CD19; CD19 molecule (16p11.2)

Gene Summary

Gene:CD19; CD19 molecule
Aliases: B4, CVID3
Summary:Lymphocytes proliferate and differentiate in response to various concentrations of different antigens. The ability of the B cell to respond in a specific, yet sensitive manner to the various antigens is achieved with the use of low-affinity antigen receptors. This gene encodes a cell surface molecule which assembles with the antigen receptor of B lymphocytes in order to decrease the threshold for antigen receptor-dependent stimulation. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:B-lymphocyte antigen CD19
Updated:14 December, 2014


What does this gene/protein do?
Show (8)


What pathways are this gene/protein implicaed in?
- B cell receptor signaling pathway KEGG
- Hematopoietic cell lineage KEGG
Data from KEGG and BioCarta [BIOCARTA terms] via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1989-2014)
Graph generated 14 December 2014 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 14 December, 2014 using data from PubMed, MeSH and CancerIndex

Notable (4)

Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
-CD19 and B-Cell Lymphoma View Publications147
Chronic Lymphocytic LeukemiaCD19 and Chronic Lymphocytic Leukemia View Publications141
Acute Myeloid Leukaemia (AML)CD19 and Acute Myeloid Leukaemia View Publications100
Multiple MyelomaCD19 and Multiple Myeloma View Publications56

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Related Links

Latest Publications: CD19 (cancer-related)

Xu Y, Zhang M, Ramos CA, et al.
Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15.
Blood. 2014; 123(24):3750-9 [PubMed] Article available free on PMC after 12/06/2015 Related Publications
Adoptive transfer of T lymphocytes expressing a CD19-specific chimeric antigen receptor (CAR.CD19) induces complete tumor regression in patients with lymphoid malignancies. Although in vivo persistence of CAR-T cells correlates with clinical responses, it remains unknown whether specific cell subsets within the CAR-T-cell product correlate with their subsequent in vivo expansion and persistence. We analyzed 14 patients with B-cell malignancies infused with autologous CAR.CD19-redirected T cells expanded ex vivo using IL-2, and found that their in vivo expansion only correlated with the frequency within the infused product of a CD8(+)CD45RA(+)CCR7(+) subset, whose phenotype is closest to "T-memory stem cells." Preclinical models showed that increasing the frequency of CD8(+)CD45RA(+)CCR7(+) CAR-T cells in the infused line by culturing the cells with IL-7 and IL-15 produced greater antitumor activity of CAR-T cells mediated by increased resistance to cell death, following repetitive encounters with the antigen, while preserving their migration to secondary lymphoid organs. This trial was registered at www.clinicaltrials.gov as #NCT00586391 and #NCT00709033.

Schuler PJ, Saze Z, Hong CS, et al.
Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells.
Clin Exp Immunol. 2014; 177(2):531-43 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
While murine CD4(+) CD39(+) regulatory T cells (T(reg)) co-express CD73 and hydrolyze exogenous (e) adenosine triphosphate (ATP) to immunosuppressive adenosine (ADO), surface co-expression of CD73 on human circulating CD4(+) CD39(+) T(reg) is rare. Therefore, the ability of human T(reg) to produce and utilize ADO for suppression remains unclear. Using mass spectrometry, we measured nucleoside production by subsets of human CD4(+) CD39(+) and CD4(+) CD39(-)CD73(+) T cells or CD19(+) B cells isolated from blood of 30 volunteers and 14 cancer patients. CD39 and CD73 expression was evaluated by flow cytometry, Western blots, confocal microscopy or reverse transcription-polymerase chain reaction (RT-PCR). Circulating CD4(+) CD39(+) T(reg) which hydrolyzed eATP to 5'-AMP contained few intracytoplasmic granules and had low CD73 mRNA levels. Only ∼1% of these T(reg) were CD39(+) CD73(+) . In contrast, CD4(+) CD39(neg) CD73(+) T cells contained numerous CD73(+) granules in the cytoplasm and strongly expressed surface CD73. In vitro-generated T(reg) (Tr1) and most B cells were CD39(+) CD73(+) . All these CD73(+) T cell subsets and B cells hydrolyzed 5'-AMP to ADO. Exosomes isolated from plasma of normal control (NC) or cancer patients carried enzymatically active CD39 and CD73(+) and, when supplied with eATP, hydrolyzed it to ADO. Only CD4(+) CD39(+) T(reg) co-incubated with CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes produced ADO. Thus, contact with membrane-tethered CD73 was sufficient for ADO production by CD4(+) CD39(+) T(reg). In microenvironments containing CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes, CD73 is readily available to CD4(+) CD39(+) CD73(neg) T(reg) for the production of immunosuppressive ADO.

