CARD11

Gene Summary

Gene:CARD11; caspase recruitment domain family member 11
Aliases: PPBL, BENTA, BIMP3, IMD11, CARMA1
Location:7p22.2
Summary:The protein encoded by this gene belongs to the membrane-associated guanylate kinase (MAGUK) family, a class of proteins that functions as molecular scaffolds for the assembly of multiprotein complexes at specialized regions of the plasma membrane. This protein is also a member of the CARD protein family, which is defined by carrying a characteristic caspase-associated recruitment domain (CARD). This protein has a domain structure similar to that of CARD14 protein. The CARD domains of both proteins have been shown to specifically interact with BCL10, a protein known to function as a positive regulator of cell apoptosis and NF-kappaB activation. When expressed in cells, this protein activated NF-kappaB and induced the phosphorylation of BCL10. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:caspase recruitment domain-containing protein 11
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (23)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Ubiquitination
  • Notch Receptors
  • Triterpenes
  • T-Lymphocytes
  • Cancer Gene Expression Regulation
  • NF-kappa B
  • Tissue Array Analysis
  • ras Proteins
  • Tumor Virus Infections
  • Transcription Factors
  • Substrate Specificity
  • Mutation
  • BCL2 protein
  • Cell Survival
  • Exome
  • src-Family Kinases
  • Tumor Suppressor Proteins
  • Neoplasm Proteins
  • DNA Mutational Analysis
  • Guanylate Cyclase
  • p53 Protein
  • Diffuse Large B-Cell Lymphoma
  • MYD88
  • Young Adult
  • MALT Lymphoma
  • CARD Signaling Adaptor Proteins
  • Signal Transducing Adaptor Proteins
  • Chromosome 7
  • Intracellular Signaling Peptides and Proteins
  • Caspases
  • B-Lymphocytes
  • DNA-Binding Proteins
  • Translocation
  • Thyroid Cancer
  • Xenograft Models
  • Skin Cancer
  • Trans-Activators
  • DNA Sequence Analysis
  • Signal Transduction
  • Nuclear Proteins
  • Toll-Like Receptors
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CARD11 (cancer-related)

Yang Y, Kelly P, Shaffer AL, et al.
Targeting Non-proteolytic Protein Ubiquitination for the Treatment of Diffuse Large B Cell Lymphoma.
Cancer Cell. 2016; 29(4):494-507 [PubMed] Related Publications
Chronic active B cell receptor (BCR) signaling, a hallmark of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), engages the CARD11-MALT1-BCL10 (CBM) adapter complex to activate IκB kinase (IKK) and the classical NF-κB pathway. Here we show that the CBM complex includes the E3 ubiquitin ligases cIAP1 and cIAP2, which are essential mediators of BCR-dependent NF-κB activity in ABC DLBCL. cIAP1/2 attach K63-linked polyubiquitin chains on themselves and on BCL10, resulting in the recruitment of IKK and the linear ubiquitin chain ligase LUBAC, which is essential for IKK activation. SMAC mimetics target cIAP1/2 for destruction, and consequently suppress NF-κB and selectively kill BCR-dependent ABC DLBCL lines, supporting their clinical evaluation in patients with ABC DLBCL.

Cornet E, Mossafa H, Courel K, et al.
Persistent polyclonal binucleated B-cell lymphocytosis and MECOM gene amplification.
BMC Res Notes. 2016; 9:138 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Persistent Polyclonal Binucleated B-cell Lymphocytosis (PPBL) is characterized by a chronic polyclonal B-cell lymphocytosis with binucleated lymphocytes and a polyclonal increase in serum immunoglobulin-M. Cytogenetic is characterized by the presence of a supernumerary isochromosome +i(3)(q10), premature chromosome condensation and chromosomal instability. Outcome of PPBL patients is mostly benign, but subsequent malignancies could occur. The aim of our study is to provide an update of clinical and cytogenetic characteristics of our large cohort of PPBL patients, to describe subsequent malignancies occurring during the follow-up, and to investigate the role of the long arm of chromosome 3 in PPBL.
RESULTS: We analyzed clinical, biological and cytogenetic characteristics (conventional cytogenetic analysis and fluorescent in situ hybridization) of 150 patients diagnosed with PPBL. We performed high-resolution SNP arrays in 10 PPBL patients, comparing CD19(+) versus CD19(-) lymphoid cells. We describe the cytogenetic characteristics in 150 PPBL patients consisting in the presence of supernumerary isochromosome +i(3)(q10) (59%) and chromosomal instability (55%). In CD19(+) B-cells, we observed recurrent copy number aberrations of 143 genes with 129 gains (90%) on 3q and a common minimal amplified genomic region in the MECOM gene. After a median follow-up of 60 months, we observed the occurrence of 12 subsequent malignancies (12%), 6 solid tumors and 6 Non-Hodgkin's Lymphomas, and 6 monoclonal gammopathies of undetermined significance (MGUS), requiring a long-term clinical follow-up.
CONCLUSIONS: Our clinical and cytogenetic observations lead us to hypothesize that isochromosome 3q, especially MECOM abnormality, could play a key role in PPBL.

