Fanconi Anaemia
CancerIndex Home - Children's Cancer Web Home > Cancer Types > Other & Related > Fanconi Anaemia

What is Fanconi Anaemia ?

Fanconi Anaemia is a rare disorder found in children that involves the blood and bone marrow. The symptoms include severe aplastic anemia, hypoplasia of the bone marrow, and patchy discoloration of the skin. This is an autosomal recessive condition, affected children usually develop severe aplastic anemia by age 8 to 9 years. Treatment usually consists of bone marrow transplant. Fanconi Anaemia is not a cancer, though recent research has shown an association between Fanconi Anaemia and leukaemia. There are 8 types of Fanconi Anaemia; known as complementation groups A through to H.

Some definitions:

below normal levels of erythrocytes (red blood cells)
Aplastic anemia
anemia that is resistant to treatment; often accompanied by deficiencies of other blood cells.
incomplete / under development of a part of the body.
deficiency of all types of blood cells.
(genetics) if the required allele (a type of gene) is not present in both members of a pair of chromosomes then that allele is not expressed.
Found this page useful?

Menu: Fanconi Anaemia

Information for Patients and Family
Information for Health Professionals / Researchers
Latest Research Publications
Aplastic Anaemia
Bone Marrow and Stem Cell Transplants
Childhood Leukaemia

Information Patients and Family (13 links)

Information for Health Professionals / Researchers (6 links)

See also: Molecular Biology of Fanconi Anaemia

Latest Research Publications

This list of publications is regularly updated (Source: PubMed).

Mulligan JM, Hill LA, Deharo S, et al.
Identification and validation of an anthracycline/cyclophosphamide-based chemotherapy response assay in breast cancer.
J Natl Cancer Inst. 2014; 106(1):djt335 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is no method routinely used to predict response to anthracycline and cyclophosphamide-based chemotherapy in the clinic; therefore patients often receive treatment for breast cancer with no benefit. Loss of the Fanconi anemia/BRCA (FA/BRCA) DNA damage response (DDR) pathway occurs in approximately 25% of breast cancer patients through several mechanisms and results in sensitization to DNA-damaging agents. The aim of this study was to develop an assay to detect DDR-deficient tumors associated with loss of the FA/BRCA pathway, for the purpose of treatment selection.
METHODS: DNA microarray data from 21 FA patients and 11 control subjects were analyzed to identify genetic processes associated with a deficiency in DDR. Unsupervised hierarchical clustering was then performed using 60 BRCA1/2 mutant and 47 sporadic tumor samples, and a molecular subgroup was identified that was defined by the molecular processes represented within FA patients. A 44-gene microarray-based assay (the DDR deficiency assay) was developed to prospectively identify this subgroup from formalin-fixed, paraffin-embedded samples. All statistical tests were two-sided.
RESULTS: In a publicly available independent cohort of 203 patients, the assay predicted complete pathologic response vs residual disease after neoadjuvant DNA-damaging chemotherapy (5-fluorouracil, anthracycline, and cyclophosphamide) with an odds ratio of 3.96 (95% confidence interval [Cl] =1.67 to 9.41; P = .002). In a new independent cohort of 191 breast cancer patients treated with adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide, a positive assay result predicted 5-year relapse-free survival with a hazard ratio of 0.37 (95% Cl = 0.15 to 0.88; P = .03) compared with the assay negative population.
CONCLUSIONS: A formalin-fixed, paraffin-embedded tissue-based assay has been developed and independently validated as a predictor of response and prognosis after anthracycline/cyclophosphamide-based chemotherapy in the neoadjuvant and adjuvant settings. These findings warrant further validation in a prospective clinical study.

Related: Breast Cancer Cyclophosphamide Epirubicin Fluorouracil

Peffault de Latour R, Porcher R, Dalle JH, et al.
Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the European Group for Blood and Marrow Transplantation experience.
Blood. 2013; 122(26):4279-86 [PubMed] Related Publications
Although allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for patients with Fanconi anemia (FA), published series mostly refer to single-center experience with limited numbers of patients. We analyzed results in 795 patients with FA who underwent first HSCT between May 1972 and January 2010. With a 6-year median follow-up, overall survival was 49% at 20 years (95% confidence interval, 38-65 years). Better outcome was observed for patients transplanted before the age of 10 years, before clonal evolution (ie, myelodysplastic syndrome or acute myeloid leukemia), from a matched family donor, after a conditioning regimen without irradiation, the latter including fludarabine. Chronic graft-versus-host disease and secondary malignancy were deleterious when considered as time-dependent covariates. Age more than 10 years at time of HSCT, clonal evolution as an indication for transplantation, peripheral blood as source of stem cells, and chronic graft-versus-host disease were found to be independently associated with the risk for secondary malignancy. Changes in transplant protocols have significantly improved the outcome of patients with FA, who should be transplanted at a young age, with bone marrow as the source of stem cells.