Related: Cancer Prevention and Risk Reduction

Freedman A
Follicular lymphoma: 2014 update on diagnosis and management.
Am J Hematol. 2014; 89(4):429-36 [PubMed] Related Publications
DISEASE OVERVIEW: Follicular lymphoma is generally an indolent B cell lymphoproliferative disorder of transformed follicular center B cells. Follicular lymphoma (FL) is characterized by diffuse lymphoadenopathy, bone marrow involvement, splenomegaly, and less commonly other extranodal sites of involvement. In general cytopenias can occur but constitutional symptoms of fever, nightsweats, and weight loss are uncommon.
DIAGNOSIS: Diagnosis is based on histology of preferably a biopsy of a lymph node. Immunohistochemical staining is positive in virtually all cases for cell surface CD19, CD20, CD10, and monoclonal immunoglobulin, as well as cytoplasmic expression of bcl-2 protein. The overwhelming majority of cases have the characteristic t(14;18) translocation involving the IgH/bcl-2 genes.
RISK STRATIFICATION: The Follicular Lymphoma International Prognostic Index prognostic model for FL uses five independent predictors of inferior survival: age >60 years, hemoglobin <12 g/dL, serum LDH > normal, Ann Arbor stage III/IV, number of involved nodal areas > 4. The presence of 0, 1, 2, and  ≥ 3 adverse factors defines low, intermediate, and high-risk disease. With the use of more modern therapies, outcomes have improved.
RISK-ADAPTED THERAPY: Observation continues to be adequate for asymptomatic patients with low bulk disease and no cytopenias. For patients needing therapy, most patients are treated with chemotherapy plus rituximab, which has improved response rates, duration of response and overall survival. Randomized studies have shown additional benefit for maintenance rituximab both following chemotherapy-rituximab and single agent rituximab. Experimental therapies as well as stem cell transplantation (SCT) are considered for recurrent disease.

Related: Chromosome 14 Chromosome 18 BCL2 gene Rituximab (Mabthera)

Cheadle EJ, Sheard V, Rothwell DG, et al.
Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen receptor T cells in a mouse model.
J Immunol. 2014; 192(8):3654-65 [PubMed] Related Publications
T cells engrafted with chimeric AgRs (CAR) are showing exciting potential for targeting B cell malignancies in early-phase clinical trials. To determine whether the second-generation CAR was essential for optimal antitumor activity, two CD28-based CAR constructs targeting CD19 were tested for their ability to redirect mouse T cell function against established B cell lymphoma in a BALB/c syngeneic model system. T cells armed with either CAR eliminated A20 B cell lymphoma in vivo; however, one construct induced a T cell dose-dependent acute toxicity associated with a raised serum Th1 type cytokine profile on transfer into preconditioned mice. Moreover, a chronic toxicity manifested as granuloma-like formation in spleen, liver, and lymph nodes was observed in animals receiving T cells bearing either CD28 CAR, albeit with different kinetics dependent upon the specific receptor used. This phenotype was associated with an expansion of CD4+ CAR+ T cells and CD11b+ Gr-1(+) myeloid cells and increased serum Th2-type cytokines, including IL-10 and IL-13. Mouse T cells engrafted with a first-generation CAR failed to develop such autotoxicity, whereas toxicity was not apparent when T cells bearing the same receptors were transferred into C57BL/6 or C3H animals. In summary, the adoptive transfer of second-generation CD19-specific CAR T cells can result in a cell dose-dependent acute toxicity, whereas the prolonged secretion of high levels of Th2 cytokines from these CAR T cells in vivo drives a granulomatous reaction resulting in chronic toxicity. Strategies that prevent a prolonged Th2-cytokine biased CAR T cell response are clearly warranted.

Related: Cytokines

Abdulateef NA, Ismail MM, Aljedani H
Clinical significance of co-expression of aberrant antigens in acute leukemia: a retrospective cohort study in Makah Al Mukaramah, Saudi Arabia.
Asian Pac J Cancer Prev. 2014; 15(1):221-7 [PubMed] Related Publications
BACKGROUND: Aberrant phenotypes in acute leukemia have variable frequency and their prognostic and predictive relevance is controversial, despite several reports of clinical significance.
AIMS: To determine the prevalence of aberrant antigen expression in acute leukemia, assess clinical relevance and demonstrate immunophenotype-karyotype correlations.
MATERIALS AND METHODS: A total of 73 (40 AML and 33 ALL) newly diagnosed acute leukemia cases presenting to KAMC, Kingdom of Saudi Arabia, were included. Diagnosis was based on WHO criteria and FAB classification. Immunophenotyping by flow cytometry, conventional karyotyping and fluorescence in situ hybridization for gene rearrangements were performed.
RESULTS: Aberrant antigens were detected in 27/40 (67.5%) of AML and in 14/33 (42.4%) in ALL cases. There were statistically significant higher TLC in Ly+ AML than in Ly-AML (p=0.05) and significant higher blast count in ALL with aberrant antigens at presentation and day 14 (p=0.005, 0.046). There was no significant relation to clinical response, relapse free survival (RFS) or overall survival (p>0.05), but AML cases expressing ≥2 Ly antigens showed a lower median RFS than those expressing a single Ly antigen. In AML, CD 56 was expressed in 11/40. CD7 was expressed in 7/40, having a significant relation with an unfavorable cytogenetic pattern (p=0.046). CD4 was expressed in 5/40. CD19 was detected in 4/40 AML associated with M2 and t (8; 21). In ALL cases, CD33 was expressed in 7/33 and CD13 in 5/33. Regarding T Ag in B-ALL CD2 was expressed in 2 cases and CD56 in 3 cases.
CONCLUSIONS: Aberrant antigen expression may be associated with adverse clinical data at presentation. AML cases expressing ≥2 Ly antigens may have shorter median RFS. No specific cytogenetic pattern is associated with aberrant antigen expression but individual antigens may be related to particular cytogenetic patterns. Immunophenotype-karyotype correlations need larger studies for confirmation.