Jattani RP, Tritapoe JM, Pomerantz JL
Cooperative Control of Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling by an Unusual Array of Redundant Repressive Elements.
J Biol Chem. 2016; 291(16):8324-36 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Several classes of signaling proteins contain autoinhibitory domains that prevent unwarranted signaling and coordinate the induction of activity in response to external cues. CARD11, a scaffold protein critical for antigen receptor signaling to NF-κB, undergoes autoregulation by a poorly understood inhibitory domain (ID), which keeps CARD11 inactive in the absence of receptor triggering through inhibitory intramolecular interactions. This autoinhibitory strategy makes CARD11 highly susceptible to gain-of-function mutations that are frequently observed in diffuse large B cell lymphoma (DLBCL) and that disrupt ID-mediated autoinhibition, leading to constitutive NF-κB activity, which can promote lymphoma proliferation. Although DLBCL-associated CARD11 mutations in the caspase recruitment domain (CARD), LATCH domain, and coiled coil have been shown to disrupt intramolecular ID binding, surprisingly, no gain-of-function mutations in the ID itself have been reported and validated. In this study, we solve this paradox and report that the CARD11 ID contains an unusual array of four repressive elements that function cooperatively with redundancy to prevent spontaneous NF-κB activation. Our quantitative analysis suggests that potent oncogenic CARD11 mutations must perturb autoinhibition by at least three repressive elements. Our results explain the lack of ID mutations in DLBCL and reveal an unusual autoinhibitory domain structure and strategy for preventing unwarranted scaffold signaling to NF-κB.

Jattani RP, Tritapoe JM, Pomerantz JL
Intramolecular Interactions and Regulation of Cofactor Binding by the Four Repressive Elements in the Caspase Recruitment Domain-containing Protein 11 (CARD11) Inhibitory Domain.
J Biol Chem. 2016; 291(16):8338-48 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The CARD11 signaling scaffold transmits signaling between antigen receptors on B and T lymphocytes and the transcription factor NF-κB during the adaptive immune response. CARD11 activity is controlled by an inhibitory domain (ID), which participates in intramolecular interactions and prevents cofactor binding prior to receptor triggering. Oncogenic CARD11 mutations associated with the activated B cell-like subtype of diffuse large B cell lymphoma somehow perturb ID-mediated autoinhibition to confer CARD11 with the dysregulated spontaneous signaling to NF-κB that is required for the proliferation and survival of the lymphoma. Here, we investigate how the four repressive elements (REs) we have discovered in the CARD11 ID function to inhibit CARD11 activity with cooperativity and redundancy. We find that each RE contributes to the maintenance of the closed inactive state of CARD11 that predominates in the absence of receptor engagement. Each RE also contributes to the prevention of Bcl10 binding in the basal unstimulated state. RE1, RE2, and RE3 participate in intramolecular interactions with other CARD11 domains and share domain targets for binding. Remarkably, diffuse large B cell lymphoma-associated gain-of-function mutations in the caspase recruitment domain, LATCH, or coiled coil can perturb intramolecular interactions mediated by multiple REs, suggesting how single amino acid oncogenic CARD11 mutations can perturb or bypass the action of redundant inhibitory REs to achieve the level of hyperactive CARD11 signaling required to support lymphoma growth.

Taniguchi K, Takata K, Chuang SS, et al.
Frequent MYD88 L265P and CD79B Mutations in Primary Breast Diffuse Large B-Cell Lymphoma.
Am J Surg Pathol. 2016; 40(3):324-34 [PubMed] Related Publications
Primary breast diffuse large B-cell lymphoma (PB-DLBCL) is a rare disease comprising <3% of extranodal lymphomas. It frequently reveals an activated B-cell (ABC)-like phenotype. ABC-like DLBCL was reported to have gain-of-function mutations in MYD88, CD79B, CARD11, and TNFAIP3, resulting in constitutive activation of the NFκB pathway. Because of the rare occurrence of PB-DLBCL, the frequency of MYD88 and CD79B mutations is still unknown. We used Sanger sequencing to study these mutations from 46 breast DLBCL cases and also investigated the associated clinicopathologic factors. MYD88 L265P was confirmed by allele-specific polymerase chain reaction and compared with the Sanger sequencing results. MYD88 L265P and CD79B mutations were detected in 27/46 (58.7%) and 11/33 (33.3%) cases, respectively. Twenty-eight of 46 cases met the criteria for PB-DLBCL, and the latter 18 cases were further classified as clinical breast DLBCL (CLB-DLBCL). The frequency of MYD88 L265P and CD79B mutations was 16/28 (57.1%) and 9/23 (39.1%), respectively, in PB-DLBCL and 11/18 (61.1%) and 2/10 (20%), respectively, in CLB-DLBCL. When the cutoff value was set at ΔCt≤1, the result of allele-specific polymerase chain reaction for MYD88 corresponded to those of the Sanger sequence at 92.6% sensitivity and 100% specificity. According to Choi's algorithm, 16/27 (59.3%) demonstrated an ABC-like phenotype in PB-DLBCL, and 15/18 (83.3%) demonstrated an ABC-like phenotype in CLB-DLBCL. In conclusion, MYD88 L265P and CD79B mutations were frequently detected in PB-DLBCL, and they may be key molecules associated with PB-DLBCL lymphomagenesis. Further analysis will be required to clarify the mechanism of its pathogenesis.

