting MMC sensitivity.
METHODS: The MMC sensitivity was determined for 12 CRC cell lines and correlated to mRNA expression of 37 genes related to the Fanconi anaemia (FA)-BRCA pathway, ATM-ATR pathway and enzymatic activation of MMC. Functionality of the FA-BRCA pathway in cell lines was assessed using a chromosomal breakage assay and western blot for key protein FANCD2. Bloom syndrome protein (BLM) was further analysed by staining for the corresponding protein with immunohistochemistry (IHC) on both CRC cell lines (n=12) and patient material (n=20).
RESULTS: High sensitivity correlated with a low BLM (P=0.01) and BRCA2 (P=0.02) at mRNA expression level. However, FA-BRCA pathway functionality demonstrated no correlation to MMC sensitivity. In cell lines, weak intensity staining of BLM by IHC correlated to high sensitivity (P=0.04) to MMC. Low BLM protein expression was significantly associated with an improved survival in patients after CRS and HIPEC (P=0.04).
CONCLUSIONS: Low BLM levels are associated with high MMC sensitivity and an improved survival after HIPEC.

Chayka O, D'Acunto CW, Middleton O, et al.
Identification and pharmacological inactivation of the MYCN gene network as a therapeutic strategy for neuroblastic tumor cells.
J Biol Chem. 2015; 290(4):2198-212 [PubMed] Free Access to Full Article Related Publications
The MYC family of transcription factors consists of three well characterized members, c-MYC, L-MYC, and MYCN, deregulated in the majority of human cancers. In neuronal tumors such as neuroblastoma, MYCN is frequently activated by gene amplification, and reducing its expression by RNA interference has been shown to promote growth arrest and apoptosis of tumor cells. From a clinical perspective, RNA interference is not yet a viable option, and small molecule inhibitors of transcription factors are difficult to develop. We therefore planned to identify, at the global level, the genes interacting functionally with MYCN required to promote fitness of tumor cells facing oncogenic stress. To find genes whose inactivation is synthetically lethal to MYCN, we implemented a genome-wide approach in which we carried out a drop-out shRNA screen using a whole genome library that was delivered into isogenic neuroblastoma cell lines expressing or not expressing MYCN. After the screen, we selected for in-depth analysis four shRNAs targeting AHCY, BLM, PKMYT1, and CKS1B. These genes were chosen because they are directly regulated by MYC proteins, associated with poor prognosis of neuroblastoma patients, and inhibited by small molecule compounds. Mechanistically, we found that BLM and PKMYT1 are required to limit oncogenic stress and promote stabilization of the MYCN protein. Cocktails of small molecule inhibitors of CKS1B, AHCY, BLM, and PKMYT1 profoundly affected the growth of all neuroblastoma cell lines but selectively caused death of MYCN-amplified cells. Our findings suggest that drugging the MYCN network is a promising avenue for the treatment of high risk, neuroblastic cancers.

Wang Q, Lv H, Lv W, et al.
Genome-wide haplotype association study identifies BLM as a risk gene for prostate cancer in Chinese population.
Tumour Biol. 2015; 36(4):2703-7 [PubMed] Related Publications
Prostate cancer (PC) is a common malignant tumor that occurs in the prostate epithelial cells. It is generally considered to be caused by both genetic and environmental factors. To identify the genetic risk factors of PC in Chinese population, we carried out a genome-wide haplotype-based association study. The 33 Chinese PC cases were from the public GEO database (GSE18333), and the 139 Chinese controls (CHB) were from the HapMap project. Our analysis included three stages: (1) identifying the linkage disequilibrium (LD) blocks and performing genome-wide haplotype association scan, (2) mapping PC-risk haplotypes to PC candidate genes, and (3) prioritizing PC candidate genes based on their similarity to known PC susceptibility genes. The results showed that (1) 749 haplotypes were significantly associated with PC (P < 1E-5). (2) Then, we mapped these significant haplotypes to genes and got 454 PC candidate genes. (3) After prioritizing the candidate genes based on their similarity to known PC susceptibility genes, we found that seven novel PC susceptibility genes including BLM, RPS6KA2, FRK, ERBB4, RBL1, PAK7, and ERBB2IP. Among the seven genes, BLM gene ranked first (P = 1.89E-04). A haplotype GGTTACCCCTC (rs2270131, rs2073919, rs11073953, rs12592875, rs16944863, rs2238337, rs414634, rs401549, rs17183344, rs16944884, and rs16944888) on chromosome 15q26.1 had significant association with PC (P = 2.37E-11). To our knowledge, this is the first genetic association study to show the significant association between BLM gene and PC susceptibility in Chinese population.