Related: Acute Myeloid Leukemia (AML) Acute Lymphocytic Leukemia (ALL)

Tembhare PR, Yuan CM, Venzon D, et al.
Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases.
Leuk Res. 2014; 38(3):371-6 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Flow cytometric (FC) enumeration of abnormal plasma cells (APCs) for diagnosis and prognostication of plasma cell dyscrasias (PCD) is challenging. We studied antigen expression in normal plasma cells (NPC) (N = 34) and APC in a series of unselected PCD (N = 59). NPC subpopulations often demonstrated CD19(-), CD20(+), CD45(-) or dim and CD56(+), an immunophenotype observed in PCD. However abnormal CD81 was only observed in APCs (APC detection sensitivity 95%; specificity 100%). We evaluated differences in antigen expression patterns among MGUS (N = 14), SMM (N = 35) and MM (N = 10), finding the combination of CD45 and CD56 helpful in differentiating MGUS from SMM and MM (p = 0.0002).

Related: Myeloma Myeloma - Molecular Biology PTPRC

Chapiro E, Antony-Debre I, Marchay N, et al.
Sex chromosome loss may represent a disease-associated clonal population in chronic lymphocytic leukemia.
Genes Chromosomes Cancer. 2014; 53(3):240-7 [PubMed] Related Publications
Whether sex chromosome loss (SCL) is an age-related phenomenon or a cytogenetic marker of hematological disease is unclear. To address this issue in chronic lymphocytic leukemia (CLL), we investigated 20 cases with X or Y chromosome loss detected by conventional cytogenetics (CC). The frequency of SCL was low in CLL (2.3%). It was the sole abnormality, as detected by CC, in 10/20 (50%) patients. Fluorescence in situ hybridization (FISH) analyses confirmed SCL in all patients tested, present in 5-88% of cells (median: 68%). Deletions of 13q were observed by FISH in 16/20 (80%) patients. Compared with CLL without SCL, SCL was significantly associated with 13q deletion, especially when bi-allelic (P = 0.04). Co-hybridization analyses showed that SCL could be a concomitant, primary or secondary change, or be present in an independent clone. FISH analyses were performed on blood sub-populations isolated by Ficoll or flow cytometry. Comparing mononuclear cells (including CLL cells) and polynuclear cells separated by Ficoll, a maximum of 2% of polynuclear cells were found with SCL, whereas mononuclear cells exhibited a significantly higher loss frequency (range: 6-87%) (P = 0.03). Comparing B-cells (including CLL cells) and T-cells sorted by flow cytometry, the proportion of B-CD19+ cells with SCL was significantly higher (range: 88-96%) than that observed in T-CD3+ cells (range: 2-6%) (P = 0.008). We conclude that SCL has to be considered as a clonal aberration in CLL that may participate in the oncogenic process.

Related: Chromosome 13 Chromosome X Chromosome Y Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology

Bojarska-Junak A, Hus I, Chocholska S, et al.
CD1d expression is higher in chronic lymphocytic leukemia patients with unfavorable prognosis.
Leuk Res. 2014; 38(4):435-42 [PubMed] Related Publications
Through the analysis of CD1d expression by flow cytometry and qRT-PCR we showed lower CD1d molecule and CD1d mRNA expression in B cells of CLL patients than of healthy controls. The frequency of CD1d(+)/CD19(+) cells, CD1d staining intensity and CD1d transcript levels increased with the disease stage. CD1d expression was positively associated with ZAP-70 and CD38 expressions as well as with unfavourable cytogenetic changes. We established the relationship between high CD1d expression and shorter time to treatment and overall survival. We observed that CD1d expression in individual patients significantly changed over time. The percentage of CD1d(+)/CD19(+) cells inversely correlated with the percentage of iNKT cells.

Related: Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology

Wang LQ, Kwong YL, Kho CS, et al.
Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia--implications on constitutive activation of NFκB pathway.
Mol Cancer. 2013; 12:173 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BACKGROUND: The miR-9 family microRNAs have been identified as a tumor suppressor miRNA in cancers. We postulated that miR-9-1, miR-9-2 and miR-9-3 might be inactivated by DNA hypermethylation in chronic lymphocytic leukemia (CLL).
METHODS: Methylation of miR-9-1, miR-9-2 and miR-9-3 was studied in eight normal controls including normal bone marrow, buffy coat, and CD19-sorted peripheral blood B-cells from healthy individuals, seven CLL cell lines, and seventy-eight diagnostic CLL samples by methylation-specific polymerase chain reaction.
RESULTS: The promoters of miR-9-3 and miR-9-1 were both unmethylated in normal controls, but methylated in five (71.4%) and one of seven CLL cell lines respectively. However, miR-9-2 promoter was methylated in normal controls including CD19 + ve B-cells, hence suggestive of a tissue-specific but not tumor-specific methylation, and thus not further studied. Different MSP statuses of miR-9-3, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite methylation analysis. 5-Aza-2'-deoxycytidine treatment resulted in miR-9-3 promoter demethylation and re-expression of pri-miR-9-3 in I83-E95 and WAC3CD5+ cells, which were homozygously methylated for miR-9-3. Moreover, overexpression of miR-9 led to suppressed cell proliferation and enhanced apoptosis together with downregulation of NFκB1 in I83-E95 cells, supporting a tumor suppressor role of miR-9-3 in CLL. In primary CLL samples, miR-9-3 was detected in 17% and miR-9-1 methylation in none of the patients at diagnosis. Moreover, miR-9-3 methylation was associated with advanced Rai stage (≥ stage 2) (P = 0.04).
CONCLUSIONS: Of the miR-9 family, miR-9-3 is a tumor suppressor miRNA relatively frequently methylated, and hence silenced in CLL; whereas miR-9-1 methylation is rare in CLL. The role of miR-9-3 methylation in the constitutive activation of NFκB signaling pathway in CLL warrants further study.

