Gene Summary

Gene:CCL22; C-C motif chemokine ligand 22
Aliases: MDC, ABCD-1, SCYA22, STCP-1, DC/B-CK, A-152E5.1
Summary:This antimicrobial gene is one of several Cys-Cys (CC) cytokine genes clustered on the q arm of chromosome 16. Cytokines are a family of secreted proteins involved in immunoregulatory and inflammatory processes. The CC cytokines are proteins characterized by two adjacent cysteines. The cytokine encoded by this gene displays chemotactic activity for monocytes, dendritic cells, natural killer cells and for chronically activated T lymphocytes. It also displays a mild activity for primary activated T lymphocytes and has no chemoattractant activity for neutrophils, eosinophils and resting T lymphocytes. The product of this gene binds to chemokine receptor CCR4. This chemokine may play a role in the trafficking of activated T lymphocytes to inflammatory sites and other aspects of activated T lymphocyte physiology. [provided by RefSeq, Sep 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-C motif chemokine 22
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (9)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Proliferation
  • Lung Cancer
  • Xenograft Models
  • Genotype
  • Lymph Nodes
  • Chemokines, CC
  • Cancer RNA
  • Chemokine CCL17
  • Breast Cancer
  • Hodgkin Lymphoma
  • Transduction
  • Disease Progression
  • Lymphocytes, Tumor-Infiltrating
  • Gene Expression
  • Chromosome 16
  • DNA Mutational Analysis
  • CD4-Positive T-Lymphocytes
  • Genetic Association Studies
  • Chemokines
  • Th2 Cells
  • Up-Regulation
  • B-Lymphocytes
  • Genetic Predisposition
  • Adolescents
  • Tumor Escape
  • Cancer Gene Expression Regulation
  • Signal Transduction
  • Gene Expression Profiling
  • Chemokine CCL22
  • Stomach Cancer
  • Receptors, CCR4
  • Staging
  • Transfection
  • Tumor Microenvironment
  • Papillomavirus Infections
  • T-Lymphocytes, Regulatory
  • Phenotype
  • Messenger RNA
  • gp100 Melanoma Antigen
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCL22 (cancer-related)

Zasada C, Kempa S
Quantitative Analysis of Cancer Metabolism: From pSIRM to MFA.
Recent Results Cancer Res. 2016; 207:207-20 [PubMed] Related Publications
Metabolic reprogramming is a required step during oncogenesis and essential for cellular proliferation. It is triggered by activation of oncogenes and loss of tumor suppressor genes. Beside the combinatorial events leading to cancer, common changes within the central metabolism are reported. Increase of glycolysis and subsequent lactic acid formation has been a focus of cancer metabolism research for almost a century. With the improvements of bioanalytical techniques within the last decades, a more detailed analysis of metabolism is possible and recent studies demonstrate a wide range of metabolic rearrangements in various cancer types. However, a systematic and mechanistic understanding is missing thus far. Therefore, analytical and computational tools have to be developed allowing for a dynamic and quantitative analysis of cancer metabolism. In this chapter, we outline the application of pulsed stable isotope resolved metabolomics (pSIRM) and describe the interface toward computational analysis of metabolism.

de Oliveira KA, Kaergel E, Heinig M, et al.
A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.
Genome Med. 2016; 8(1):28 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: NF-κB is widely involved in lymphoid malignancies; however, the functional roles and specific transcriptomes of NF-κB dimers with distinct subunit compositions have been unclear.
METHODS: Using combined ChIP-sequencing and microarray analyses, we determined the cistromes and target gene signatures of canonical and non-canonical NF-κB species in Hodgkin lymphoma (HL) cells.
RESULTS: We found that the various NF-κB subunits are recruited to regions with redundant κB motifs in a large number of genes. Yet canonical and non-canonical NF-κB dimers up- and downregulate gene sets that are both distinct and overlapping, and are associated with diverse biological functions. p50 and p52 are formed through NIK-dependent p105 and p100 precursor processing in HL cells and are the predominant DNA binding subunits. Logistic regression analyses of combinations of the p50, p52, RelA, and RelB subunits in binding regions that have been assigned to genes they regulate reveal a cross-contribution of p52 and p50 to canonical and non-canonical transcriptomes. These analyses also indicate that the subunit occupancy pattern of NF-κB binding regions and their distance from the genes they regulate are determinants of gene activation versus repression. The pathway-specific signatures of activated and repressed genes distinguish HL from other NF-κB-associated lymphoid malignancies and inversely correlate with gene expression patterns in normal germinal center B cells, which are presumed to be the precursors of HL cells.
CONCLUSIONS: We provide insights that are relevant for lymphomas with constitutive NF-κB activation and generally for the decoding of the mechanisms of differential gene regulation through canonical and non-canonical NF-κB signaling.

Su Z, Wang K, Li R, et al.
Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells.
World J Surg Oncol. 2016; 14:57 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells' growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells.
METHODS: Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts.
RESULTS: Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and chemosensitivity in A549 cells. Furthermore, we successfully established the lung adenocarcinoma animal model using A549 cells. Overexpression of RBM5 enhanced the LC-3, LAMP1, and Beclin1 expression in the A549 xenografts.
CONCLUSIONS: Our findings showed for the first time that RBM5 overexpression induced autophagy in human lung adenocarcinoma cells, which might be driven by upregulation of Beclin1, NF-κB/P65, and downregulation of Bcl-2. RBM5-enhanced autophagy acts in a cytoprotective way and inhibition of autophagy may improve the anti-tumor efficacy of RBM5 in lung cancer.