Juilland M, Gonzalez M, Erdmann T, et al.
CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas.
Blood. 2016; 127(14):1780-9 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor-κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL.

Knies N, Alankus B, Weilemann A, et al.
Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation.
Proc Natl Acad Sci U S A. 2015; 112(52):E7230-8 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.

Mareschal S, Dubois S, Viailly PJ, et al.
Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma.
Genes Chromosomes Cancer. 2016; 55(3):251-67 [PubMed] Related Publications
Despite the many efforts already spent to enumerate somatic mutations in diffuse large B-cell lymphoma (DLBCL), previous whole-genome and whole-exome studies conducted on patients of mixed outcomes failed at characterizing the 30% of patients who will relapse or resist current immunochemotherapies. To address this issue, we performed whole-exome sequencing of normal/tumoral DNA pairs in 14 relapsed/refractory (R/R) patients subclassified by full-transcriptome arrays (six activated B-cell like, three germinal center B-cell like, and five primary mediastinal B-cell lymphomas), from the LNH-03 LYSA clinical trial program. Aside from well-known DLBCL features, gene and pathway level recurrence analyses proposed several interesting leads including TBL1XR1 and activating mutations in IRF4 or in the insulin regulation pathway. Sequencing-based copy number analysis defined 23 short recurrently altered regions involving genes such as REL, CDKN2A, HYAL2, and TP53. Moreover, it highlighted mutations in genes such as GNA13, CARD11, MFHAS1, and PCLO as associated with secondary variant allele amplification events. The five primary mediastinal B-cell lymphomas (PMBL), while unexpected in a R/R cohort, showed a significantly higher mutation rate (P = 0.003) and provided many insights on this classical Hodgkin lymphoma related subtype. Novel genes such as XPO1, MFHAS1, and ITPKB were found particularly mutated, along with various cytokine-based signaling pathways. Among these analyses, somatic events in the NF-κB pathway were found preponderant in the three DLBCL subtypes, confirming its major implication in DLBCL aggressiveness and pinpointing several new candidate genes.

Wang L, Ni X, Covington KR, et al.
Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes.
Nat Genet. 2015; 47(12):1426-34 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Sézary syndrome is a rare leukemic form of cutaneous T cell lymphoma characterized by generalized redness, scaling, itching and increased numbers of circulating atypical T lymphocytes. It is rarely curable, with poor prognosis. Here we present a multiplatform genomic analysis of 37 patients with Sézary syndrome that implicates dysregulation of cell cycle checkpoint and T cell signaling. Frequent somatic alterations were identified in TP53, CARD11, CCR4, PLCG1, CDKN2A, ARID1A, RPS6KA1 and ZEB1. Activating CCR4 and CARD11 mutations were detected in nearly one-third of patients. ZEB1, encoding a transcription repressor essential for T cell differentiation, was deleted in over one-half of patients. IL32 and IL2RG were overexpressed in nearly all cases. Our results demonstrate profound disruption of key signaling pathways in Sézary syndrome and suggest potential targets for new therapies.

da Silva Almeida AC, Abate F, Khiabanian H, et al.
The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome.
Nat Genet. 2015; 47(12):1465-70 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Sézary syndrome is a leukemic and aggressive form of cutaneous T cell lymphoma (CTCL) resulting from the malignant transformation of skin-homing central memory CD4(+) T cells. Here we performed whole-exome sequencing of tumor-normal sample pairs from 25 patients with Sézary syndrome and 17 patients with other CTCLs. These analyses identified a distinctive pattern of somatic copy number alterations in Sézary syndrome, including highly prevalent chromosomal deletions involving the TP53, RB1, PTEN, DNMT3A and CDKN1B tumor suppressors. Mutation analysis identified a broad spectrum of somatic mutations in key genes involved in epigenetic regulation (TET2, CREBBP, KMT2D (MLL2), KMT2C (MLL3), BRD9, SMARCA4 and CHD3) and signaling, including MAPK1, BRAF, CARD11 and PRKG1 mutations driving increased MAPK, NF-κB and NFAT activity upon T cell receptor stimulation. Collectively, our findings provide new insights into the genetics of Sézary syndrome and CTCL and support the development of personalized therapies targeting key oncogenically activated signaling pathways for the treatment of these diseases.

Kataoka K, Nagata Y, Kitanaka A, et al.
Integrated molecular analysis of adult T cell leukemia/lymphoma.
Nat Genet. 2015; 47(11):1304-15 [PubMed] Related Publications
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.