Related: Apoptosis Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology Signal Transduction

Budde LE, Berger C, Lin Y, et al.
Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma.
PLoS One. 2013; 8(12):e82742 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a "suicide gene" relying on inducible activation of caspase 9 (iC9), and a truncated CD19 selectable marker. Rapid expansion (2000 fold) of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20(+) malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned.

Fujiwara H
Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.
Int J Hematol. 2014; 99(2):123-31 [PubMed] Related Publications
The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

Related: Haematological Malignancies & Realted Disorders

Singh H, Huls H, Kebriaei P, Cooper LJ
A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19.
Immunol Rev. 2014; 257(1):181-90 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing methods to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CARs) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR(+) T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential.

Related: Cancer Prevention and Risk Reduction

Cheadle EJ, Gornall H, Baldan V, et al.
CAR T cells: driving the road from the laboratory to the clinic.
Immunol Rev. 2014; 257(1):91-106 [PubMed] Related Publications
Blockbuster antibody therapies have catapulted immune-based approaches to treat cancer into the consciousness of mainstay clinical research. On the back of this, other emerging immune-based therapies are providing great promise. T-cell therapy is one such area where recent trials using T cells genetically modified to express an antibody-based chimeric antigen receptor (CAR) targeted against the CD19 antigen have demonstrated impressive responses when adoptively transferred to patients with advanced chronic lymphocytic leukemia. The general concept of the CAR T cell was devised some 20 years ago. In this relatively short period of time, the technology to redirect T-cell function has moved at pace facilitating clinical translation; however, many questions remain with respect to developing the approach to improve CAR T-cell therapeutic activity and also to broaden the range of tumors that can be effectively targeted by this approach. This review highlights some of the underlying principles and compromises of CAR T-cell technology using the CD19-targeted CAR as a paradigm and discusses some of the issues that relate to targeting solid tumors with CAR T cells.

Hinrichs CS, Rosenberg SA
Exploiting the curative potential of adoptive T-cell therapy for cancer.
Immunol Rev. 2014; 257(1):56-71 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
Adoptive T-cell therapy (ACT) is a potent and flexible cancer treatment modality that can induce complete, durable regression of certain human malignancies. Long-term follow-up of patients receiving tumor-infiltrating lymphocytes (TILs) for metastatic melanoma reveals a substantial subset that experienced complete, lasting tumor regression - and may be cured. Increasing evidence points to mutated gene products as the primary immunological targets of TILs from melanomas. Recent technological advances permit rapid identification of the neoepitopes resulting from these somatic gene mutations and of T cells with reactivity against these targets. Isolation and adoptive transfer of these T cells may improve TIL therapy for melanoma and permit its broader application to non-melanoma tumors. Extension of ACT to other malignancies may also be possible through antigen receptor gene engineering. Tumor regression has been observed following transfer of T cells engineered to express chimeric antigen receptors against CD19 in B-cell malignancies or a T-cell receptor against NY-ESO-1 in synovial cell sarcoma and melanoma. Herein, we review recent clinical trials of TILs and antigen receptor gene therapy for advanced cancers. We discuss lessons from this experience and consider how they might be applied to realize the full curative potential of ACT.

Related: Cancer Prevention and Risk Reduction

Slamova L, Starkova J, Fronkova E, et al.
CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage.
Leukemia. 2014; 28(3):609-20 [PubMed] Related Publications
Switches from the lymphoid to myeloid lineage during B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment are considered rare and thus far have been detected in MLL-rearranged leukemia. Here, we describe a novel BCP-ALL subset, switching BCP-ALL or swALL, which demonstrated monocytosis early during treatment. Despite their monocytic phenotype, 'monocytoids' share immunoreceptor gene rearrangements with leukemic B lymphoblasts. All swALLs demonstrated BCP-ALL with CD2 positivity and no MLL alterations, and the proportion of swALLs cases among BCP-ALLs was unexpectedly high (4%). The upregulation of CEBPα and demethylation of the CEBPA gene were significant in blasts at diagnosis, prior to the time when most of the switching occurs. Intermediate stages between CD14(neg)CD19(pos)CD34(pos) B lymphoblasts and CD14(pos)CD19(neg)CD34(neg) 'monocytoids' were detected, and changes in the expression of PAX5, PU1, M-CSFR, GM-CSFR and other genes accompanied the switch. Alterations in the Ikaros and ERG genes were more frequent in swALL patients; however, both were altered in only a minority of swALLs. Moreover, switching could be recapitulated in vitro and in mouse xenografts. Although children with swALL respond slowly to initial therapy, risk-based ALL therapy appears the treatment of choice for swALL. SwALL shows that transdifferentiating into monocytic lineage is specifically associated with CEBPα changes and CD2 expression.