Fritsche-Guenther R, Witzel F, Kempa S, et al.
Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis.
Oncotarget. 2016; 7(7):7960-9 [PubMed] Free Access to Full Article Related Publications
Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell.

Hsu FT, Chen TC, Chuang HY, et al.
Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice.
Oncotarget. 2015; 6(42):44134-50 [PubMed] Free Access to Full Article Related Publications
Ex vivo expansion of CD8+ T-cells has been a hindrance for the success of adoptive T cell transfer in clinic. Currently, preconditioning with chemotherapy is used to modulate the patient immunity before ACT, however, the tumor microenvironment beneficial for transferring T cells may also be damaged. Here preconditioning with single low dose of doxorubicin or paclitaxel combined with fewer CD8+ T-cells was investigated to verify whether the same therapeutic efficacy of ACT could be achieved. An E.G7/OT1 animal model that involved adoptive transfer of OVA-specific CD8+ T-cells transduced with a granzyme B promoter-driven firefly luciferase and tomato fluorescent fusion reporter gene was used to evaluate this strategy. The result showed that CD8+ T-cells were activated and sustained longer in mice pretreated with one low-dose Dox or Tax. Enhanced therapeutic efficacy was found in Dox or Tax combined with 2x106 CD8+ T-cells and achieved the same level of tumor growth inhibition as that of 5x106 CD8+ T-cells group. Notably, reduced numbers of Tregs and myeloid derived suppressor cells were shown in combination groups. By contrast, the number of tumor-infiltrating cytotoxic T lymphocytes and IL-12 were increased. The NF-κB activity and immunosuppressive factors such as TGF-β, IDO, CCL2, VEGF, CCL22, COX-2 and IL-10 were suppressed. This study demonstrates that preconditioning with single low dose Dox or Tax and combined with two fifth of the original CD8+ T-cells could improve the tumor microenvironment via suppression of NF-κB and its related immunosuppressors, and activate more CD8+ T-cells which also stay longer.

Yu X, Luo A, Liu Y, et al.
MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy.
Mol Cancer. 2015; 14:208 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tamoxifen (TAM) and fulvestrant (FUL) are the major drugs for patients with estrogen receptor-positive (ER(+)) breast cancers. However, the development of endocrine resistance is the impediment for successful treatment. We aimed to explore the mechanisms of endocrine resistance and therapeutic strategy for overcoming resistance against TAM and FUL.
METHODS: Experiments were performed in ER(+) and estrogen/TAM-sensitive MCF7 cells and antiestrogen-resistant MCF7/LCC9 cells. The expression of miR-214 and uncoupling protein 2 (UCP2) was determined by RT-qPCR and Western blot in breast cancer cells and human breast cancer tissue specimens. Cell autophagy was examined by fluorescent probe monodansyl cadaverine (MDC) and GFP-LC3-II-positive punctate identified by confocal microscopy. Apoptotic cells were determined by Annexin V-FITC/PI staining. The potential regulatory target of miR-214 was determined by prediction tool, target protein expression and luciferase reporter assay.
RESULTS: 4-OHT/FUL treatment resulted in induction of apoptosis as well as autophagy in breast cancer cells. Autophagy might be the major cause of endocrine resistance to 4-OHT or FUL. MiR-214 increased the sensitivity of breast cancer cells to the 4-OHT/FUL-induced apoptosis through inhibition of autophagy. Importantly, a negative correlation was established between miR-214 and UCP2 in human breast cancer tissue specimens assayed by RT-qPCR. UCP2 was identified to be a direct target of miR-214. Further study in MCF7/LCC9 cells indicated that endocrine resistance might arise from activation of the PI3K-Akt-mTOR pathway, thereby inducing autophagy by overexpression of UCP2.
CONCLUSION: MiR-214 increased the sensitivity of breast cancer cells to TAM and FUL through inhibition of autophagy by targeting UCP2. MiR-214 shows potential as a novel therapeutic strategy for overcoming endocrine resistance in ER(+) breast cancers.

Fang L, Zhu Q, Neuenschwander M, et al.
A Small-Molecule Antagonist of the β-Catenin/TCF4 Interaction Blocks the Self-Renewal of Cancer Stem Cells and Suppresses Tumorigenesis.
Cancer Res. 2016; 76(4):891-901 [PubMed] Related Publications
Wnt/β-catenin signaling is a highly conserved pathway essential for embryogenesis and tissue homeostasis. However, deregulation of this pathway can initiate and promote human malignancies, especially of the colon and head and neck. Therefore, Wnt/β-catenin signaling represents an attractive target for cancer therapy. We performed high-throughput screening using AlphaScreen and ELISA techniques to identify small molecules that disrupt the critical interaction between β-catenin and the transcription factor TCF4 required for signal transduction. We found that compound LF3, a 4-thioureido-benzenesulfonamide derivative, robustly inhibited this interaction. Biochemical assays revealed clues that the core structure of LF3 was essential for inhibition. LF3 inhibited Wnt/β-catenin signals in cells with exogenous reporters and in colon cancer cells with endogenously high Wnt activity. LF3 also suppressed features of cancer cells related to Wnt signaling, including high cell motility, cell-cycle progression, and the overexpression of Wnt target genes. However, LF3 did not cause cell death or interfere with cadherin-mediated cell-cell adhesion. Remarkably, the self-renewal capacity of cancer stem cells was blocked by LF3 in concentration-dependent manners, as examined by sphere formation of colon and head and neck cancer stem cells under nonadherent conditions. Finally, LF3 reduced tumor growth and induced differentiation in a mouse xenograft model of colon cancer. Collectively, our results strongly suggest that LF3 is a specific inhibitor of canonical Wnt signaling with anticancer activity that warrants further development for preclinical and clinical studies as a novel cancer therapy.