Related: Haematological Malignancies & Realted Disorders

Cappelli E, Ravera S, Vaccaro D, et al.
Mitochondrial respiratory complex I defects in Fanconi anemia.
Trends Mol Med. 2013; 19(9):513-4 [PubMed] Related Publications
Fanconi anemia (FA) is a rare, complex disorder that manifests in childhood. Children with FA suffer bone marrow failure, leukemias, or solid tumors. FA-associated mutations are found in 15 proteins that are involved in DNA repair. Some of these proteins have extranuclear activities involving redox balance, apoptosis, and energy metabolism; and recent data demonstrate respiratory impairment in FA cells, suggesting that altered mitochondrial function is a factor in this disease.

Related: Apoptosis Mitochondrial Mutations in Cancer Cancer Prevention and Risk Reduction Children's Cancer Web: Home Page

Shah A, John BM, Sondhi V
Acute lymphoblastic leukemia with treatment--naive Fanconi anemia.
Indian Pediatr. 2013; 50(5):508-10 [PubMed] Related Publications
Fanconi anemia is known to have a predisposition to cancer, mostly associated with acute myeloid leukemia. We report an eight year old girl with treatment and naive FA who developed acute lymphoblastic leukemia. She was initiated on chemotherapy but she failed to respond to treatment and died during induction phase of chemotherapy. While this association may be coincidental but possibility of transition of Fanconi anemia to ALL should be considered in view of high predisposition to cancer in this disorder.

Related: Acute Lymphocytic Leukemia (ALL) Childhood Acute lymphoblastic leukaemia (ALL) ALL - Molecular Biology

Kashiyama K, Nakazawa Y, Pilz DT, et al.
Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia.
Am J Hum Genet. 2013; 92(5):807-19 [PubMed] Free Access to Full Article Related Publications
Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.

Alter BP, Giri N, Savage SA, et al.
Squamous cell carcinomas in patients with Fanconi anemia and dyskeratosis congenita: a search for human papillomavirus.
Int J Cancer. 2013; 133(6):1513-5 [PubMed] Article available free on PMC after 15/09/2014 Related Publications
Patients with Fanconi anemia (FA) and dyskeratosis congenita (DC) are at high risk of head and neck squamous cell carcinomas (HNSCC) and anogenital squamous cell carcinomas (SCC). In the general population, these sites (particularly oropharyngeal SCC) may be associated with infection with human papillomavirus (HPV). In FA and DC, however, the majority of HNSCC occur in the oral cavity. We investigated the HPV status of HNSCC and vulvar SCC from nine patients with FA and four with DC using a very sensitive PCR assay, and found HPV16 DNA in only a single vulvar tumor from one patient with FA, and in none of the HNSCC. These results suggest that HPV may not be the cause of SCC in patients with FA or DC, and that vaccination may not reduce the incidence of HNSCC in these patients.

Related: Head and Neck Cancers Head and Neck Cancers - Molecular Biology

Ayas M, Saber W, Davies SM, et al.
Allogeneic hematopoietic cell transplantation for fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia.
J Clin Oncol. 2013; 31(13):1669-76 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
PURPOSE: Allogeneic hematopoietic cell transplantation (HCT) can cure bone marrow failure in patients with Fanconi anemia (FA). Data on outcomes in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome (MDS), or acute leukemia have not been separately analyzed.
PATIENTS AND METHODS: We analyzed data on 113 patients with FA with cytogenetic abnormalities (n = 54), MDS (n = 45), or acute leukemia (n = 14) who were reported to the Center for International Blood and Marrow Transplant Research from 1985 to 2007.
RESULTS: Neutrophil recovery occurred in 78% and 85% of patients at days 28 and 100, respectively. Day 100 cumulative incidences of acute graft-versus-host disease grades B to D and C to D were 26% (95% CI, 19% to 35%) and 12% (95% CI, 7% to 19%), respectively. Survival probabilities at 1, 3, and 5 years were 64% (95% CI, 55% to 73%), 58% (95% CI, 48% to 67%), and 55% (95% CI, 45% to 64%), respectively. In univariate analysis, younger age was associated with superior 5-year survival (≤ v > 14 years: 69% [95% CI, 57% to 80%] v 39% [95% CI, 26% to 53%], respectively; P = .001). In transplantations from HLA-matched related donors (n = 82), younger patients (≤ v > 14 years: 78% [95% CI, 64% to 90%] v 34% [95% CI, 20% to 50%], respectively; P < .001) and patients with cytogenetic abnormalities only versus MDS/acute leukemia (67% [95% CI, 52% to 81%] v 43% [95% CI, 27% to 59%], respectively; P = .03) had superior 5-year survival.
CONCLUSION: Our analysis indicates that long-term survival for patients with FA with cytogenetic abnormalities, MDS, or acute leukemia is achievable. Younger patients and recipients of HLA-matched related donor transplantations who have cytogenetic abnormalities only have the best survival.