Du J, Romano RA, Si H, et al.
Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation.
J Pathol. 2014; 232(3):356-68 [PubMed] Related Publications
ΔNp63 is known to be critical in skin development and cancer; however, how it triggers proliferation and inflammation in vivo remains to be elucidated. Here, we find that induced ΔNp63 expression in skin of transgenic mice (TG) results in a hyperproliferative epidermis coupled with inflammatory infiltrates. In situ, infiltrating cells include CD45(+) leukocytes, CD19(+) B lymphocytes, CD3(+) T lymphocytes, CD4(+) T helper, CD25(+)/Foxp3(+) Treg, Ly6B(+) neutrophils, S-100(+) dendritic cells, and macrophages bearing CD11b(+), F4/80(+), CD68(+), and CD206(+) M2 type markers. Transcriptional profiling of TG skin revealed increased gene expression involved in inflammation and immune responses, including Th2/M2 cytokines and chemokines. These genes were co-regulated by ΔNp63 and NF-κB RelA or cRel, and enhanced by TNF-α. Elevated cRel, RelA, and IKKs were observed in TG mouse skin and human squamous carcinomas with ΔNp63 overexpression. Thus, our findings unveil a missing link connecting overexpressed ΔNp63 with aberrant NF-κB activation, pro-inflammatory and type 2 cytokines and chemokines, and host infiltrates during skin inflammation and hyperplasia. Our findings provide a missing link between ΔNp63 overexpression and NF-κB-mediated inflammation, of potential relevance to the pathogenesis of squamous carcinoma.

Related: Cytokines Head and Neck Cancers Head and Neck Cancers - Molecular Biology Signal Transduction

Smetana J, Dementyeva E, Kryukov F, et al.
Incidence of cytogenetic aberrations in two B lineage subpopulations in multiple myeloma patients analyzed by combination of whole-genome profiling and FISH.
Neoplasma. 2014; 61(1):48-55 [PubMed] Related Publications
Multiple myeloma (MM) is an incurable malignant disease of the terminal developmental stage of B-lymphocytes. While genetic heterogeneity of MM is widely described, little is known about its genetic basis as well as primary damage during plasma cells (PC) development. In this study, we focused on genome-wide screening of DNA copy number changes using oligonucleotide-based array-CGH together with I-FISH of the IgH locus rearrangements in pair samples of bone marrow B-cells (CD19+) and CD138+ PC from newly diagnosed MM patients. The IgH disruption was found in 8.9% (4/45) of CD19+ samples and in 57.8% (26/45) of CD138+ samples. The genomic profiling using array-CGH identified copy number alterations (CNAs) in 10% (2/20) of CD19+ samples in regions known to be important for MM pathogenesis. In contrast, we found CNAs in 100% (16/16) of CD138+ samples. Most common chromosomal abnormalities were trisomies of odd-numbered chromosomes (3, 5, 7, 9, 11, 15, 19 and 21), gain 1q, gain Xq and monosomy of chromosome 13. We did not find any correlation between incidence of CNAs in CD19+ and CD138+ cells. In conclusion, effective utilization of FISH and array-CGH can identify genetic lesions in premalignant stages leading to better understanding and characterization of MM.

Related: CGH FISH Myeloma Myeloma - Molecular Biology SDC1

Galet C, Gollapudi K, Stepanian S, et al.
Effect of a low-fat fish oil diet on proinflammatory eicosanoids and cell-cycle progression score in men undergoing radical prostatectomy.
Cancer Prev Res (Phila). 2014; 7(1):97-104 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
We previously reported that a 4- to 6-week low-fat fish oil (LFFO) diet did not affect serum insulin-like growth factor (IGF)-1 levels (primary outcome) but resulted in lower omega-6 to omega-3 fatty acid ratios in prostate tissue and lower prostate cancer proliferation (Ki67) as compared with a Western diet. In this post hoc analysis, the effect of the LFFO intervention on serum pro-inflammatory eicosanoids, leukotriene B4 (LTB4) and 15-S-hydroxyeicosatetraenoic acid [15(S)-HETE], and the cell-cycle progression (CCP) score were investigated. Serum fatty acids and eicosanoids were measured by gas chromatography and ELISA. CCP score was determined by quantitative real-time reverse transcriptase PCR (RT-PCR). Associations between serum eicosanoids, Ki67, and CCP score were evaluated using partial correlation analyses. BLT1 (LTB4 receptor) expression was determined in prostate cancer cell lines and prostatectomy specimens. Serum omega-6 fatty acids and 15(S)-HETE levels were significantly reduced, and serum omega-3 levels were increased in the LFFO group relative to the Western diet group, whereas there was no change in LTB4 levels. The CCP score was significantly lower in the LFFO compared with the Western diet group. The 15(S)-HETE change correlated with tissue Ki67 (R = 0.48; P < 0.01) but not with CCP score. The LTB4 change correlated with the CCP score (r = 0.4; P = 0.02) but not with Ki67. The LTB4 receptor BLT1 was detected in prostate cancer cell lines and human prostate cancer specimens. In conclusion, an LFFO diet resulted in decreased 15(S)-HETE levels and lower CCP score relative to a Western diet. Further studies are warranted to determine whether the LFFO diet antiproliferative effects are mediated through the LTB4/BLT1 and 15(S)-HETE pathways.