Yang P, Zhang Y, Markowitz GJ, et al.
TGF-β-Regulated MicroRNAs and Their Function in Cancer Biology.
Methods Mol Biol. 2016; 1344:325-39 [PubMed] Related Publications
The transforming growth factor-β (TGF-β) is known to regulate a large number of biological processes and is involved in various aspects of tumor development. Recent studies have shown that the biogenesis of miRNAs can be regulated by TGF-β signaling directly via Smad-dependent mechanisms and/or other unknown mechanisms, which may induce autoregulatory feedback loops in response to the activation of TGF-β signaling, influencing the fate of tumor cells. In this chapter, we summarize the currently described mechanisms underlying TGF-β's regulation of miRNA biogenesis, and the functional role of TGF-β-regulated miRNAs in tumor initiation, epithelial-mesenchymal transition, and tumor microenvironment modulation. Finally, we introduce methods to study TGF-β-regulated miRNAs and their functions in tumor progression and metastasis using an example of publication from our lab demonstrating the presence of a TGF-β-miR-34a-CCL22 signaling axis, which serves as a potent etiological pathway for the development of hepatocellular carcinoma venous metastases.

Riley CH, Brimnes MK, Hansen M, et al.
Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets, and dendritic cells in patients with JAK2V617F-positive essential thrombocythemia and polycythemia vera.
Eur J Haematol. 2016; 97(1):83-92 [PubMed] Related Publications
Long-term therapy with IFN-α2 is associated with sustained major molecular remissions in JAK2-positive ET and PV. The efficacy of IFN-α2 may be partly mediated by modulation of immune cells, which was investigated in twenty patients with ET (n = 6) and PV (n = 14). The frequency of CD4(+) CD25(+) Foxp3(+) T cells was significantly increased during IFN-α2 treatment in all patients (P < 0.0001). A significant expansion of the CD56(bright) NK cells (P = 0.0002) and a concomitant decrease in the frequency of CD56(dim) NK cells (P < 0.0001) were also detected. Myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) were studied in nine patients, and decreased frequencies of both cell types were observed during the course of treatment. On both mDCs and pDCs, HLA-ABC expression was upregulated (P = 0.003), but decreasing expression levels of HLA-DR was detected on mDCs. The expression of CD40 (P = 0.002), CD83 (P = 0.03), and CD86 (P = 0.01) increased, but was confined to pDCs. Furthermore, PD-L1 expression was reduced on mDC (P = 0.003) and increased on pDCs (P = 0.02). No significant correlations were found between the changes in immune cells and hematological or molecular responses achieved in our cohort of patients. So forth, it remains to be revealed whether the profound changes in circulating immune cells contribute to the beneficial effects of long-term IFN-α2 treatment in some patients.

Li J, Yang D, Wang W, et al.
Inhibition of autophagy by 3-MA enhances IL-24-induced apoptosis in human oral squamous cell carcinoma cells.
J Exp Clin Cancer Res. 2015; 34:97 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Interleukin-24(IL-24), also referred to as melanoma differentiation-associated gene-7(mda-7), is a unique member of the IL-10 gene family, which displays nearly ubiquitous cancer-specific toxicity. The most notable feature of IL-24 is selectively induced growth suppression and apoptosis in various cancer cells, with no harmful effects toward normal cells. Autophagy is a self-protective mechanism in many kinds of tumor cells that respond to anticancer treatment. It is reported that autophagy inhibition could enhance the effects of many kinds of anticancer treatments, including gene therapy. However, whether IL-24 is effective to treat oral squamous cell carcinomas (OSCC) and if autophagy inhibition could improve the anticancer effect of IL-24 towards OSCC is has not been detected.
METHODS: MTT assays were carried out to determine the cell proliferation; Transfection was used to gene transfer; Western Blot was performed to detect the protein level of LC3II, P62, Beclin 1, Cleaved caspase-3, β-Tubulin and β-actin; Apoptosis rates and cell cycle alteration were analyzed using flow cytometry; Autophagy induction was confirmed by MDC staining, GFP-LC3 staining and transmission electron microscopy. Amount of IL-24 in the culture medium was quantified by ELISA. Apoptosis in vivo was analyzed by TUNEL assay. HE staining was used to observe the morphology of the samples.
RESULTS: In the present study, we proved that IL-24 have a novel anticancer effect towards KB cells and that autophagy inhibition could improve the anticancer effect of IL-24. IL-24 treated cells showed autophagy characteristics and autophagy inhibition by 3-methyladenine (3-MA) significantly enhanced IL-24-induced apoptosis. Similar results were obtained in the KB cells xenograft tumor model.
CONCLUSIONS: These results suggest that the combination of autophagy inhibitors and IL-24 based on the AdLTR2EF1α-mediated gene transfer could be a promising way to cure OSCC.