Matsushita Y, Yokoyama Y, Yoshida H, et al.
The level of RECQL1 expression is a prognostic factor for epithelial ovarian cancer.
J Ovarian Res. 2014; 7:107 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The human RECQ DNA helicase family is involved in genomic stability. Gene mutations of RECQL2, RECQL3, and RECQL4 are associated with genetic disorders and induce early aging and carcinogenesis. Although previous studies have reported that the level of RECQL1 expression is correlated with the prognosis of some of malignancies, the function of RECQL1 is not yet clarified. The present study aimed to examine the relationship between prognosis and the level of RECQL1 expression in epithelial ovarian cancer (EOC), and to identify the role of RECQL1 in EOC cells.
METHODS: The level of RECQL1 expression was determined immunohistochemically in 111 patients with EOC who received initial treatment at Hirosaki University hospital between 2006 and 2011. Effects of RECQL1 on cell growth or apoptosis were examined in vitro using wild-type and OVCAR-3 cells (RECQL1(+) cells) and similar cells transfected with RECQL1 siRNA transfected (RECQL1(-) cells).
RESULTS: The level of RECQL1 expression was not related to histological type, clinical stage, or retroperitoneal lymph node metastasis, but the expression level was significantly higher (P = 0.002) in patients with recurrence than those without recurrence, and progression-free survival and complete response rate to chemotherapy were also improved in patients with RECQL1-low expression (n = 39) stage III/IV EOC (P = 0.02 and P <0.05 vs RECQL1-high expression patients (n = ), respectively). A cell proliferation and colony formation assays revealed significantly less growth of RECQL1(-) cells compared to RECQL1(+) cells. A flow cytometry using annexin V -FITC and propidium iodide (PI) staining revealed a significant increase in apoptotic RECQL1(-) cells. Cell cycle analysis showed a significantly greater distribution in subG1 phase indicating apoptotic cells in RECQL1(-) cells than in RECQL1(+) cells.
CONCLUSIONS: These results suggest that RECQL1 is a prognostic factor for EOC and that RECQL1 contributes to potential malignancy by inhibiting apoptosis.

Bogdanova N, Togo AV, Ratajska M, et al.
Prevalence of the BLM nonsense mutation, p.Q548X, in ovarian cancer patients from Central and Eastern Europe.
Fam Cancer. 2015; 14(1):145-9 [PubMed] Related Publications
A nonsense mutation, p.Q548X, in the BLM gene has recently been associated with an increased risk for breast cancer. In the present work, we investigated the prevalence of this Slavic founder mutation in 2,561 ovarian cancer cases from Russia, Belarus, Poland, Lithuania or Germany and compared its frequency with 6,205 ethnically matched healthy female controls. The p.Q548X allele was present in nine ovarian cancer patients of Slavic ancestry (0.5 %; including one case with concurrent BRCA1 mutation). The mutation was not significantly more frequent in cases than in controls (Mantel-Haenszel OR 1.14, 95 % CI 0.49; 2.67). Ovarian tumours in p.Q548X carriers were mainly of the serous subtype, and there was little evidence for an early age at diagnosis or pronounced family history of cancer. These findings indicate that the BLM p.Q548X mutation is not a strong risk factor for ovarian cancer.