Related: IGF1 MKI67 Prostate Cancer

Yasmeen R, Meyers JM, Alvarez CE, et al.
Aldehyde dehydrogenase-1a1 induces oncogene suppressor genes in B cell populations.
Biochim Biophys Acta. 2013; 1833(12):3218-27 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
The deregulation of B cell differentiation has been shown to contribute to autoimmune disorders, hematological cancers, and aging. We provide evidence that the retinoic acid-producing enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) is an oncogene suppressor in specific splenic IgG1(+)/CD19(-) and IgG1(+)/CD19(+) B cell populations. Aldh1a1 regulated transcription factors during B cell differentiation in a sequential manner: 1) retinoic acid receptor alpha (Rara) in IgG1(+)/CD19(-) and 2) zinc finger protein Zfp423 and peroxisome proliferator-activated receptor gamma (Pparg) in IgG1(+)/CD19(+) splenocytes. In Aldh1a1(-/-) mice, splenic IgG1(+)/CD19(-) and IgG1(+)/CD19(+) B cells acquired expression of proto-oncogenic genes c-Fos, c-Jun, and Hoxa10 that resulted in splenomegaly. Human multiple myeloma B cell lines also lack Aldh1a1 expression; however, ectopic Aldh1a1 expression rescued Rara and Znf423 expressions in these cells. Our data highlight a mechanism by which an enzyme involved in vitamin A metabolism can improve B cell resistance to oncogenesis.

Related: Myeloma Myeloma - Molecular Biology PPARG gene ALDH1A1

Libisch MG, Casás M, Chiribao M, et al.
GALNT11 as a new molecular marker in chronic lymphocytic leukemia.
Gene. 2014; 533(1):270-9 [PubMed] Related Publications
Aberrant mucin O-glycosylation often occurs in different cancers and is characterized by immature expression of simple mucin-type carbohydrates. At present, there are some controversial reports about the Tn antigen (GalNAcα-O-Ser/Thr) expression and there is a great lack of information about the [UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts)] expression in chronic lymphocytic leukemia (CLL). To gain insight in these issues we evaluated the Tn antigen expression in CLL patient samples using two Tn binding proteins with different fine specificity. We also studied the expression from 14 GalNAc-Ts genes in CLL patients by RT-PCR. Our results have provided additional information about the expression level of the Tn antigen, suggesting that a low density of Tn residues is expressed in CLL cells. We also found that GALNT11 was expressed in CLL cells and normal T cell whereas little or no expression was found in normal B cells. Based on these results, GALNT11 expression was assessed by qPCR in a cohort of 50 CLL patients. We found significant over-expression of GALNT11 in 96% of B-CLL cells when compared to normal B cells. Moreover, we confirmed the expression of this enzyme at the protein level. Finally we found that GALNT11 expression was significantly associated with the mutational status of the immunoglobulin heavy chain variable region (IGHV), [א(2)(1)=18.26; P<0.0001], lipoprotein lipase expression [א(2)(1)=13.72; P=0.0002] and disease prognosis [א(2)(1)=15.49; P<0.0001]. Our evidence suggests that CLL patient samples harbor aberrant O-glycosylation highlighted by Tn antigen expression and that the over-expression of GALNT11 constitutes a new molecular marker for CLL.

Related: Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology

Kochenderfer JN, Dudley ME, Carpenter RO, et al.
Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation.
Blood. 2013; 122(25):4129-39 [PubMed] Free Access to Full Article Related Publications
New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient's alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD.

Related: Stem Cell and Bone Marrow Transplants

Cruz CR, Micklethwaite KP, Savoldo B, et al.
Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study.
Blood. 2013; 122(17):2965-73 [PubMed] Free Access to Full Article Related Publications
Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.

Related: Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology Acute Lymphocytic Leukemia (ALL) Childhood Acute lymphoblastic leukaemia (ALL) ALL - Molecular Biology

Walls CD, Iliuk A, Bai Y, et al.
Phosphatase of regenerating liver 3 (PRL3) provokes a tyrosine phosphoproteome to drive prometastatic signal transduction.
Mol Cell Proteomics. 2013; 12(12):3759-77 [PubMed] Free Access to Full Article Related Publications
Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the "PRL3-mediated signaling network." Phosphoproteomic data support intracellular activation of an extensive signaling network normally governed by extracellular ligand-activated transmembrane growth factor, cytokine, and integrin receptors in the PRL3 cells. Additionally, data implicate the Src tyrosine kinase as the major intracellular kinase responsible for "hijacking" this network and provide strong evidence that aberrant Src activation is a major consequence of PRL3 overexpression. Importantly, the data support a PDGF(α/β)-, Eph (A2/B3/B4)-, and Integrin (β1/β5)-receptor array as being the predominant network coordinator in the PRL3 cells, corroborating a PRL3-induced mesenchymal-state. Within this network, we find that tyrosine phosphorylation is increased on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, STAT, and ERK activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives prometastatic molecular events through Src activation.