Related: Acute Lymphocytic Leukemia (ALL) Childhood Acute lymphoblastic leukaemia (ALL) ALL - Molecular Biology

Yao CJ, Du W, Zhang Q, et al.
Fanconi anemia pathway--the way of DNA interstrand cross-link repair.
Pharmazie. 2013; 68(1):5-11 [PubMed] Related Publications
The study of rare genetic diseases usually inspires the research of cancer biology. Fanconi anemia (FA), is a rare cancer susceptibility syndrome with an incidence of only 1 per 350,000 births. FA is an autosomal recessive disease with three main features: chromosome instability, hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC), cisplatin and so on, and susceptible to a number of cancer types, mainly leukemia and squamous cell carcinomas of the head and neck or gynecologic system. DNA crosslinking agents may led to DNA cross-linking lesion, and Fanconi anemia pathway plays a key role in repairing its cross-linking. However, FA pathway is closely linked with carcinogenesis and tumor drug resistance. This paper mainly focuses on the FA pathway and its progress in cancer research.

Related: Cancer Prevention and Risk Reduction Signal Transduction

Böhringer M, Obermeier K, Griner N, et al.
siRNA screening identifies differences in the Fanconi anemia pathway in BALB/c-Trp53+/- with susceptibility versus C57BL/6-Trp53+/- mice with resistance to mammary tumors.
Oncogene. 2013; 32(48):5458-70 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
BALB/c mice heterozygous for Trp53 develop a high proportion of spontaneous mammary tumors, a phenotype distinct from other mouse strains. BALB/c-Trp53+/- female mice, thus, resemble the hereditary Li-Fraumeni syndrome (LFS) characterized by early-onset of breast cancer, even though LFS involves TP53 mutations, which may involve not only loss- but also gain-of-function. Previous analysis of tumors in BALB/c-Trp53+/- females showed frequent loss of heterozygosity involving the wild-type allele of Trp53 and displayed characteristics indicative of mitotic recombination. Critical involvement of DNA double-strand break (DSB) repair dysfunction, particularly of homologous recombination (HR), was also noticed in the etiology of human breast cancer. To better define functional alterations in BALB/c-Trp53+/- mice, we applied a fluorescence-based DSB repair assay on mouse embryonic fibroblasts (MEFs) from BALB/c-Trp53+/- versus C57BL/6J-Trp53+/- mice. This approach revealed deregulation of HR but not non-homologous end-joining (NHEJ) in BALB/c-Trp53+/-, which was further confirmed for mammary epithelial cells. Screening of a small interfering RNA-library targeting DSB repair, recombination, replication and signaling genes, identified 25 genes causing differences between homologous DSB repair in the two strains upon silencing. Interactome analysis of the hits revealed clustering of replication-related and fanconi anemia (FA)/breast cancer susceptibility (BRCA) genes. Further dissection of the functional change in BALB/c-Trp53+/- by immunofluorescence microscopy of nuclear 53BP1, Replication protein A (RPA) and Rad51 foci uncovered differences in crosslink and replication-associated repair. Chromosome breakage, G2 arrest and biochemical analyses indicated a FA pathway defect downstream of FancD2 associated with reduced levels of BRCA2. Consistent with polygenic models for BRCA, mammary carcinogenesis in BALB/c-Trp53+/- mice may, therefore, be promoted by a BRCA modifier allele in the FA pathway in the context of partial p53 loss-of-function.

Related: Signal Transduction TP53

Romick-Rosendale LE, Lui VW, Grandis JR, Wells SI
The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma.
Mutat Res. 2013 Mar-Apr; 743-744:78-88 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.

Kottemann MC, Smogorzewska A
Fanconi anaemia and the repair of Watson and Crick DNA crosslinks.
Nature. 2013; 493(7432):356-63 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.