Liao XH, Zheng L, He HP, et al.
STAT3 regulated ATR via microRNA-383 to control DNA damage to affect apoptosis in A431 cells.
Cell Signal. 2015; 27(11):2285-95 [PubMed] Related Publications
Skin cancer is a major cause of morbidity and mortality worldwide. Mounting evidence shows that exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. Signal transducer and activator of transcription 3 (STAT3) is well known to function as an anti-apoptotic factor, especially in numerous malignancies, but the relationship between STAT3 activation and DNA damage response in skin cancer is still not fully understood. We now report that STAT3 inhibited DNA damage induced by UV and STAT3 mediated upregulation of GADD45γ and MDC-1 and the phosphorylation of H2AX in UV induced DNA damage. Notably, STAT3 can increase the expression of ATR in A431 cells. Luciferase assay shows that STAT3 activates the transcription of ATR promoter. More importantly, microRNA-383 suppressed ATR expression by targeting 3' (untranslated regions)UTR of ATR in A431 cells, and STAT3 down-regulates the transcription of miR-383 promoter. Thus, these results reveal the new insight that ATR is down-regulated by STAT3-regulated microRNA-383 in A431 cells. Moreover, overexpression of STAT3 enhanced expression of antiapoptosis genes BCL-1 and MCL-1, and depletion of STAT3 sensitized A431 cells to apoptotic cell death following UV. Collectively, these studies suggest that STAT3 may be a potential target for both the prevention and treatment of human skin cancer.

Xue Q, Wang P, Wang X, et al.
Targeted inhibition of p38MAPK-enhanced autophagy in SW620 cells resistant to photodynamic therapy-induced apoptosis.
Lasers Med Sci. 2015; 30(7):1967-75 [PubMed] Related Publications
Photodynamic therapy (PDT) is a promising and noninvasive treatment that can induce apoptosis, autophagy, or both depending on the cell phenotype. In this work, chlorin e6 (Ce6) was used to photosensitize human colorectal cancer SW620 cells. In cells, apparent autophagy and apoptosis with dependence on intracellular reactive oxygen species (ROS) generation were detected. p38MAPK activation followed by ROS generation might be a core component in Ce6 mediate PDT (Ce6-PDT)-induced autophagy and apoptosis signaling pathway. By using p38MAPK siRNA, the results showed a marked enhancement on cell apoptosis in Ce6-PDT with increased annexin (+) apoptotic cells, nuclear condensation, caspase-3, and PARP cleavage. Besides, impairment of p38MAPK also promoted the autophagic response to photodamage as indicated by conversion of LC3 and monodansyl cadaverine (MDC) labeling patterns. It appears that Ce6-PDT induced ROS production involving activation of p38MAPK, probably to prevent SW620 cells from photodamage. Moreover, autophagy inhibitor 3-methyladenine/bafilomycin A1 greatly aggravated Ce6-PDT-induced apoptosis in SW620 cells with knockdown of p38MAPK. Taken together, this study suggests that autophagy could represent a promising field in cancer treatment and p38MAPK may be a potential therapeutic target to enhance the efficacy on clinical evaluation for the treatment of colorectal cancer.

Dargel C, Bassani-Sternberg M, Hasreiter J, et al.
T Cells Engineered to Express a T-Cell Receptor Specific for Glypican-3 to Recognize and Kill Hepatoma Cells In Vitro and in Mice.
Gastroenterology. 2015; 149(4):1042-52 [PubMed] Related Publications
BACKGROUND & AIMS: Cancer therapies are being developed based on our ability to direct T cells against tumor antigens. Glypican-3 (GPC3) is expressed by 75% of all hepatocellular carcinomas (HCC), but not in healthy liver tissue or other organs. We aimed to generate T cells with GPC3-specific receptors that recognize HCC and used them to eliminate GPC3-expressing xenograft tumors grown from human HCC cells in mice.
METHODS: We used mass spectrometry to obtain a comprehensive peptidome from GPC3-expressing hepatoma cells after immune-affinity purification of human leukocyte antigen (HLA)-A2 and bioinformatics to identify immunodominant peptides. To circumvent GPC3 tolerance resulting from fetal expression, dendritic cells from HLA-A2-negative donors were cotransfected with GPC3 and HLA-A2 RNA to stimulate and expand antigen-specific T cells.
RESULTS: Peptide GPC3367 was identified as a predominant peptide on HLA-A2. We used A2-GPC3367 multimers to detect, select for, and clone GPC3-specific T cells. These clones bound the A2-GPC3367 multimer and secreted interferon-γ when cultured with GPC3367, but not with control peptide-loaded cells. By genomic sequencing of these T-cell clones, we identified a gene encoding a dominant T-cell receptor. The gene was cloned and the sequence was codon optimized and expressed from a retroviral vector. Primary CD8(+) T cells that expressed the transgenic T-cell receptor specifically bound GPC3367 on HLA-A2. These T cells killed GPC3-expressing hepatoma cells in culture and slowed growth of HCC xenograft tumors in mice.
CONCLUSIONS: We identified a GPC3367-specific T-cell receptor. Expression of this receptor by T cells allows them to recognize and kill GPC3-positive hepatoma cells. This finding could be used to advance development of adoptive T-cell therapy for HCC.