Related: Signal Transduction

Joshi YB, Di Meco A, Praticó D
Modulation of amyloid-β production by leukotriene B4 via the γ-secretase pathway.
J Alzheimers Dis. 2014; 38(3):503-6 [PubMed] Related Publications
Inflammatory mechanisms have been implicated in Alzheimer's disease (AD) pathogenesis, and among them, the pro-inflammatory 5-lipoxygenase (5LO) enzyme. While previous work has shown that 5LO modulates the amyloidotic phenotype of AD, the exact metabolic product responsible for this biological action remains unknown. In this study, we challenged neuronal cells with leukotriene B4 (LTB4), a major 5LO product, and found that it increased amyloid-β formation whereby elevating the steady-state levels of the γ-secretase proteins, suggesting that LTB4 is the mediator of the 5LO effect. Therapies that by blocking 5LO activation suppress the formation of LTB4 or its action represent novel AD therapeutic opportunities.

Related: Neuroblastoma

Ronchetti D, Mosca L, Cutrona G, et al.
Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia.
BMC Med Genomics. 2013; 6:27 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs are non-coding RNAs involved in the maturation of other RNA molecules. Alterations of sno/scaRNA expression may play a role in cancerogenesis. This study elucidates the patterns of sno/scaRNA expression in 211 chronic lymphocytic leukemia (CLL) patients (Binet stage A) also in comparison with those of different normal B-cell subsets.
METHODS: The patterns of sno/scaRNA expression in highly purified CD19+ B-cells of 211 CLL patients and in 18 normal B-cell samples--6 from peripheral blood, and 12 from tonsils (4 germinal center, 2 marginal zone, 3 switched memory and 3 naïve B-cells)--were analyzed on the Affymetrix GeneChip® Human Gene 1.0 ST array.
RESULTS: CLLs display a sno/scaRNAs expression profile similar to normal memory, naïve and marginal-zone B-cells, with the exception of a few down-regulated transcripts (SNORA31, -6, -62, and -71C). Our analyses also suggest some heterogeneity in the pattern of sno/scaRNAs expression which is apparently unrelated to the major biological (ZAP-70 and CD38), molecular (IGHV mutation) and cytogenetic markers. Moreover, we found that SNORA70F was significantly down-regulated in poor prognostic subgroups and this phenomenon was associated with the down-regulation of its host gene COBLL1. Finally, we generated an independent model based on SNORA74A and SNORD116-18 expression, which appears to distinguish two different prognostic CLL groups.
CONCLUSIONS: These data extend the view of sno/scaRNAs deregulation in cancer and may contribute to discover novel biomarkers associated with the disease and potentially useful to predict the clinical outcome of early stage CLL patients.

Related: Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology

Oksenhendler E, Boutboul D, Beldjord K, et al.
Human herpesvirus 8+ polyclonal IgMλ B-cell lymphocytosis mimicking plasmablastic leukemia/lymphoma in HIV-infected patients.
Eur J Haematol. 2013; 91(6):497-503 [PubMed] Related Publications
PURPOSE: Multicentric Castleman disease (MCD) is a distinct lymphoproliferative disorder characterized by inflammatory symptoms, lymphadenopathy, splenomegaly, and cytopenia. Kaposi's sarcoma-associated herpesvirus (KSHV), also called human herpesvirus-8 (HHV-8), is the cause of virtually all cases of MCD occurring in patients with HIV infection. MCD lesions characteristically contain HHV-8-infected polyclonal IgMλ plasmablasts. A high frequency of HHV-8-related non-Hodgkin lymphoma has been reported in these patients.
PATIENTS AND METHODS: We now report on three patients who presented with severe symptoms of MCD, extreme splenomegaly, and rapid expansion of B-cell lymphocytosis (44-81%) attributable to circulating HHV-8 positive plasmablasts.
RESULTS: The circulating plasmablastic cells shared the phenotype (IgMλ, CD19+, CD20- CD138-) of HHV-8-infected cells from MCD lesions, mimicking the leukemic phase of large B-cell lymphoma occurring in HHV-8-related MCD. These patients displayed a very high HHV-8 viral load in blood (>7 logs HHV-8 DNA copies/ml) and high levels of serum vIL-6, the viral homolog of human interleukin 6. Serum IL-6 and IL-10 were also abnormally elevated. HHV-8-infected cells were demonstrated by immunoglobulin gene rearrangement analysis, to be polyclonal and likely represent an expansion of HHV-8-infected cells similar to those found in MCD lesions.
CONCLUSION: Thus, the spectrum of HHV-8-related plasmablastic lymphoproliferative disorders in patients with HIV infection is expanded to include HHV-8+ polyclonal IgMλ B-cell lymphocytosis. At onset, this lymphoproliferative disorder may mimic plasmablastic leukemia/lymphoma. Recognizing this unusual complication may have important implications in treatment decision avoiding unnecessary toxicity to the patients.

Related: Cytokines

De Oliveira SN, Ryan C, Giannoni F, et al.
Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy.
Hum Gene Ther. 2013; 24(10):824-39 [PubMed] Free Access to Full Article Related Publications
Chimeric antigen receptors (CARs) against CD19 have been shown to direct T-cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. However, in some cases, there has been insufficient persistence of effector cells, limiting clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to deliver the CD19-specific CAR, with potential for ensuring persistent production of effector cells of multiple lineages targeting B-lineage malignant cells. Assessments were performed using in vitro myeloid or natural killer (NK) cell differentiation of human HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. Gene transfer did not impair hematopoietic differentiation and cell proliferation when transduced at 1-2 copies/cell. CAR-bearing myeloid and NK cells specifically lysed CD19-positive cells, with second-generation CAR including CD28 domains being more efficient in NK cells. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a strategy for generating multiple lineages of effector cells for immunotherapy against B-lineage malignancies to augment graft-versus-leukemia activity.