Kiel MJ, Sahasrabuddhe AA, Rolland DC, et al.
Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome.
Nat Commun. 2015; 6:8470 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Sézary syndrome (SS) is an aggressive leukaemia of mature T cells with poor prognosis and limited options for targeted therapies. The comprehensive genetic alterations underlying the pathogenesis of SS are unknown. Here we integrate whole-genome sequencing (n=6), whole-exome sequencing (n=66) and array comparative genomic hybridization-based copy-number analysis (n=80) of primary SS samples. We identify previously unknown recurrent loss-of-function aberrations targeting members of the chromatin remodelling/histone modification and trithorax families, including ARID1A in which functional loss from nonsense and frameshift mutations and/or targeted deletions is observed in 40.3% of SS genomes. We also identify recurrent gain-of-function mutations targeting PLCG1 (9%) and JAK1, JAK3, STAT3 and STAT5B (JAK/STAT total ∼11%). Functional studies reveal sensitivity of JAK1-mutated primary SS cells to JAK inhibitor treatment. These results highlight the complex genomic landscape of SS and a role for inhibition of JAK/STAT pathways for the treatment of SS.

Kridel R, Mottok A, Farinha P, et al.
Cell of origin of transformed follicular lymphoma.
Blood. 2015; 126(18):2118-27 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (<5 years) and 86 patients not experiencing transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P < .001). We also show that composite histology at the time of transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell-like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell-like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL.

Pastore A, Jurinovic V, Kridel R, et al.
Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry.
Lancet Oncol. 2015; 16(9):1111-22 [PubMed] Related Publications
BACKGROUND: Follicular lymphoma is a clinically and genetically heterogeneous disease, but the prognostic value of somatic mutations has not been systematically assessed. We aimed to improve risk stratification of patients receiving first-line immunochemotherapy by integrating gene mutations into a prognostic model.
METHODS: We did DNA deep sequencing to retrospectively analyse the mutation status of 74 genes in 151 follicular lymphoma biopsy specimens that were obtained from patients within 1 year before beginning immunochemotherapy consisting of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). These patients were recruited between May 4, 2000, and Oct 20, 2010, as part of a phase 3 trial (GLSG2000). Eligible patients had symptomatic, advanced stage follicular lymphoma and were previously untreated. The primary endpoints were failure-free survival (defined as less than a partial remission at the end of induction, relapse, progression, or death) and overall survival calculated from date of treatment initiation. Median follow-up was 7·7 years (IQR 5·5-9·3). Mutations and clinical factors were incorporated into a risk model for failure-free survival using multivariable L1-penalised Cox regression. We validated the risk model in an independent population-based cohort of 107 patients with symptomatic follicular lymphoma considered ineligible for curative irradiation. Pretreatment biopsies were taken between Feb 24, 2004, and Nov 24, 2009, within 1 year before beginning first-line immunochemotherapy consisting of rituximab, cyclophosphamide, vincristine, and prednisone (R-CVP). Median follow-up was 6·7 years (IQR 5·7-7·6).
FINDINGS: We established a clinicogenetic risk model (termed m7-FLIPI) that included the mutation status of seven genes (EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP, and CARD11), the Follicular Lymphoma International Prognostic Index (FLIPI), and Eastern Cooperative Oncology Group (ECOG) performance status. In the training cohort, m7-FLIPI defined a high-risk group (28%, 43/151) with 5-year failure-free survival of 38·29% (95% CI 25·31-57·95) versus 77·21% (95% CI 69·21-86·14) for the low-risk group (hazard ratio [HR] 4·14, 95% CI 2·47-6·93; p<0·0001; bootstrap-corrected HR 2·02), and outperformed a prognostic model of only gene mutations (HR 3·76, 95% CI 2·10-6·74; p<0·0001; bootstrap-corrected HR 1·57). The positive predictive value and negative predictive value for 5-year failure-free survival were 64% and 78%, respectively, with a C-index of 0·80 (95% CI 0·71-0·89). In the validation cohort, m7-FLIPI again defined a high-risk group (22%, 24/107) with 5-year failure-free survival of 25·00% (95% CI 12·50-49·99) versus 68·24% (58·84-79·15) in the low-risk group (HR 3·58, 95% CI 2·00-6·42; p<0.0001). The positive predictive value for 5-year failure-free survival was 72% and 68% for negative predictive value, with a C-index of 0·79 (95% CI 0·69-0·89). In the validation cohort, risk stratification by m7-FLIPI outperformed FLIPI alone (HR 2·18, 95% CI 1·21-3·92), and FLIPI combined with ECOG performance status (HR 2·03, 95% CI 1·12-3·67).
INTERPRETATION: Integration of the mutational status of seven genes with clinical risk factors improves prognostication for patients with follicular lymphoma receiving first-line immunochemotherapy and is a promising approach to identify the subset at highest risk of treatment failure.
FUNDING: Deutsche Krebshilfe, Terry Fox Research Institute.

Pon JR, Wong J, Saberi S, et al.
MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.
Nat Commun. 2015; 6:7953 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial-mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis.