Zhang C, Qiu X
Andrographolide radiosensitizes human ovarian cancer SKOV3 xenografts due to an enhanced apoptosis and autophagy.
Tumour Biol. 2015; 36(11):8359-65 [PubMed] Related Publications
Andrographolide (AND), a diterpenoid lactone isolated from Andrographis paniculata, has been shown to have radiosensitivity in several types of cancer. Whether AND can radiosensitize ovarian cancer remains unknown. The present study investigated the radiosensitizing effects of AND in human ovarian SKOV3 xenografts and examined the molecular mechanisms of AND-mediated radiosensitization. Nude mice bearing human ovarian SKOV3 were treated with AND to investigate the effects of drug administration on tumor growth, radiosensitivity, apoptosis, and autophagy. Subsequent Western blot analysis and monodansylcadaverine (MDC) staining (autophagy analysis) were used to determine the role of AND. Finally, the pathway of apoptosis was characterized by caspase-3 activity assay as well as TUNEL analysis. AND potently sensitized SKOV3 xenografts to radiation. Moreover, apoptosis and autophagy in radiation combined with drug-treated xenografts increased significantly compared with the simple drug or single radiation treatment. This result was associated with an increase in the Bax/Bcl-2 protein ratio and p-p53 expression after exposure to combination treatment. Meanwhile, the level of Beclin 1 and Atg5 and the conversion from LC3-I to LC3-II, three important proteins involved in autophagy, were increased. AND acts as a strong radiosensitizer in human ovarian SKOV3 xenografts in vivo by increasing the Bax/Bcl-2 protein ratio and promoting the activation of caspase-3, leading to enhanced apoptosis as well as autophagy.

Zhang B, Calado DP, Wang Z, et al.
An oncogenic role for alternative NF-κB signaling in DLBCL revealed upon deregulated BCL6 expression.
Cell Rep. 2015; 11(5):715-26 [PubMed] Free Access to Full Article Related Publications
Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

Koelzer VH, Herrmann P, Zlobec I, et al.
Heterogeneity analysis of Metastasis Associated in Colon Cancer 1 (MACC1) for survival prognosis of colorectal cancer patients: a retrospective cohort study.
BMC Cancer. 2015; 15:160 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastasis of colorectal cancer (CRC) is directly linked to patient survival. We previously identified the novel gene Metastasis Associated in Colon Cancer 1 (MACC1) in CRC and demonstrated its importance as metastasis inducer and prognostic biomarker. Here, we investigate the geographic expression pattern of MACC1 in colorectal adenocarcinoma and tumor buds in correlation with clinicopathological and molecular features for improvement of survival prognosis.
METHODS: We performed geographic MACC1 expression analysis in tumor center, invasive front and tumor buds on whole tissue sections of 187 well-characterized CRCs by immunohistochemistry. MACC1 expression in each geographic zone was analyzed with Mismatch repair (MMR)-status, BRAF/KRAS-mutations and CpG-island methylation.
RESULTS: MACC1 was significantly overexpressed in tumor tissue as compared to normal mucosa (p < 0.001). Within colorectal adenocarcinomas, a significant increase of MACC1 from tumor center to front (p = 0.0012) was detected. MACC1 was highly overexpressed in 55% tumor budding cells. Independent of geographic location, MACC1 predicted advanced pT and pN-stages, high grade tumor budding, venous and lymphatic invasion (p < 0.05). High MACC1 expression at the invasive front was decisive for prediction of metastasis (p = 0.0223) and poor survival (p = 0.0217). The geographic pattern of MACC1 did not correlate with MMR-status, BRAF/KRAS-mutations or CpG-island methylation.
CONCLUSION: MACC1 is differentially expressed in CRC. At the invasive front, MACC1 expression predicts best aggressive clinicopathological features, tumor budding, metastasis formation and poor survival outcome.

Zhong R, Xu H, Chen G, et al.
The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells.
Tumour Biol. 2015; 36(9):7077-83 [PubMed] Related Publications
Hypoxia-inducible factor-1α (HIF-1α) is a major effector in cell survival response to hypoxia, while the roles of HIF-1α in radiation-induced autophagy are still unclear in breast cancer cells. Human breast cancer carcinoma MCF-7 cells were stably transfected with pSUPER-shRNA against human HIF-1α or a scrambled sequence with no homology to mammalian genes, named as pSUPER-HIF-1α and pSUPER-SC, respectively. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were used to detect cell viability, Western blot was used to detect protein expression, monodansylcadaverine (MDC) staining was used to analyze autophagy, and Hoechts/PI staining was used to assess apoptosis. Ionizing radiation (IR) and cobalt chloride (CoCl2) could induce HIF-1α expression and increase the microtubule-associated protein 1 light chain 3 (MAPLC3)-II/MAPLC3-I ratio, especially in radiation + CoCl2 group. After the silencing of HIF-1α, the radiosensitivity of MCF-7 cells increased and the autophagy level decreased in response to DNA damage induced by ionizing radiation, but there was no influence on IR-induced apoptosis. HIF-1α silencing also increased the expression of phospho-Akt, mTOR, and P70S6K and activated the mTOR signals significantly. Hypoxia can induce autophagy and also improve the IR-induced autophagy via the suppression of Akt/mTOR/P70S6K pathway, which consequently lead to radioresistance.