Sokolenko AP, Bogdanova N, Kluzniak W, et al.
Double heterozygotes among breast cancer patients analyzed for BRCA1, CHEK2, ATM, NBN/NBS1, and BLM germ-line mutations.
Breast Cancer Res Treat. 2014; 145(2):553-62 [PubMed] Related Publications
17 double heterozygous (DH) breast cancer (BC) patients were identified upon the analysis of 5,391 affected women for recurrent Slavic mutations in BRCA1, CHEK2, NBN/NBS1, ATM, and BLM genes. Double heterozygosity was found for BRCA1 and BLM (4 patients), BRCA1 and CHEK2 (4 patients), CHEK2 and NBS1 (3 patients), BRCA1 and ATM (2 patients), CHEK2 and BLM (2 patients), CHEK2 and ATM (1 patient), and NBS1 and BLM (1 patient). DH BC patients were on average not younger than single mutation carriers and did not have an excess of bilateral BC; an additional non-breast tumor was documented in two BRCA1/BLM DH patients (ovarian cancer and lymphoplasmacytic lymphoma). Loss-of-heterozygosity (LOH) analysis of involved genes was performed in 5 tumors, and revealed a single instance of somatic loss of the wild-type allele (LOH at CHEK2 locus in BRCA1/CHEK2 double heterozygote). Distribution of mutations in patients and controls favors the hypothesis on multiplicative interaction between at least some of the analyzed genes. Other studies on double heterozygosity for BC-predisposing germ-line mutations are reviewed.

Suspitsin EN, Yanus GA, Sokolenko AP, et al.
Development of breast tumors in CHEK2, NBN/NBS1 and BLM mutation carriers does not commonly involve somatic inactivation of the wild-type allele.
Med Oncol. 2014; 31(2):828 [PubMed] Related Publications
Somatic inactivation of the remaining allele is a characteristic feature of cancers arising in BRCA1 and BRCA2 mutation carriers, which determines their unprecedented sensitivity to some DNA-damaging agents. Data on tumor-specific status of the involved gene in novel varieties of hereditary breast cancer (BC) remain incomplete. We analyzed 32 tumors obtained from 30 patients with non-BRCA1/2 BC-associated germ-line mutations: 25 women were single mutation carriers (7 BLM, 15 CHEK2 and 3 NBN/NBS1) and 5 were double mutation carriers (2 BLM/BRCA1, 1 CHEK2/BLM, 1 CHEK2/BRCA1 and 1 NBN/BLM). Losses of heterozygosity affecting the wild-type allele were detected in none of the tumors from BLM mutation carriers, 3/18 (17 %) CHEK2-associated BC and 1/4 (25 %) NBN/NBS1-driven tumors. The remaining 28 BC were subjected to the sequence analysis of entire coding region of the involved gene; no somatic mutations were identified. We conclude that the tumor-specific loss of the wild-type allele is not characteristic for BC arising in CHEK2, NBN/NBS1 and BLM mutation carriers. Rarity of "second-hit" inactivation of the involved gene in CHEK2-, NBN/NBS1- and BLM-associated BC demonstrates their substantial biological difference from BRCA1/2-driven cancers and makes them poorly suitable for the clinical trials with cisplatin and PARP inhibitors.

Antczak A, Kluźniak W, Wokołorczyk D, et al.
A common nonsense mutation of the BLM gene and prostate cancer risk and survival.
Gene. 2013; 532(2):173-6 [PubMed] Related Publications
BACKGROUND: Germline mutations of BRCA2 and NBS1 genes cause inherited recessive chromosomal instability syndromes and predispose to prostate cancer of poor prognosis. Mutations of the BLM gene cause another chromosomal instability clinical syndrome, called Bloom syndrome. Recently, a recurrent truncating mutation of BLM (Q548X) has been associated with a 6-fold increased risk of breast cancer in Russia, Belarus and Ukraine, but its role in prostate cancer etiology and survival has not been investigated yet.
METHODS: To establish whether the Q548X allele of the BLM gene is present in Poland, and whether this allele predisposes to poor prognosis prostate cancer, we genotyped 3337 men with prostate cancer and 2604 controls.
RESULTS: Q548X was detected in 13 of 3337 (0.4%) men with prostate cancer compared to 15 of 2604 (0.6%) controls (OR=0.7; 95% CI 0.3-1.4). A positive family history of any cancer in a first- or second-degree relative was seen only in 4 of the 13 (30%) mutation positive families, compared to 49% (1485/3001) of the non-carrier families (p=0.3). The mean follow-up was 49months. Survival was similar among carriers of Q548X and non-carriers (HR=1.1; p=0.9). The 5-year survival for men with a BLM mutation was 83%, compared to 72% for mutation-negative cases.
CONCLUSIONS: BLM Q548X is a common founder mutation in Poland. We found no evidence that this mutation predisposes one to prostate cancer or affect prostate cancer survival. However, based on the observed 0.6% population frequency of the Q548X allele, we estimate that one in 100,000 children should be affected by Bloom syndrome in Poland.