Gravells P, Hoh L, Solovieva S, et al.
Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia.
Oncogene. 2013; 32(46):5338-46 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Uveal melanoma (UM) is unique among cancers in displaying reduced endogenous levels of sister chromatid exchange (SCE). Here we demonstrate that FANCD2 expression is reduced in UM and that ectopic expression of FANCD2 increased SCE. Similarly, FANCD2-deficient fibroblasts (PD20) derived from Fanconi anaemia patients displayed reduced spontaneous SCE formation relative to their FANCD2-complemented counterparts, suggesting that this observation is not specific to UM. In addition, spontaneous RAD51 foci were reduced in UM and PD20 cells compared with FANCD2-proficient cells. This is consistent with a model where spontaneous SCEs are the end product of endogenous recombination events and implicates FANCD2 in the promotion of recombination-mediated repair of endogenous DNA damage and in SCE formation during normal DNA replication. In both UM and PD20 cells, low SCE was reversed by inhibiting DNA-PKcs (DNA-dependent protein kinase, catalytic subunit). Finally, we demonstrate that both PD20 and UM are sensitive to acetaldehyde, supporting a role for FANCD2 in repair of lesions induced by such endogenous metabolites. Together, these data suggest FANCD2 may promote spontaneous SCE by influencing which double-strand break repair pathway predominates during normal S-phase progression.

Related: FANCD2 Melanoma Ocular Melanoma IntraOcular Melanoma

Bakker ST, de Winter JP, te Riele H
Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models.
Dis Model Mech. 2013; 6(1):40-7 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Fanconi anaemia (FA) is a rare autosomal recessive or X-linked inherited disease characterised by an increased incidence of bone marrow failure (BMF), haematological malignancies and solid tumours. Cells from individuals with FA show a pronounced sensitivity to DNA interstrand crosslink (ICL)-inducing agents, which manifests as G2-M arrest, chromosomal aberrations and reduced cellular survival. To date, mutations in at least 15 different genes have been identified that cause FA; the products of all of these genes are thought to function together in the FA pathway, which is essential for ICL repair. Rapidly following the discovery of FA genes, mutant mice were generated to study the disease and the affected pathway. These mutant mice all show the characteristic cellular ICL-inducing agent sensitivity, but only partially recapitulate the developmental abnormalities, anaemia and cancer predisposition seen in individuals with FA. Therefore, the usefulness of modelling FA in mice has been questioned. In this Review, we argue that such scepticism is unjustified. We outline that haematopoietic defects and cancer predisposition are manifestations of FA gene defects in mice, albeit only in certain genetic backgrounds and under certain conditions. Most importantly, recent work has shown that developmental defects in FA mice also arise with concomitant inactivation of acetaldehyde metabolism, giving a strong clue about the nature of the endogenous lesion that must be repaired by the functional FA pathway. This body of work provides an excellent example of a paradox in FA research: that the dissimilarity, rather than the similarity, between mice and humans can provide insight into human disease. We expect that further study of mouse models of FA will help to uncover the mechanistic background of FA, ultimately leading to better treatment options for the disease.

Related: Cancer Prevention and Risk Reduction

O'Driscoll M
Diseases associated with defective responses to DNA damage.
Cold Spring Harb Perspect Biol. 2012; 4(12) [PubMed] Related Publications
Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways.

Related: Breast Cancer Ovarian Cancer

Yuan C, Xu N, Liao J
Switch of FANCL, a key FA-BRCA component, between tumor suppressor and promoter by alternative splicing.
Cell Cycle. 2012; 11(18):3356 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Comment on: Panneerselvam J, et al. Cell Cycle 2012; 11:2947-55.