Sun Y, Liu JH, Jin L, et al.
Effect of autophagy-related beclin1 on sensitivity of cisplatin-resistant ovarian cancer cells to chemotherapeutic agents.
Asian Pac J Cancer Prev. 2015; 16(7):2785-91 [PubMed] Related Publications
The purpose of the study was to determine the effects of autophagy related gene Beclin1 at different levels of expression on the sensitivity of cisplatin-resistant ovarian cancer cells (SKOV3/DDP) to different chemotherapeutics. In pSUPER-Beclin1 transfected cells, real-time fluorescence quantitative RT-PCR and Western blot analysis showed that expression was significantly inhibited. Flow cytometry revealed that the mean fluorescence intensity (MDC), reflecting autophagy, and cells in the G0/G1 phase were markedly reduced. When compared with the blank control group, inhibition of Beclin1 expression in SKOV3/DDP cells not only increased the rate of apoptosis following treatment with chemotherapeutics, but also increased the sensitivity. These findings suggest that Beclin1 expression plays an important role in chemotherapeutic agent-induced death of SKOV3/DDP cells. Inhibition of autophagy related gene Beclin1 expression in SKOV3/DDP cells may increase the rate of apoptosis and elevate the sensitivity to chemotherapeutics.

Yu H, Zhang P, Yin X, et al.
Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset.
Protein Cell. 2015; 6(4):297-306 [PubMed] Free Access to Full Article Related Publications
Dendritic cells (DCs) comprise two functionally distinct subsets: plasmacytoid DCs (pDCs) and myeloid DCs (mDCs). pDCs are specialized in rapid and massive secretion of type I interferon (IFN-I) in response to nucleic acids through Toll like receptor (TLR)-7 or TLR-9. In this report, we characterized a CD56(+) DC population that express typical pDC markers including CD123 and BDCA2 but produce much less IFN-I comparing with pDCs. In addition, CD56(+) DCs cluster together with mDCs but not pDCs by genome-wide transcriptional profiling. Accordingly, CD56(+) DCs functionally resemble mDCs by producing IL-12 upon TLR4 stimulation and priming naïve T cells without prior activation. These data suggest that the CD56(+) DCs represent a novel mDC subset mixed with some pDC features. A CD4(+)CD56(+) hematological malignancy was classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN) due to its expression of characteristic molecules of pDCs. However, we demonstrated that BPDCN is closer to CD56(+) DCs than pDCs by global gene-expression profiling. Thus, we propose that the CD4(+)CD56(+) neoplasm may be a tumor counterpart of CD56(+) mDCs but not pDCs.

Su X, Wang X, Liu Q, et al.
The role of Beclin 1 in SDT-induced apoptosis and autophagy in human leukemia cells.
Int J Radiat Biol. 2015; 91(6):472-9 [PubMed] Related Publications
PURPOSE: To prove the occurrence of autophagy after treatment by protoporphyrin IX (PpIX)-mediated sonodynamic therapy (SDT) of human chronic myelogenous leukemia K562 cells as well as its relationship with apoptosis.
MATERIALS AND METHODS: The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylter-trazolium bromide tetrazolium (MTT) assay was adopted to examine cytotoxicity of different treatments. Nuclear morphology changes were observed under a fluorescence microscopy with 4'-6-Diamidino-2-Phenylindole (DAPI) staining. Western blotting was used to analyze the expression of caspase-3, Beclin 1 (BECN 1) and the conversion of LC3- phosphatidylethanolamine conjugate/a cytosolic form of LC3 (LC3 II/I). Fluorescence microscope was used to identify the formation of autophagic vacuoles (AVO) during autophagy.
RESULTS: Under optimal conditions, SDT was shown to induce autophagy in K562 cells, which caused the up-regulation of Beclin-1 and the formation of AVO. In addition, pre-treatment of cancer cells with Beclin 1-targeted short hairpin RNA (Beclin 1 shRNA) was shown to reduce the level of LC3-II accumulation and staining with punctate spots of monodansylcadaverine (MDC) staining. Besides, the cytotoxic effect of SDT was significantly increased by Beclin 1 shRNA. Furthermore, studies showed a marked effect on the apoptosis of cells by Beclin 1 shRNA to sonodamage with increased DAPI staining and caspase-3 cleavage.
CONCLUSIONS: These results demonstrated that SDT significantly induced autophagy of K562 cells, probably to protect the K562 cells from sonodamage.

Lin J, Liu X, Ding D
Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri.
Int J Clin Exp Pathol. 2015; 8(1):847-55 [PubMed] Free Access to Full Article Related Publications
The cancer stem cell (CSC) paradigm is one possible way to understand the genesis of cancer, and cervical cancer in particular. We quantified and enriched ALDH1(+) cells within cervical cancer cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). ALDH1 expression in spheroid-derived cells (SDC) and the parental monolayer-derived cell (MDC) line was compared by flow-cytometry. Invasion capability was evaluated by Matrigel assay and expression of EMT-related genes Twist 1, Twist 2, Snail 1, Snail 2, Vimentin and E-cadherin by real-time PCR. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. SDC expressed lower levels of E-cadherin and elevated levels of Twist 1, Twist 2, Snail 1, Snail 2 and Vimentin compared to MDC. Cervical cancer cell lines harbor potential CSC, characterized by ALDH1 expression as well as properties like invasiveness, colony-forming ability, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis.