Chandra S, Priyadarshini R, Madhavan V, et al.
Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation.
J Cell Sci. 2013; 126(Pt 16):3782-95 [PubMed] Related Publications
The spectrum of tumors that arise owing to the overexpression of c-Myc and loss of BLM is very similar. Hence, it was hypothesized that the presence of BLM negatively regulates c-Myc functions. By using multiple isogenic cell lines, we observed that the decrease of endogenous c-Myc levels that occurs in the presence of BLM is reversed when the cells are treated with proteasome inhibitors, indicating that BLM enhances c-Myc turnover. Whereas the N-terminal region of BLM interacts with c-Myc, the rest of the helicase interacts with the c-Myc E3 ligase Fbw7. The two BLM domains act as 'clamp and/or adaptor', enhancing the binding of c-Myc to Fbw7. BLM promotes Fbw7-dependent K48-linked c-Myc ubiquitylation and its subsequent degradation in a helicase-independent manner. A subset of BLM-regulated genes that are also targets of c-Myc were determined and validated at both RNA and protein levels. To obtain an in vivo validation of the effect of BLM on c-Myc-mediated tumor initiation, isogenic cells from colon cancer cells that either do or do not express BLM had been manipulated to block c-Myc expression in a controlled manner. By using these cell lines, the metastatic potential and rate of initiation of tumors in nude mice were determined. The presence of BLM decreases c-Myc-mediated invasiveness and delays tumor initiation in a mouse xenograft model. Consequently, in tumors that express BLM but not c-Myc, we observed a decreased ratio of proliferation to apoptosis together with a suppressed expression of the angiogenesis marker CD31. Hence, partly owing to its regulation of c-Myc stability, BLM acts as a 'caretaker tumor suppressor'.

Sassi A, Popielarski M, Synowiec E, et al.
BLM and RAD51 genes polymorphism and susceptibility to breast cancer.
Pathol Oncol Res. 2013; 19(3):451-9 [PubMed] Free Access to Full Article Related Publications
DNA repair by homologous recombination is one of the main processes of DNA double strand breaks repair. In the present work we performed a case-control study (304 cases and 319 controls) to check an association between the genotypes of the c.-61 G>T and the g.38922 C>G polymorphisms of the RAD51 gene and the g.96267 A>C and the g.85394 A>G polymorphisms of the BLM gene and breast cancer occurrence. Genotypes were determined in DNA from peripheral blood by PCR-RLFP and by PCR-CTPP. We observed an association between breast cancer occurrence and the T/G genotype (OR 4.41) of the c.-61 G>T-RAD51 polymorphism, the A/A genotype (OR 1.69) of the g.85394 A>G-BLM polymorphism and the A/A genotype (OR 2.49) of the g.96267 A>C-BLM polymorphism. Moreover, we demonstrated a correlation between intra- and intergenes genotypes combinations and breast cancer occurrence. We found a correlation between progesterone receptor expression and the T/G genotype (OR 0.57) of the c.-61 G>T- RAD51 polymorphism. We also found a correlation between the T/G genotype (OR 1.86) and the T/T genotype (OR 0.56) of the c.-61 G>T- RAD51 polymorphism and the lymph node metastasis. We showed an association between the A/A genotype (OR 2.45) and the A/C genotype (OR 0.41) of the g.96267 A>C-BLM polymorphism and G3 grade of tumor. Our results suggest that the variability of the RAD51 and BLM genes may play a role in breast cancer occurrence. This role may be underlined by a common interaction between these genes.