Watt SA, Purdie KJ, den Breems NY, et al.
Novel CARD11 Mutations in Human Cutaneous Squamous Cell Carcinoma Lead to Aberrant NF-κB Regulation.
Am J Pathol. 2015; 185(9):2354-63 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
NF-κB signaling plays a crucial role in regulating proliferation and differentiation in the epidermis. Alterations in the NF-κB pathway can lead to skin pathologies with a significant burden to human health such as psoriasis and cutaneous squamous cell carcinoma (cSCC). Caspase recruitment domain (CARD)-containing scaffold proteins are key regulators of NF-κB signaling by providing a link between membrane receptors and NF-κB transcriptional subunits. Mutations in the CARD family member, CARD14, have been identified in patients with the inflammatory skin diseases psoriasis and pityriasis rubra pilaris. Here, we describe that the gene coding for another CARD scaffold protein, CARD11, is mutated in more than 38% of 111 cSCCs, and show that novel variants outside of the coiled-coil domain lead to constitutively activated NF-κB signaling. CARD11 protein expression was detectable in normal skin and increased in all cSCCs tested. CARD11 mRNA levels were comparable with CARD14 in normal skin and CARD11 mRNA was increased in cSCC. In addition, we identified CARD11 mutations in peritumoral and sun-exposed skin, suggesting that CARD11-mediated alterations in NF-κB signaling may be an early event in the development of cSCC.

Lim B, Mun J, Kim JH, et al.
Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels.
Oncotarget. 2015; 6(26):22179-90 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
To characterize the mutation profiles of colorectal cancer (CRC) primary tumors (PTs) and liver metastases (CLMs), we performed both whole-exome and RNA sequencing. Ten significantly mutated genes, including BMI1, CARD11, and NRG1, were found in 34 CRCs with CLMs. We defined three mutation classes (Class 1 to 3) based on the absence or presence of mutations during liver metastasis. Most mutations were classified into Class 1 (shared between PTs and CLMs), suggesting the common clonal origin of PTs and CLMs. Class 1 was more strongly associated with the clinical characteristics of advanced cancer and was more frequently superimposed with chromosomal deletions in CLMs than Class 2 (PT-specific). The integration of exome and RNA sequencing revealed that variant-allele frequencies (VAFs) of mutations in the transcriptome tended to have stronger functional implications than those in the exome. For instance, VAFs of the TP53 and APC mutations in the transcriptome significantly correlated with the expression level of their target genes. Additionally, mutations with high functional impact were enriched with high VAFs in the CLM transcriptomes. We identified 11 mutation-associated splicing events in the CRC transcriptomes. Thus, the integration of the exome and the transcriptome may elucidate the underlying molecular events responsible for CLMs.

Afonina IS, Elton L, Carpentier I, Beyaert R
MALT1--a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression.
FEBS J. 2015; 282(17):3286-97 [PubMed] Related Publications
The paracaspase MALT1 (mucosa associated lymphoid tissue lymphoma translocation gene 1) is an intracellular signaling protein that plays a key role in innate and adaptive immunity. It is essential for nuclear factor κB (NF-κB) activation and proinflammatory gene expression downstream of several cell surface receptors. MALT1 has been most studied in the context of T-cell receptor-induced NF-κB signaling, supporting T-cell activation and proliferation. In addition, MALT1 hyperactivation is associated with specific subtypes of B-cell lymphoma, where it controls tumor cell proliferation and survival. For a long time, MALT1 was believed to function solely as a scaffold protein, providing a platform for the assembly of other NF-κB signaling proteins. However, this view changed dramatically when MALT1 was found to have proteolytic activity that further fine-tunes signaling. MALT1 proteolytic activity is essential for T-cell activation and lymphomagenesis, suggesting that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. However, interference with MALT1 activity may pose a dangerous threat to the normal functioning of the immune system and should be evaluated with great care. Here we discuss the current knowledge on the scaffold and protease functions of MALT1, including an overview of its substrates and the functional implications of their cleavage.

Braggio E, Van Wier S, Ojha J, et al.
Genome-Wide Analysis Uncovers Novel Recurrent Alterations in Primary Central Nervous System Lymphomas.
Clin Cancer Res. 2015; 21(17):3986-94 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
PURPOSE: Primary central nervous system lymphoma (PCNSL) is an aggressive non-Hodgkin lymphoma confined to the central nervous system. Whether there is a PCNSL-specific genomic signature and, if so, how it differs from systemic diffuse large B-cell lymphoma (DLBCL) is uncertain.
EXPERIMENTAL DESIGN: We performed a comprehensive genomic study of tumor samples from 19 immunocompetent PCNSL patients. Testing comprised array-comparative genomic hybridization and whole exome sequencing.
RESULTS: Biallelic inactivation of TOX and PRKCD was recurrently found in PCNSL but not in systemic DLBCL, suggesting a specific role in PCNSL pathogenesis. In addition, we found a high prevalence of MYD88 mutations (79%) and CDKN2A biallelic loss (60%). Several genes recurrently affected in PCNSL were common with systemic DLBCL, including loss of TNFAIP3, PRDM1, GNA13, TMEM30A, TBL1XR1, B2M, CD58, activating mutations of CD79B, CARD11, and translocations IgH-BCL6. Overall, B-cell receptor/Toll-like receptor/NF-κB pathways were altered in >90% of PNCSL, highlighting its value for targeted therapeutic approaches. Furthermore, integrated analysis showed enrichment of pathways associated with immune response, proliferation, apoptosis, and lymphocyte differentiation.
CONCLUSIONS: In summary, genome-wide analysis uncovered novel recurrent alterations, including TOX and PRKCD, helping to differentiate PCNSL from systemic DLBCL and related lymphomas.