Related: FANCL gene Bladder Cancer Bladder Cancer - Molecular Biology

Panneerselvam J, Park HK, Zhang J, et al.
FAVL impairment of the Fanconi anemia pathway promotes the development of human bladder cancer.
Cell Cycle. 2012; 11(15):2947-55 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Effectiveness of DNA cross-linking drugs in the treatment of bladder cancer suggests that bladder cancer cells may have harbored an insufficient cellular response to DNA cross-link damage, which will sensitize cells to DNA cross-linking agents. Cell sensitivity benefits from deficient DNA damage responses, which, on the other hand, can cause cancer. Many changed cellular signaling pathways are known to be involved in bladder tumorigenesis; however, DNA cross-link damage response pathway [Fanconi anemia (FA) pathway], whose alterations appear to be a plausible cause of the development of bladder cancer, remains an under-investigated area in bladder cancer research. In this study, we found FAVL (variant of FA protein L--FANCL) was elevated substantially in bladder cancer tissues examined. Ectopic expression of FAVL in bladder cancer cells as well as normal human cells confer an impaired FA pathway and hypersensitivity to Mitomycin C, similar to those found in FA cells, indicating that FAVL elevation may possess the same tumor promotion potential as an impaired FA pathway harbored in FA cells. Indeed, a higher level of FAVL expression can promote the growth of bladder cancer cells in vitro and in vivo, which, at least partly, results from FAVL perturbation of FANCL expression, an essential factor for the activation of the FA pathway. Moreover, a higher level of FAVL expression was found to be associated with chromosomal instability and the invasiveness of bladder cancer cells. Collectively, FAVL elevation can increase the tumorigenic potential of bladder cancer cells, including the invasive potential that confers the development of advanced bladder cancer. These results enhance our understanding the pathogenesis of human bladder cancer, holding a promise to develop additional effective tools to fight human bladder cancer.

Related: FANCL gene Mitomycin Signal Transduction Bladder Cancer Bladder Cancer - Molecular Biology

Dumitriu B, Young NS
Damage control and its costs: BM failure in Fanconi anemia stems from overactive p53/p21.
Cell Stem Cell. 2012; 11(1):7-8 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Despite having well-characterized disease-associated mutations, the mechanisms underlying the progressive bone marrow failure and cancer susceptibility of Fanconi anemia have been unclear. In this issue of Cell Stem Cell, Ceccaldi et al. identify an overactive p53/p21 stress response and cell cycle arrest as an underlying cause that starts during fetal development.

Related: CDKN1A Leukemia TP53

Mushtaq N, Wali R, Fadoo Z, Saleem AF
Acute lymphoblastic leukemia in a child with Fanconi's anaemia.
J Coll Physicians Surg Pak. 2012; 22(7):458-60 [PubMed] Related Publications
Fanconi anaemia (FA) is an autosomal recessive inherited disorder with progressive bone marrow failure, associated congenital malformation and solid and haematological malignancies. Acute myeloid leukemia is the commonest haematological malignancy followed by myelodysplastic syndrome in children with FA. FA transformed into acute lymphoblastic leukemia (ALL) is a rare phenomenon and one of the rarest haematological malignancies associated with this disorder. We are reporting a 13 years old girl with FA and positive chromosomal breakage. She required regular blood product transfusion. She was planned for haematopoietic stem cell transplantation (HSCT) but the sibling-matched donor was found to have chromosomal breaks as well. Later on, her peripheral smear showed blast cell. Bone marrow showed pre-B ALL. She was started on chemotherapy but died shortly due to complications of the treatment. For this rare condition conservative management is indeed essential, however, safe and appropriate chemotherapy regimen is needed.

Stecklein SR, Jensen RA
Identifying and exploiting defects in the Fanconi anemia/BRCA pathway in oncology.
Transl Res. 2012; 160(3):178-97 [PubMed] Related Publications
Defects in components of DNA repair pathways are responsible for numerous hereditary cancer syndromes and are also common in many sporadic malignancies. Inherited mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 or components of the Fanconi anemia (FA) complex incite genomic instability and predispose to malignancy. The products of the BRCA and FA genes participate in a conserved DNA damage repair pathway that is responsible for repairing interstrand crosslinks and double-strand DNA breaks by homologous recombination. While the genetic instability resulting from FA/BRCA dysfunction contributes to cancer pathogenesis, deficiency of these genes also lends to therapeutic exploitation. Crosslinking agents and ionizing radiation induce damage in cancer cells that requires the FA/BRCA pathway to be resolved; thus cancers that are deficient in BRCA1, BRCA2, or any other component of the FA/BRCA pathway are hypersensitive to these agents. Moreover, emerging synthetic lethal strategies offer opportunities to selectively target cancer cells with defects in homologous recombination. Conversely, enhanced activity of the FA/BRCA pathway is responsible for acquired resistance to specific therapeutic agents, suggesting that both dysfunction and hyperfunction of the FA/BRCA repair machinery are rational targets for cancer therapy. Selection of specific cytotoxic agents based on repair capacity may improve responses and enable personalized cytotoxic chemotherapy. This article reviews the FA/BRCA pathway and current approaches to identify deficiencies within it, discusses synthetic lethality and enhanced repair capacity as causes of therapeutic hypersensitivity and resistance, respectively, and highlights recent studies that have linked FA/BRCA pathway function with therapeutic efficacy.