Rezazadeh S
On BLM helicase in recombination-mediated telomere maintenance.
Mol Biol Rep. 2013; 40(4):3049-64 [PubMed] Related Publications
Bloom syndrome (BS) is an extremely rare, autosomal recessive genetic syndrome of humans. Patients with BS are predisposed to almost all forms of cancer and also display premature aging phenotypes. These patients are diagnosed in the clinics by hyper-recombination phenotype that is manifested by high rates of sister chromatid exchange. The gene mutated in BS, designated BLM, lies on chromosome 15q26.1 and encodes a RecQ-like ATP-dependent 3'-5' helicase, which functions in DNA double-strand break repair processes such as non-homologous end joining, homologous recombination-mediated repair, resolution of stalled replication forks and synthesis-dependent strand annealing, although its precise functions at the telomeres are speculative. Recently it has been suggested that the BLM helicase may play important roles in Telomerase-independent forms of telomere elongation or alternative lengthening of telomeres (ALT). A mechanism that although provides cells with a window of opportunity to save ends of their chromosomes, puts these Telomerase (-/-) cells under continuous stress. BLM localization within ALT-associated PML nuclear bodies in telomerase-negative immortalized cell lines and its interaction with the telomere-specific proteins strengthens that suggestion. Here, I begin by outlining features common to all RecQ helicases. I, then, survey evidences that implicate possible roles of BLM helicase in this recombination-mediated mechanism of telomere elongation.

Prokofyeva D, Bogdanova N, Dubrowinskaja N, et al.
Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom's syndrome, is associated with breast cancer in Slavic populations.
Breast Cancer Res Treat. 2013; 137(2):533-9 [PubMed] Related Publications
Bloom's syndrome is a rare autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia, including breast cancer. Whether monoallelic BLM mutations predispose to breast cancer has been a long-standing question. A nonsense mutation, p.Q548X, has recently been associated with an increased risk for breast cancer in a Russian case-control study. In the present work, we have investigated the prevalence of this Slavic BLM founder mutation in a total of 3,188 breast cancer cases and 2,458 controls from Bashkortostan, Belarus, Ukraine, and Kazakhstan. The p.Q548X allele was most frequent in Russian patients (0.8 %) but was also prevalent in Byelorussian and Ukrainian patients (0.5 and 0.6 %, respectively), whereas it was absent in Altaic or other non-European subpopulations. In a combined analysis of our four case-control series, the p.Q548X mutation was significantly associated with breast cancer (Mantel-Haenszel OR 5.1, 95 % CI 1.2; 21.9, p = 0.03). A meta-analysis with the previous study from the St. Petersburg area corroborates the association (OR 5.7, 95 % CI 2.0; 15.9, p = 3.7 × 10(-4)). A meta-analysis for all published truncating mutations further supports the association of BLM with breast cancer, with an estimated two- to five-fold increase in risk (OR 3.3, 95 %CI 1.9; 5.6, p = 1.9 × 10(-5)). Altogether, these data indicate that BLM is not only a gene for Bloom's syndrome but also might represent a breast cancer susceptibility gene.

Ellis NA, Offit K
Heterozygous mutations in DNA repair genes and hereditary breast cancer: a question of power.
PLoS Genet. 2012; 8(9):e1003008 [PubMed] Free Access to Full Article Related Publications

Thompson ER, Doyle MA, Ryland GL, et al.
Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.
PLoS Genet. 2012; 8(9):e1002894 [PubMed] Free Access to Full Article Related Publications
Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