Boi M, Gaudio E, Bonetti P, et al.
The BET Bromodomain Inhibitor OTX015 Affects Pathogenetic Pathways in Preclinical B-cell Tumor Models and Synergizes with Targeted Drugs.
Clin Cancer Res. 2015; 21(7):1628-38 [PubMed] Related Publications
PURPOSE: In cancer cells, the epigenome is often deregulated, and inhibition of the bromodomain and extra-terminal (BET) family of bromodomain-containing proteins is a novel epigenetic therapeutic approach. Preliminary results of an ongoing phase I trial have reported promising activity and tolerability with the new BET bromodomain inhibitor OTX015.
EXPERIMENTAL DESIGN: We assessed the preclinical activity of OTX015 as single agent and in combination in mature B-cell lymphoma models and performed in vitro and in vivo experiments to identify the mechanism of action and the genetic features associated with sensitivity to the compound.
RESULTS: OTX015 showed antiproliferative activity in a large panel of cell lines derived from mature B-cell lymphoid tumors with median IC50 of 240 nmol/L, without significant differences among the different histotypes. In vitro and in vivo experiments showed that OTX015 targeted NFKB/TLR/JAK/STAT signaling pathways, MYC- and E2F1-regulated genes, cell-cycle regulation, and chromatin structure. OTX015 presented in vitro synergism with several anticancer agents, especially with mTOR and BTK inhibitors. Gene expression signatures associated with different degrees of sensitivity to OTX015 were identified. Although OTX015 was mostly cytostatic, the compound induced apoptosis in a genetically defined subgroup of cells, derived from activated B-cell-like diffuse large B-cell lymphoma, bearing wtTP53, mutations in MYD88, and CD79B or CARD11.
CONCLUSIONS: Together with the data coming from the ongoing phase I study, the in vitro and in vivo data presented here provide the basis for further clinical investigation of OTX015 as single agent and in combination therapies.

Eitelhuber AC, Vosyka O, Nagel D, et al.
Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas.
Chem Biol. 2015; 22(1):129-38 [PubMed] Related Publications
MALT1 paracaspase is activated upon antigen receptor stimulation to promote lymphocyte activation. In addition, deregulated MALT1 protease activity drives survival of distinct lymphomas such as the activated B cell type of diffuse large B cell lymphoma (ABC-DLBCL). Here, we designed fluorophore or biotin-coupled activity based-probes (ABP) that covalently modify the active center of MALT1. MALT1-ABPs are exclusively labeling an active modified full length form of MALT1 upon T cell stimulation. Further, despite the CARMA1 requirement for initial MALT1 activation, the MALT1-ABPs show that protease activity is not confined to the high-molecular CARMA1-BCL10-MALT1 (CBM) complex. Using biotin-coupled ABPs, we developed a robust assay for sensitive and selective detection of active MALT1 in cell lines, primary lymphocytes, and DLBCL tumor biopsies. Taken together, MALT1-ABPs represent powerful chemical tools to measure cellular MALT1 activation, determine efficacy of small molecule inhibitors, and classify lymphomas based on MALT1 activity status.

Clipson A, Wang M, de Leval L, et al.
KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype.
Leukemia. 2015; 29(5):1177-85 [PubMed] Related Publications
To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.

Akhter A, Masir N, Elyamany G, et al.
Differential expression of Toll-like receptor (TLR) and B cell receptor (BCR) signaling molecules in primary diffuse large B-cell lymphoma of the central nervous system.
J Neurooncol. 2015; 121(2):289-96 [PubMed] Related Publications
Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a distinct and aggressive lymphoma that is confined to CNS. Since, central nervous system is barrier-protected and immunologically silent; role of TLR/BCR signaling in pathogenesis and biology of CNS DLBCL is intriguing. Genomic mutations in key regulators of TLR/BCR signaling pathway (MYD88/CD79B/CARD11) have recently been reported in this disease. These observations raised possible implications in novel targeted therapies; however, expression pattern of molecules related to TLR/BCR pathways in this lymphoma remains unknown. We have analyzed the expression of 19 genes encoding TLR/BCR pathways and targets in CNS DLBCLs (n = 20) by Nanostring nCounter™ analysis and compared it with expression patterns in purified reactive B-lymphocytes and systemic diffuse large B cell lymphoma (DLBCL) (n = 20). Relative expression of TLR4, TLR5, TLR9, CD79B and BLNK was higher in CNS DLBCLs than in control B-lymphocytes; where as TLR7, MALT1, BCL10, CD79A and LYN was lower in CNS DLBCLs (P < 0.0001). When compared with systemic DLBCL samples, higher expression of TLR9, CD79B, CARD11, LYN and BLNK was noted in CNS DLBCL (>1.5 fold change; P < 0.01). The B cell receptor molecules like BLNK and CD79B were also associated with higher expression of MYD88 dependent TLRs (TLR4/5/9). In conclusion, we have shown over expression of TLR/BCR related genes or their targets, where genomic mutations have commonly been identified in CNS DLBCL. We have also demonstrated that TLR over expression closely relate with up regulation of genes associated with BCR pathway like CD79B/BLNK and CARD11, which play an important role in NF-kB pathway activation. Our results provide an important insight into the possibility of TLR and/or B-cell receptor signaling molecules as possible therapeutic targets in CNS DLBCL.