Related: BRCA1 BRCA2 Cancer Prevention and Risk Reduction

Rochowski A, Olson SB, Alonzo TA, et al.
Patients with Fanconi anemia and AML have different cytogenetic clones than de novo cases of AML.
Pediatr Blood Cancer. 2012; 59(5):922-4 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Specific cytogenetic clones might distinguish patients with unrecognized Fanconi anemia (FA) who present with acute myeloid leukemia (AML) from those with sporadic AML. Cytogenetic reports in literature cases of FA and AML were compared with de novo cases enrolled on CCG-2961. Gain of 1q, gain of 3q, monosomy 7, deleted 7q, gain of 13q, and deleted 20q were more frequent in FA AML; t(8;21), trisomy 8, t(9;11), t(6;9), and inversion 16 were exclusive to de novo AML cases. Observation of the FA AML cytogenetic clonal patterns should raise suspicion of an underlying leukemia predisposition syndrome and influence management.

Related: Acute Myeloid Leukemia (AML) Childhood Acute Myeloid Leukaemia AML - Molecular Biology

Scheckenbach K, Wagenmann M, Freund M, et al.
Squamous cell carcinomas of the head and neck in Fanconi anemia: risk, prevention, therapy, and the need for guidelines.
Klin Padiatr. 2012; 224(3):132-8 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
Fanconi anemia (FA) is a rare recessive DNA repair disorder that is clinically characterized by congenital malformations, progressive bone marrow failure, and increased incidence of malignancies, especially acute myeloid leukemia and squamous cell carcinomas of the head and neck (HNSCCs) and the anogenital regions. On a cellular level, typical features of the disorder are a high degree of genomic instability and an increased sensitivity to bi-functionally alkylating agents. So far, germ-line defects in 15 different FA genes have been identified. Some of these FA genes are also established as tumor susceptibility genes for familiar cancers.In recent years, the prevention and therapy of HNSCCs in FA patients has become more important as the percentage of patients surviving into adulthood is rising. HNSCCs appear in very young FA patients without common risk factors. Since cisplatin-based chemotherapy in combination with radiotherapy, essential parts of the standard treatment approach for sporadic HNSCCs, cannot be used in FA patients due to therapy-associated toxicities and mortalities even with reduced dosing, surgery is the most important treatment option for HNSCCs, in FA patients and requires an early and efficient detection of malignant lesions. So far, no uniform treatment protocol for the management of HNSCCs in FA patients exists. Therefore, we propose that the information on affected FA patients should be collected worldwide, practical therapeutic guidelines developed and national treatment centers established.

Related: Cisplatin Head and Neck Cancers Head and Neck Cancers - Molecular Biology

Masserot-Lureau C, Adoui N, Degos F, et al.
Incidence of liver abnormalities in Fanconi anemia patients.
Am J Hematol. 2012; 87(5):547-9 [PubMed] Related Publications
Patients with Fanconi anemia (FA) are prone to liver tumors, especially after androgen treatment, but other liver abnormalities have not been described for these patients. Here, we systematically reviewed liver manifestations in a cohort of 64 adult and pediatric patients with FA followed in a single center. "Significant biological liver abnormalities(SBLA)" in the absence of any androgen treatment were found in five patients, including two children, belonging to rare FA groups; these two patients presented with a very severe chronic cytolysis pattern which may be classified as a new FA phenotype. Liver radiological abnormalities, which include hepatic tumors (n 5 4), hepatomegaly(n 5 1), hyperechogenicity (n 5 2), and a previously undescribed biliary duct dilatation as demonstrated by magnetic resonance cholangiopancreatography(MRCP) (n 5 2), were found in eight patients who received androgen treatment or who had iron overload. Lastly, we found no correlation between cytolysis intensity and high levels of alpha-fetoprotein (AFP); this common finding in FA patients cannot therefore be explained by hepatocyte regeneration.