Sokolenko AP, Iyevleva AG, Preobrazhenskaya EV, et al.
High prevalence and breast cancer predisposing role of the BLM c.1642 C>T (Q548X) mutation in Russia.
Int J Cancer. 2012; 130(12):2867-73 [PubMed] Related Publications
The BLM gene belongs to the RecQ helicase family and has been implicated in the maintenance of genomic stability. Its homozygous germline inactivation causes Bloom syndrome, a severe genetic disorder characterized by growth retardation, impaired fertility and highly elevated cancer risk. We hypothesized that BLM is a candidate gene for breast cancer (BC) predisposition. Sequencing of its entire coding region in 95 genetically enriched Russian BC patients identified two heterozygous carriers of the c.1642 C>T (Q548X) mutation. The extended study revealed this allele in 17/1,498 (1.1%) BC cases vs. 2/1,093 (0.2%) healthy women (p = 0.004). There was a suggestion that BLM mutations were more common in patients reporting first-degree family history of BC (6/251 (2.4%) vs. 11/1,247 (0.9%), p = 0.05), early-onset cases (12/762 (1.6%) vs. 5/736 (0.7%), p = 0.14) and women with bilateral appearance of the disease (2/122 (1.6%) vs. 15/1376 (1.1%), p = 0.64). None of the BLM-associated BC exhibited somatic loss of heterozygosity at the BLM gene locus. This study demonstrates that BLM Q548X allele is recurrent in Slavic subjects and may be associated with BC risk.

Dai Y, Chen S, Shah R, et al.
Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo.
Blood. 2011; 117(6):1947-57 [PubMed] Free Access to Full Article Related Publications
Ras/MEK/ERK pathway activation represents an important compensatory response of human multiple myeloma (MM) cells to checkpoint kinase 1 (Chk1) inhibitors. To investigate the functional roles of Src in this event and potential therapeutic significance, interactions between Src and Chk1 inhibitors (eg, UCN-01 or Chk1i) were examined in vitro and in vivo. The dual Src/Abl inhibitors BMS354825 and SKI-606 blocked Chk1-inhibitor-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, markedly increasing apoptosis in association with BimEL up-regulation, p34(cdc2) activation, and DNA damage in MM cell lines and primary CD138(+) MM samples. Loss-of-function Src mutants (K297R, K296R/Y528F) or shRNA knock-down of Src prevented the ERK1/2 activation induced by Chk1 inhibitors and increased apoptosis. Conversely, constitutively active Ras or mitogen-activated protein kinase/ERK kinase 1 (MEK1) significantly diminished the ability of Src inhibitors to potentiate Chk1-inhibitor lethality. Moreover, Src/Chk1-inhibitor cotreatment attenuated MM-cell production of vascular endothelial growth factor and other angiogenic factors (eg, ANG [angiogenin], TIMP1/2 [tissue inhibitor of metalloproteinases 1/2], and RANTES [regulated on activation normal T-cell expressed and secreted]), and inhibited in vitro angiogenesis. Finally, coadministration of BMS354825 and UCN-01 suppressed human MM tumor growth in a murine xenograft model, increased apoptosis, and diminished angiogenesis. These findings suggest that Src kinase is required for Chk1-inhibitor-mediated Ras → ERK1/2 signaling activation, and that disruption of this event sharply potentiates the anti-MM activity of Chk1 inhi-bitors in vitro and in vivo.

Blagoev KB, Goodwin EH, Bailey SM
Telomere sister chromatid exchange and the process of aging.
Aging (Albany NY). 2010; 2(10):727-30 [PubMed] Free Access to Full Article Related Publications
Telomeres are a hotspot for sister chromatid exchange (T-SCE). Any biological consequence of this form of instability remained obscure until quantitative modeling revealed a link between elevated T-SCE rates and accelerated cellular replicative senescence. This work strongly suggests that progressive telomere erosion is not the only determinant of replicative capacity; instead, T-SCE need to be considered as an independent factor controlling colony growth and senescence. Additionally high T-SCE rates have been observed in cells with deficiencies in WRN and BLM, the genes that are defective in Werner's and Bloom's syndromes, implying a connection to premature aging. In this Research Perspective we will explore some of the implications this recent work has for human health.