Ilm K, Kemmner W, Osterland M, et al.
High MACC1 expression in combination with mutated KRAS G13 indicates poor survival of colorectal cancer patients.
Mol Cancer. 2015; 14:38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The metastasis-associated in colon cancer 1 (MACC1) gene has been identified as prognostic biomarker for colorectal cancer (CRC). Here, we aimed at the refinement of risk assessment by separate and combined survival analyses of MACC1 expression with any of the markers KRAS mutated in codon 12 (KRAS G12) or codon 13 (KRAS G13), BRAF V600 mutation and MSI status in a retrospective study of 99 CRC patients with tumors UICC staged I, II and III.
FINDINGS: We showed that only high MACC1 expression (HR: 6.09, 95% CI: 2.50-14.85, P < 0.001) and KRAS G13 mutation (HR: 5.19, 95% CI: 1.06-25.45, P = 0.042) were independent prognostic markers for shorter metastasis-free survival (MFS). Accordingly, Cox regression analysis revealed that patients with high MACC1 expression and KRAS G13 mutation exhibited the worst prognosis (HR: 14.48, 95% CI: 3.37-62.18, P < 0.001). Patients were classified based on their molecular characteristics into four clusters with significant differences in MFS (P = 0.003) by using the SPSS 2-step cluster function and Kaplan-Meier survival analysis.
CONCLUSION: According to our results, patients with high MACC1 expression and mutated KRAS G13 exhibited the highest risk for metachronous metastases formation. Moreover, we demonstrated that the "Traditional pathway" with an intermediate risk for metastasis formation can be further subdivided by assessing MACC1 expression into a low and high risk group with regard to MFS prognosis. This is the first report showing that identification of CRC patients at high risk for metastasis is possible by assessing MACC1 expression in combination with KRAS G13 mutation.

Lan L, Holland JD, Qi J, et al.
Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice.
EMBO J. 2015; 34(11):1493-508 [PubMed] Free Access to Full Article Related Publications
In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated β-gal (SA-β-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer.

Blankenstein T, Leisegang M, Uckert W, Schreiber H
Targeting cancer-specific mutations by T cell receptor gene therapy.
Curr Opin Immunol. 2015; 33:112-9 [PubMed] Free Access to Full Article Related Publications
The ease of sequencing the cancer genome, identifying all somatic mutations and grafting mutation-specific T cell receptor (TCR) genes into T cells for adoptive transfer allow, for the first time, a truly tumor-specific and effective therapy. Mutation-specific TCR gene therapy might achieve optimal efficacy with least possible toxicity. Recent clinical data confirm the long-standing evidence from experimental cancer models that antigens encoded by the tumor-specific somatic mutations are potentially the best targets for adoptive T cell therapy. Open questions are, how many somatic mutations create suitable epitopes, whether only individual-specific or also recurrent somatic mutations qualify as suitable epitopes and how neoantigen-specific TCRs are most efficiently obtained. Tumor heterogeneity needs to be considered; therefore, it will be important to identify immunogenic driver mutations that occurred early, are essential for cancer cell survival and present in all cancer cells.

Jafarzadeh A, Fooladseresht H, Minaee K, et al.
Higher circulating levels of chemokine CCL22 in patients with breast cancer: evaluation of the influences of tumor stage and chemokine gene polymorphism.
Tumour Biol. 2015; 36(2):1163-71 [PubMed] Related Publications
The receptor for CCL22 is named CCR4 that preferentially is expressed on the regulatory T cells (Treg), and accordingly, CCL22 acts as a chemoattractant for the intratumoral Treg migration. The aim of this study was to evaluate the serum CCL22 levels and a single nucleotide polymorphism (SNP) in chemokine gene, [2030 G/C (rs223818)], in patients with breast cancer. Blood samples were collected from 100 women with breast cancer before receiving chemotherapy, radiotherapy, or immunotherapy and 100 age-matched healthy women as a control group. The serum CCL22 levels were measured by ELISA. The DNA extracted and the SNP rs223818 determined by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) technique. The mean serum CCL22 levels in patients with breast cancer (2398.5 ± 123 Pg/mL) was significantly higher in comparison to healthy control group (974.2 ± 39.9 Pg/mL; P < 0.001). According to the tumor stages, the mean serum levels of CCL22 were 999.8 ± 85.0 Pg/mL in stage I, 1718.8 ± 82.3 Pg/mL in stage II, 2846.8 ± 118.0 Pg/mL in stage III, and 3954.5 ± 245.2 Pg/mL in stage IV. There was significant difference between tumor stages regarding the serum CCL22 levels (P < 0.001). In patients with breast cancer, the frequencies of CC genotype (63%) and C allele (79%) at rs223818 were significantly higher as compared to healthy controls (31 and 52%, respectively; P < 0.001). In both patients and control groups, the mean serum levels of CCL22 in subjects with CC genotype or C allele at rs223818 were also significantly higher as compared to subjects with GG genotype or G allele (P < 0.001). Higher serum CCL22 levels were observed in patients with breast cancer that is increased with advanced stages. These findings represent that the CCL22 may contribute in tumor development. The CC genotype and C allele at rs223818 were more frequent in breast cancer patients. The serum CCL22 levels were affected by genetic variations at SNP rs223818. Accordingly, SNP rs223818 may play a role in the susceptibility to breast cancer.