Ma Y, Liao Z, Xu Y, et al.
Characteristics of CARMA1-BCL10-MALT1-A20-NF-κB expression in T cell-acute lymphocytic leukemia.
Eur J Med Res. 2014; 19:62 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND: Knowledge of the oncogenic signaling pathways of T-cell acute lymphoblastic leukemia (T-ALL) remains limited. Constitutive aberrant activation of the nuclear factor kappa B (NF-κB) signaling pathway has been detected in various lymphoid malignancies and plays a key role in the development of these carcinomas. The zinc finger-containing protein, A20, is a central regulator of multiple NF-κB-activating signaling cascades. A20 is frequently inactivated by deletions and/or mutations in several B-and T-cell lymphoma subtypes. However, few A20 mutations and polymorphisms have been reported in T-ALL. Thus, it is of interest to analyze the expression characteristics of A20 and its regulating factors, including upstream regulators and the CBM complex, which includes CARMA1, BCL10, and MALT1.
METHODS: The expression levels of CARMA1, BCL10, MALT1, A20, and NF-κB were detected in peripheral blood mononuclear cells (PBMCs) from 21 patients with newly diagnosed T-ALL using real-time PCR, and correlations between the aberrant expression of these genes in T-ALL was analyzed. Sixteen healthy individuals, including 10 males and 6 females, served as controls.
RESULTS: Significantly lower A20 expression was found in T-ALL patients (median: 4.853) compared with healthy individuals (median: 8.748; P = 0.017), and significantly increased expression levels of CARMA1 (median: 2.916; P = 0.034), BCL10 (median: 0.285; P = 0.033), and MALT1 (median: 1.201; P = 0.010) were found in T-ALL compared with the healthy individuals (median: 1.379, 0.169, and 0.677, respectively). In contrast, overexpression of NF-κB (median: 0.714) was found in T-ALL compared with healthy individuals (median: 0.335; P = 0.001). A negative correlation between the MALT1 and A20 expression levels and a positive correlation between CARMA1 and BCL10 were found in T-ALL and healthy individuals. However, no negative correlation was found between A20 and NF-κB and the MALT1 and NF-κB expression level in the T-ALL group.
CONCLUSIONS: We characterized the expression of the CARMA-BCL10-MALT1-A20-NF-κB pathway genes in T-ALL. Overexpression of CARMA-BCL10-MALT in T-ALL may contribute to the constitutive cleavage and inactivation of A20, which enhances NF-κB signaling and may be related to T-ALL pathogenesis.

Steinhardt JJ, Peroutka RJ, Mazan-Mamczarz K, et al.
Inhibiting CARD11 translation during BCR activation by targeting the eIF4A RNA helicase.
Blood. 2014; 124(25):3758-67 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Human diffuse large B-cell lymphomas (DLBCLs) often aberrantly express oncogenes that generally contain complex secondary structures in their 5' untranslated region (UTR). Oncogenes with complex 5'UTRs require enhanced eIF4A RNA helicase activity for translation. PDCD4 inhibits eIF4A, and PDCD4 knockout mice have a high penetrance for B-cell lymphomas. Here, we show that on B-cell receptor (BCR)-mediated p70s6K activation, PDCD4 is degraded, and eIF4A activity is greatly enhanced. We identified a subset of genes involved in BCR signaling, including CARD11, BCL10, and MALT1, that have complex 5'UTRs and encode proteins with short half-lives. Expression of these known oncogenic proteins is enhanced on BCR activation and is attenuated by the eIF4A inhibitor Silvestrol. Antigen-experienced immunoglobulin (Ig)G(+) splenic B cells, from which most DLBCLs are derived, have higher levels of eIF4A cap-binding activity and protein translation than IgM(+) B cells. Our results suggest that eIF4A-mediated enhancement of oncogene translation may be a critical component for lymphoma progression, and specific targeting of eIF4A may be an attractive therapeutic approach in the management of human B-cell lymphomas.