Mao FJ, Sidorova JM, Lauper JM, et al.
The human WRN and BLM RecQ helicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage.
Cancer Res. 2010; 70(16):6548-55 [PubMed] Free Access to Full Article Related Publications
Loss-of-function mutations in the human RecQ helicase genes WRN and BLM respectively cause the genetic instability/cancer predisposition syndromes Werner syndrome and Bloom syndrome. To identify common and unique functions of WRN and BLM, we systematically analyzed cell proliferation, cell survival, and genomic damage in isogenic cell lines depleted of WRN, BLM, or both proteins. Cell proliferation and survival were assessed before and after treatment with camptothecin, cis-diamminedichloroplatinum(II), hydroxyurea, or 5-fluorouracil. Genomic damage was assessed, before and after replication arrest, by gamma-H2AX staining, which was quantified at the single-cell level by flow cytometry. Cell proliferation was affected strongly by the extent of WRN and/or BLM depletion, and more strongly by BLM than by WRN depletion (P = 0.005). The proliferation of WRN/BLM-codepleted cells, in contrast, did not differ from BLM-depleted cells (P = 0.34). BLM-depleted and WRN/BLM-codepleted cells had comparably impaired survival after DNA damage, whereas WRN-depleted cells displayed a distinct pattern of sensitivity to DNA damage. BLM-depleted and WRN/BLM-codepleted cells had similar, significantly higher gamma-H2AX induction levels than did WRN-depleted cells. Our results provide new information on the role of WRN and BLM in determining cell proliferation, cell survival, and genomic damage after chemotherapeutic DNA damage or replication arrest. We also provide new information on functional redundancy between WRN and BLM. These results provide a strong rationale for further developing WRN and BLM as biomarkers of tumor chemotherapeutic responsiveness.

Lahkim Bennani-Belhaj K, Rouzeau S, Buhagiar-Labarchède G, et al.
The Bloom syndrome protein limits the lethality associated with RAD51 deficiency.
Mol Cancer Res. 2010; 8(3):385-94 [PubMed] Related Publications
Little is known about the functional interaction between the Bloom's syndrome protein (BLM) and the recombinase RAD51 within cells. Using RNA interference technology, we provide the first demonstration that RAD51 acts upstream from BLM to prevent anaphase bridge formation. RAD51 downregulation was associated with an increase in the frequency of BLM-positive anaphase bridges, but not of BLM-associated ultrafine bridges. Time-lapse live microscopy analysis of anaphase bridge cells revealed that BLM promoted cell survival in the absence of Rad51. Our results directly implicate BLM in limiting the lethality associated with RAD51 deficiency through the processing of anaphase bridges resulting from the RAD51 defect. These findings provide insight into the molecular basis of some cancers possibly associated with variants of the RAD51 gene family.

Davari P, Hebert JL, Albertson DG, et al.
Loss of Blm enhances basal cell carcinoma and rhabdomyosarcoma tumorigenesis in Ptch1+/- mice.
Carcinogenesis. 2010; 31(6):968-73 [PubMed] Free Access to Full Article Related Publications
Basal cell carcinomas (BCCs) have relative genomic stability and relatively benign clinical behavior but whether these two are related causally is unknown. To investigate the effects of introducing genomic instability into murine BCCs, we have compared ionizing radiation-induced tumorigenesis in Ptch1(+/-) mice versus that in Ptch1(+/-) mice carrying mutant Blm alleles. We found that BCCs in Ptch1(+/-) Blm(tm3Brd/tm3Brd) mice had a trend toward greater genomic instability as measured by array comprehensive genomic hybridization and that these mice developed significantly more microscopic BCCs than did Ptch1(+/-) Blm(+/tm3Brd) or Ptch1(+/-) Blm(+/+) mice. The mutant Blm alleles also markedly enhanced the formation of rhabdomyosarcomas (RMSs), another cancer to which Ptch1(+/)(-) mice and PTCH1(+/)(-) (basal cell nevus syndrome) patients are susceptible. Highly recurrent but different copy number changes were associated with the two tumor types and included losses of chromosomes 4 and 10 in all BCCs and gain of chromosome 10 in 80% of RMSs. Loss of chromosome 11 and 13, including the Trp53 and Ptch1 loci, respectively, occurred frequently in BCCs, suggesting tissue-specific selection for genes or pathways that collaborate with Ptch deficiency in tumorigenesis. Despite the quantitative differences, there was no dramatic qualititative difference in the BCC or RMS tumors associated with the mutant Blm genotype.