Related: Liver Cancer Childhood Liver Cancer AFP

Rodríguez A, Sosa D, Torres L, et al.
A Boolean network model of the FA/BRCA pathway.
Bioinformatics. 2012; 28(6):858-66 [PubMed] Related Publications
MOTIVATION: Fanconi anemia (FA) is a chromosomal instability syndrome originated by inherited mutations that impair the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway, which is committed to the repair of DNA interstrand cross-links (ICLs). The disease displays increased spontaneous chromosomal aberrations and hypersensitivity to agents that create DNA interstrand cross-links. In spite of DNA damage, FA/BRCA-deficient cells are able to progress throughout the cell cycle, probably due to the activity of alternative DNA repair pathways, or due to defects in the checkpoints that monitor DNA integrity.
RESULTS: We propose a Boolean network model of the FA/BRCA pathway, Checkpoint proteins and some alternative DNA repair pathways. To our knowledge, this is the largest network model incorporating a DNA repair pathway. Our model is able to simulate the ICL repair process mediated by the FA/BRCA pathway, the activation of Checkpoint proteins observed by recurrent DNA damage, as well as the repair of DNA double-strand breaks and DNA adducts. We generated a series of simulations for mutants, some of which have never been reported and thus constitute predictions about the function of the FA/BRCA pathway. Finally, our model suggests alternative DNA repair pathways that become active whenever the FA/BRCA pathway is defective.

Related: Breast Cancer

Somyajit K, Subramanya S, Nagaraju G
Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility.
J Biol Chem. 2012; 287(5):3366-80 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.

Related: Breast Cancer FANCD2 Ovarian Cancer Signal Transduction

Gustafsson B, Moell J, Leblanc K, et al.
Donor cell-derived acute myeloid leukemia after second allogenic cord blood transplantation in a patient with Fanconi anemia.
Pediatr Transplant. 2012; 16(6):E241-5 [PubMed] Related Publications
DCL following hematopoietic stem cell transplantation has been reported in approximately 5% of all leukemic relapses. There have been several reports on DCL, mainly AML after umbilical cord blood transplantation. In this case study, we present a young boy diagnosed with Fanconi anemia who underwent an umbilical cord blood transplantation. Because of the graft failure, he was retransplanted one month later, also with a cord blood transplant. Two years after the second transplant, he developed AML, where 100% of the cells were of female donor origin. The donor, a now 14-yr-old female, was recently reported healthy.

Related: Acute Myeloid Leukemia (AML) Childhood Acute Myeloid Leukaemia AML - Molecular Biology

Rochowski A, Rosenberg PS, Alonzo TA, et al.
Estimation of the prevalence of Fanconi anemia among patients with de novo acute myelogenous leukemia who have poor recovery from chemotherapy.
Leuk Res. 2012; 36(1):29-31 [PubMed] Related Publications
We speculated that some individuals with de novo acute myelogenous leukemia (AML) may have undiagnosed Fanconi Anemia (FA). Data from patients enrolled on AML protocol CCG-2961, published FA cohort studies, SEER, and Bayes rule were used to estimate the probability of FA among all newly diagnosed AML cases, and among those who had no or delayed recovery of the absolute neutrophil count following initial chemotherapy. We determined that the probability of undiagnosed FA in patients in a treatment trial for newly diagnosed patients was around 0.18%, and around 0.83% in the subset who had poor marrow recovery. We suggest that FA or other inherited bone marrow failure syndromes be considered prior to treatment, or certainly among those with poor recovery.

Related: Acute Myeloid Leukemia (AML)

Crossan GP, Patel KJ
The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA.
J Pathol. 2012; 226(2):326-37 [PubMed] Related Publications
Fanconi anaemia (FA) is a rare, autosomal recessive, genetically complex, DNA repair deficiency syndrome in man. Patients with FA exhibit a heterogeneous spectrum of clinical features. The most significant and consistent phenotypic characteristics are stem cell loss, causing progressive bone marrow failure and sterility, diverse developmental abnormalities and a profound predisposition to neoplasia. To date, 15 genes have been identified, biallelic disruption of any one of which results in this clinically defined syndrome. It is now apparent that all 15 gene products act in a common process to maintain genome stability. At the molecular level, a fundamental defect in DNA repair underlies this complex phenotype. Cells derived from FA patients spontaneously accumulate broken chromosomes and exhibit a marked sensitivity to DNA-damaging chemotherapeutic agents. Despite complementation analysis defining many components of the FA DNA repair pathway, no direct link to DNA metabolism was established until recently. First, it is now evident that the FA pathway is required to make incisions at the site of damaged DNA. Second, a specific component of the FA pathway has been identified that regulates nucleases previously implicated in DNA interstrand crosslink repair. Taken together, these data provide genetic and biochemical evidence that the FA pathway is a bona fide DNA repair pathway that directly mediates DNA repair transactions, thereby elucidating the specific molecular defect in human Fanconi anaemia.