Gebauer N, Hardel TT, Gebauer J, et al.
Activating mutations affecting the NF-kappa B pathway and EZH2-mediated epigenetic regulation are rare events in primary mediastinal large B-cell lymphoma.
Anticancer Res. 2014; 34(10):5503-7 [PubMed] Related Publications
BACKGROUND: Primary mediastinal large B-cell lymphoma (PMBL) is a distinct subtype of diffuse large B-cell lymphoma (DLBCL) frequently observed in young patients. High-dose immunochemotherapy constitutes the current therapeutic gold-standard, despite significant toxicity and serious late effects. Several hotspots harboring oncogenic gain-of-function mutations were recently shown to pose vital hallmarks in activated B-cell like (ABC-) (CD79B, CARD11 and MYD88) and germinal center like (GCB-) DLBCL (EZH2), respectively. Several promising targeted-therapy approaches, derived from these findings, are currently under development.
MATERIALS AND METHODS: We thoroughly characterized a cohort of 25 untreated patients with de novo PMBL by immunohistochemical and cytogenetic means and assessed the prevalence of activating mutations affecting EZH2, CD79B and CARD11 utilizing a polymerase chain reaction (PCR)-based capillary sequencing approach. Moreover, the MYD88 p. L265P status was assessed by employing a pyrosequencing approach.
RESULTS: PMBLs included in this study did not harbor any of the reported hotspot mutations activating the nuclear factor (NF)-kappa B signaling cascade or the EZH2-mediated epigenetic deregulation of gene expression. Immunohistochemical characterization revealed an ABC phenotype in 44% (n=11) of cases.
CONCLUSION: We report that genetic alterations of these genes are rare events in PMBL unlike other subtypes of DLBCL. Our findings suggest that a substantial subset of PMBL patients may benefit from treatment approaches targeting BCR-mediated activation of NF-kappa B.

Bohers E, Mareschal S, Bertrand P, et al.
Activating somatic mutations in diffuse large B-cell lymphomas: lessons from next generation sequencing and key elements in the precision medicine era.
Leuk Lymphoma. 2015; 56(5):1213-22 [PubMed] Related Publications
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, accounting for 30-40% of newly diagnosed non-Hodgkin lymphomas. Historically, DLBCL has been thought to involve recurrent translocations of the immunoglobulin heavy (IGH) locus and the deregulation of rearranged oncogenes. Whole exome sequencing (WES) of more than 200 DLBCLs has completely redefined the genetic landscape of the disease by identifying recurrent single nucleotide variants and providing new therapeutic opportunities in DLBCL molecular subtypes. Some of these somatic mutations target genes that play a crucial role in B-cell function (B cell receptor [BCR] signaling, nuclear factor κB [NF-κB] pathway, Toll-like receptor [TLR] signaling and phosphatidylinositol 3-kinase [PI3K] pathway), immunity, cell cycle/apoptosis or chromatin modification. In this review, following an overview of the somatic mutations reported in DLBCL, we focus on activating and clustered mutations targeting genes including MYD88, CD79A/B, EZH2 and CARD11 and discuss their clinical and therapeutic relevance in the precision medicine era.

Seda V, Mraz M
B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells.
Eur J Haematol. 2015; 94(3):193-205 [PubMed] Related Publications
The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.

Gebauer N, Gebauer J, Hardel TT, et al.
Prevalence of targetable oncogenic mutations and genomic alterations in Epstein-Barr virus-associated diffuse large B-cell lymphoma of the elderly.
Leuk Lymphoma. 2015; 56(4):1100-6 [PubMed] Related Publications
Epstein-Barr virus (EBV)-associated diffuse large B-cell lymphoma (DLBCL) of the elderly constitutes a provisional clinicopathological entity in the current World Health Organization (WHO) classification and its genomic features remain sparsely characterized. We investigated a cohort of 26 cases of untreated de novo EBV-positive DLBCL of the elderly by high-resolution array-based comparative genomic profiling and fluorescence in situ hybridization (FISH). Moreover, we screened for activating mutations affecting nuclear factor (NF)-κB pathway signaling and chromatin remodeling (EZH2, CD79B, CARD11 and MYD88) due to their impact of gene expression signatures and postulated upcoming therapeutic targetability. We identified an overlap between genomic aberrations previously described to be exclusive features of plasmablastic lymphoma (PL), post-transplant lymphoproliferative disorder (PTLD) and DLBCL, respectively, indicating a close cytogenetic relationship between these entities. Few mutations affecting CD79B and CARD11 and no MYD88 mutations were detectable, hinting at EBV-mediated activation of NF-κB as an alternative to pathologically enforced B-cell receptor signaling in this rare entity.

Carbone A, Gloghini A, Kwong YL, Younes A
Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy.
Ann Hematol. 2014; 93(8):1263-77 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Diffuse large B cell lymphoma (DLBCL) comprises specific subtypes, disease entities, and other not otherwise specified (NOS) lymphomas. This review will focus on DLBCL NOS because of their prevalence and their heterogeneity with respect to morphology, clinical presentation, biology, and response to treatment. Gene expression profiling of DLBCL NOS has identified molecular subgroups that correlate with prognosis and may have relevance for treatment based on signaling pathways. New technologies have revealed that the "activated B cell" subgroup is linked to activation of the nuclear factor kB (NF-kB) pathway, with mutations found in CD79A/B, CARD11, and MYD88, and loss of function mutations in TNFAIP3. The "germinal center B cell-like" subgroup is linked to mutational changes in EZH2 and CREBBP. Biomarkers that are related to pathways promoting tumor cell growth and survival in DLBCL have been recognized, although their predictive role requires clinical validation. Immunohistochemistry for detecting the expression of these biomarkers is a practical technique that could provide a rational for clinical trial design.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CARD11, Cancer Genetics Web: http://www.cancer-genetics.org/CARD11.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999