Guo S, Liang Y, Murphy SF, et al.
A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications.
Autophagy. 2015; 11(3):560-72 [PubMed] Free Access to Full Article Related Publications
The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.

Chen S, Li P, Li J, et al.
MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR.
Cell Physiol Biochem. 2015; 35(3):997-1007 [PubMed] Related Publications
BACKGROUND: MiRNAs are noncoding RNAs of 20-24 nucleotides that function as post-transcriptional negative regulators of gene expression. MiRNA genes are usually transcribed by RNA polymerase II in the nucleus. Their initial products are pre-miRNAs which have cap sequences and polyA tails. The p53-induced glycolysis and apoptosis regulator (TIGAR) was discovered through microarray analysis of gene expression following activation of p53. However, little is known about the effect of miR-144 on cell proliferation and apoptosis and how it interacts with TIGAR.
METHODS: We performed real-time PCR, western blotting, CCK8, colony formation, tumor growth, flow cytometry, Caspase3/7 activity, Hoechst 33342 staining, MDC staining of autophagic cells and luciferase reporter assays to detect the influence of miR-144 to lung cancer cells.
RESULTS: miR-144 targeted TIGAR, inhibited proliferation, enhanced apoptosis, and increased autophagy in A549 and H460 cells.
CONCLUSIONS: Our study improves our understanding of the mechanisms underlying lung cancer pathogenesis and may promote the development of novel targeted therapies.

Nimptsch K, Aleksandrova K, Boeing H, et al.
Plasma fetuin-A concentration, genetic variation in the AHSG gene and risk of colorectal cancer.
Int J Cancer. 2015; 137(4):911-20 [PubMed] Related Publications
Fetuin-A, also referred to as α2-Heremans-Schmid glycoprotein (AHSG), is a liver protein known to inhibit insulin actions. Hyperinsulinemia is a possible risk factor for colorectal cancer; however, the role of fetuin-A in the development of colorectal cancer is unclear. We investigated the association between circulating fetuin-A and colorectal cancer risk in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition. Fetuin-A concentrations were measured in prediagnostic plasma samples from 1,367 colorectal cancer cases and 1,367 matched controls. In conditional logistic regression models adjusted for potential confounders, the estimated relative risk (95% confidence interval) of colorectal cancer per 40 µg/mL higher fetuin-A concentrations (approximately one standard deviation) was 1.13 (1.02-1.24) overall, 1.21 (1.05-1.39) in men, 1.06 (0.93-1.22) in women, 1.13 (1.00-1.27) for colon cancer and 1.12 (0.94-1.32) for rectal cancer. To improve causal inference in a Mendelian Randomization approach, five tagging single nucleotide polymorphisms of the AHSG gene were genotyped in a subset of 456 case-control pairs. The AHSG allele-score explained 21% of the interindividual variation in plasma fetuin-A concentrations. In instrumental variable analysis, genetically raised fetuin-A was not associated with colorectal cancer risk (relative risk per 40 µg/mL genetically determined higher fetuin-A was 0.98, 95% confidence interval: 0.73-1.33). The findings of our study indicate a modest linear association between fetuin-A concentrations and risk of colorectal cancer but suggest that fetuin-A may not be causally related to colorectal cancer development.

An HK, Kim KS, Lee JW, et al.
Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.
PLoS One. 2014; 9(12):e114607 [PubMed] Free Access to Full Article Related Publications
Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

Hefetz-Sela S, Stein I, Klieger Y, et al.
Acquisition of an immunosuppressive protumorigenic macrophage phenotype depending on c-Jun phosphorylation.
Proc Natl Acad Sci U S A. 2014; 111(49):17582-7 [PubMed] Free Access to Full Article Related Publications
The inflamed tumor microenvironment plays a critical role in tumorigenesis. However, the mechanisms through which immune cells, particularly macrophages, promote tumorigenesis have only been partially elucidated, and the full scope of signaling pathways supplying macrophages with protumorigenic phenotypes still remain largely unknown. Here we report that germ-line absence of c-Jun N-terminal phosphorylation at serines 63 and 73 impedes inflammation-associated hepatocarcinogenesis, yet deleting c-Jun only in hepatocytes does not inhibit hepatocellular carcinoma (HCC) formation. Moreover, in human HCC-bearing livers, c-Jun phosphorylation is found in inflammatory cells, whereas it is mostly absent from malignant hepatocytes. Interestingly, macrophages in livers of mice with chronic hepatitis gradually switch their phenotype along the course of disease. Macrophage phenotype and density are dictated by c-Jun phosphorylation, in vitro and in vivo. Transition of macrophage phenotype, from antitumorigenic to protumorigenic, occurs before tumorigenesis, resulting in the production of various chemokines, including chemokine (C-C motif) ligand 17 (CCL17) and CCL22. Such signals, emanating from the liver microenvironment, direct the recruitment of regulatory T cells, which are known to facilitate HCC growth. Our findings identify c-Jun phosphorylation as a key mediator of macrophage education and point to the recruitment of immunosuppressive regulatory T cells as a possible protumorigenic mechanism.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCL22, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999