Related: Cancer Prevention and Risk Reduction

Birkeland AC, Auerbach AD, Sanborn E, et al.
Postoperative clinical radiosensitivity in patients with fanconi anemia and head and neck squamous cell carcinoma.
Arch Otolaryngol Head Neck Surg. 2011; 137(9):930-4 [PubMed] Article available free on PMC after 01/05/2014 Related Publications
OBJECTIVE: To describe the complications and adverse effects of postoperative radiotherapy in patients with Fanconi anemia (FA).
DESIGN: Cohort study.
SETTING: Patients with FA treated at community and tertiary care hospitals throughout the United States.
PATIENTS: The study included patients with FA who were enrolled in the International FA Registry (IFAR) and who developed head and neck squamous cell carcinoma and received postoperative radiotherapy.
MAIN OUTCOME MEASURES: Demographics of patients with FA and adverse effects and dosages of radiotherapy.
RESULTS: Twelve patients with FA (7 men and 5 women) were identified. They developed cancers at a mean age of 35.5 years (age range, 20-48 years). The sites of primary cancer were the oral cavity (n = 8), larynx (n = 2), pharynx (n = 1), and unknown (n = 1). The median radiation dose was 5590 cGy (range, 2500-7020 cGy). The most common adverse effects were mucositis (n = 9), dysphagia (n = 8), and pancytopenia (n = 6). Other complications included esophageal stenosis, laryngeal edema, and wound breakdown. Radiotherapy could not be completed in 5 cases. Overall, 8 patients died, 4 during the course of radiotherapy. The postoperative disease-free survival time ranged from 0 to 55 months.
CONCLUSIONS: Patients with FA have a high rate of complications from radiotherapy. Common adverse effects, particularly mucositis, are especially prevalent and difficult to manage in this population. Pancytopenia is common and may lead to further complications, particularly bleeding and infection. Overall survival is poor. Further study of the response to radiotherapy in patients with FA should be attempted to establish appropriate dosages to balance treating disease while limiting adverse effects.

Spanier G, Pohl F, Giese T, et al.
Fatal course of tonsillar squamous cell carcinoma associated with Fanconi anaemia: a mini review.
J Craniomaxillofac Surg. 2012; 40(6):510-5 [PubMed] Related Publications
Fanconi anaemia (FA) is a rare genetic syndrome characterized by progressive pancytopenia, variably expressed congenital abnormalities and susceptibility, amongst others, to solid tumours. Early detection by oral health professionals of a pathological process can have a critical impact on the clinical course of that condition. In this paper we report the case of a 27-year-old male patient with tonsillar squamous cell carcinoma (cT4 cN2b cM0 G3) associated with FA. Due to the locally advanced growth of the tumour and the poor systemic condition we ruled out primary surgery and settled for primary radio- and chemotherapy. Given the poor clinical course a focus on the aspect of secondary prevention is reasonable, given that it is known that patients with FA are at higher risk of developing malignancy than the general population. A multi-disciplinary approach is necessary in which the prevention of, surveillance for and the treatment of malignancies are important aspects of management and may improve disease-free survival.

Dufort G, Pisano S, Incoronato A, et al.
Feasibility and outcome of haploidentical SCT in pediatric high-risk hematologic malignancies and Fanconi anemia in Uruguay.
Bone Marrow Transplant. 2012; 47(5):663-8 [PubMed] Related Publications
In total, 17 pediatric patients with hematologic malignancies (n=14) and Fanconi anemia (FA) (n=3) underwent haploidentical SCT with T-cell depletion. The patients were conditioned with reduced-intensity regimens, and CYA was used for GVHD prophylaxis. Successful engraftment occurred in 16 patients (94%). One patient failed to achieve a primary engraftment. Another patient rejected the first SCT after 10 weeks and had a successful second transplant. Of all engrafted patients, only one developed severe acute GVHD. Ten patients were alive at a median follow-up of 18 months (range, 5-62 months). The 5-years' OS was 53.8%. The three patients with FA are currently well with full-donor chimerism at 16, 6 and 5 months post transplant, respectively. The OS of 14 patients with high-risk hematologic malignancies was 47.6%. Three patients died as a result of post transplant leukemia relapse. CMV infection, GVHD and organ injury were other causes of mortality. Haploidentical SCT was found to be an alternative feasible treatment in Uruguay for patients who need allogenic transplantation but lack an HLA-identical family donor. It should be considered as an early option in FA patients before transformation or significant exposure to blood products.

Related: Aplastic Anaemia Haematological Malignancies & Realted Disorders

this page
it's private
powered by

This page last updated: 2nd April 2014
Displaying links verified within last 2 weeks at time of update.

Children's Cancer Web Logo

Site Map
Cancer Types
Support & Information
Health Professionals


© 1996-2013