Frank B, Hoffmeister M, Klopp N, et al.
Colorectal cancer and polymorphisms in DNA repair genes WRN, RMI1 and BLM.
Carcinogenesis. 2010; 31(3):442-5 [PubMed] Related Publications
RecQ helicase family members are involved in multiple DNA repair pathways, protecting the genome from incorrect recombination during mitosis and maintaining its stability. Deficiencies in genes encoding the RecQ helicases WRN and BLM lead to rare autosomal recessive diseases, Werner and Bloom syndromes, which have been implicated in early onset of aging, and predisposition to various types of cancer. We investigated associations of WRN, BLM and BLM-associated protein (BLAP75/RMI1) gene polymorphisms and risk of colorectal cancer (CRC), genotyping WRN V114I (rs2230009), WRN L1074F (rs2725362), WRN C1367R (rs1346044), RMI1 S455N (rs1982151) and BLM P868L (rs11852361). A large population-based case-control study, including 1795 CRC cases and 1805 controls, found no evidence for an association between the selected allelic variants in DNA repair-related genes and CRC risk. However, we detected a significant association of BLM P868L with an increased rectal cancer risk (odds ratio = 1.29, 95% confidence interval 1.02-1.64 and P = 0.04), suggesting a potential cancer-site specificity. This is the first study to analyze the associations between polymorphisms in WRN, BLM and RMI1 and CRC risk. Although none of them showed a significant association with CRC, the association of BLM P868L with rectal cancer risk requires further investigation.

Schuetz JM, MaCarthur AC, Leach S, et al.
Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma.
BMC Med Genet. 2009; 10:117 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Translocations are hallmarks of non-Hodgkin lymphoma (NHL) genomes. Because lymphoid cell development processes require the creation and repair of double stranded breaks, it is not surprising that disruption of this type of DNA repair can cause cancer. The members of the MRE11-RAD50-NBS1 (MRN) complex and BLM have central roles in maintenance of DNA integrity. Severe mutations in any of these genes cause genetic disorders, some of which are characterized by increased risk of lymphoma.
METHODS: We surveyed the genetic variation in these genes in constitutional DNA of NHL patients by means of gene re-sequencing, then conducted genetic association tests for susceptibility to NHL in a population-based collection of 797 NHL cases and 793 controls.
RESULTS: 114 SNPs were discovered in our sequenced samples, 61% of which were novel and not previously reported in dbSNP. Although four variants, two in RAD50 and two in NBS1, showed association results suggestive of an effect on NHL, they were not significant after correction for multiple tests.
CONCLUSION: These results suggest an influence of RAD50 and NBS1 on susceptibility to diffuse large B-cell lymphoma and marginal zone lymphoma. Larger association and functional studies could confirm such a role.

Warren M, Chung YJ, Howat WJ, et al.
Irradiated Blm-deficient mice are a highly tumor prone model for analysis of a broad spectrum of hematologic malignancies.
Leuk Res. 2010; 34(2):210-20 [PubMed] Free Access to Full Article Related Publications
Mutations in the BLM gene cause human Bloom syndrome (BS), an autosomal recessive disorder of growth retardation, immunodeficiency and cancer predisposition. Homozygous null Blm(m3/m3) mice are cancer prone with a 5-fold increased risk of cancer compared with Blm(m3/+) and Blm(+/+) mice. Irradiation of Blm(m3/m3) mice increased the risk to 28-fold. Tumors occurred mainly in the hematopoietic system and were similar to those in BS based on detailed histologic and immunohistochemical analyses. Irradiated Blm-deficient mice thus provide a novel model for understanding accelerated malignancies in BS and a new platform for investigating the molecular basis for a wide range of hematopoietic neoplasms.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BLM, Cancer Genetics Web: http://www.cancer-genetics.org/BLM.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999