Related: Cancer Prevention and Risk Reduction

Johnson RC, Ma L, Cherry AM, et al.
B-cell transcription factor expression and immunoglobulin gene rearrangement frequency in acute myeloid leukemia with t(8;21)(q22;q22).
Am J Clin Pathol. 2013; 140(3):355-62 [PubMed] Related Publications
OBJECTIVES: To assess a large series of patients with acute myeloid leukemia (AML) with t(8;21) for both IGH@ and IGK@ B-cell gene rearrangements and for expression of PAX5, OCT2, and Bob.1 by immunohistochemistry and expression of CD19, CD79a, CD20, and CD22 by flow cytometry immunophenotyping.
METHODS: A total of 48 cases of AML with t(8;21)(q22;q22) were evaluated by immunohistochemistry and/or heavy chain and light chain immunoglobulin rearrangement studies where paraffin-embedded and/or fresh frozen material was available for study; previously performed flow cytometry studies were also reviewed in available cases.
RESULTS: Our study yielded 1 of 19 cases of AML with t(8;21) with an IGH@ gene rearrangement; blasts were associated with weak PAX5 expression. In addition, expression of antigens CD79a by flow cytometry and OCT2 by immunohistochemistry were highly associated with PAX5 expression, and CD19 was expressed in most cases assessed.
CONCLUSIONS: Although B-cell antigen and B-cell transcription factor expression is seen in the majority of AMLs with t(8;21)(q22;q22) and correlates with PAX5 expression, immunoglobulin gene rearrangements are an uncommon event in this group of leukemias.

Related: PAX5 gene (9p13) Acute Myeloid Leukemia (AML)

Burgess M, Gill D, Singhania R, et al.
CD62L as a therapeutic target in chronic lymphocytic leukemia.
Clin Cancer Res. 2013; 19(20):5675-85 [PubMed] Related Publications
PURPOSE: Despite advances in the treatment of chronic lymphocytic leukemia (CLL), the disease remains incurable with standard therapies and relapse is inevitable. A growing body of evidence indicates that alterations in the adhesion properties of neoplastic cells play a pivotal role in the development and progression of CLL.
EXPERIMENTAL DESIGN: The expression of 71 cell surface molecules was examined on CLL peripheral blood mononuclear cells (PBMCs) over 3 weeks in culture. The most highly upregulated marker, CD62L, was examined further for expression on CD5(+)/CD19(+) CLL cells in vitro and in lymph node and bone marrow biopsies. The prosurvival role of CD62L was examined using a functional blocking antibody and therapeutic potential evaluated by comparison with current chemotherapy agents.
RESULTS: Blocking CD62L resulted in apoptosis of CLL cells but not PBMCs from healthy donors suggesting a novel role for CD62L in CLL cell survival. The beneficial effect of coculturing CLL cells with bone marrow stromal cells or endothelial cells does not protect CLL cells from anti-CD62L-related toxicity. Moreover, combining fludarabine or mafosfamide with the anti-CD62L in vitro produced an additive effect both with and without stromal cells.
CONCLUSION: This is the first reported data showing that blocking the activation and homing marker, CD62L, regulates CLL cell survival in vitro. These data also suggest that therapeutic antibodies against CD62L may provide additional clinical benefit to patients with CLL receiving current standard chemotherapy protocols.

Related: Monoclonal Antibodies Apoptosis Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology

Barrett DM, Liu X, Jiang S, et al.
Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia.
Hum Gene Ther. 2013; 24(8):717-27 [PubMed] Free Access to Full Article Related Publications
Cytotoxic T lymphocytes modified with chimeric antigen receptors (CARs) for adoptive immunotherapy of hematologic malignancies have demonstrated activity in early phase clinical trials. While T cells bearing stably expressed CARs are efficacious and have potential long-term persistence, temporary expression of a CAR via RNA electroporation is also potentially efficacious in preclinical models. Temporary CAR expression using RNA presents a method of testing CARs clinically with additional safety where there may be concerns about possible chronic "on-target, off-tumor" toxic effects, as the degradation of RNA ensures complete removal of the CAR over time without relying on suicide induction systems. CD19-directed RNA CAR T cells were tested in vivo for efficacy and comparison to lentiviral vector (LV)-generated stable CAR T cells. We tested the hypothesis that multiple infusions of RNA CAR T cells preceded by lymphodepleting chemotherapy could mediate improved survival and sustained antitumor responses in a robust leukemia xenograft model. The saturation strategy using rationally designed multiple infusions of RNA CARs based on multiple model iterations approached the efficacy of a stable LV expression method. Two-color imaging revealed that relapse was a locoregional phenomenon in both the temporary and the stable expression models. In marked contrast to stably expressed CARs with retroviral or LV technology, the efficacy of RNA CARs appears independent of the costimulatory signaling endodomains likely because they more influence proliferation and persistence rather than short-term efficacy. The efficacy of the RNA CAR infusions may approach that of stably expressed CARs, offer theoretically safer initial clinical testing in addition to suicide systems, and allow for rapid and effective iterative preclinical modeling for the testing of new targets.

Related: Leukemia


Found this page useful?

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD19, Cancer Genetics Web: http://www.cancerindex.org/geneweb/CD19.htm Accessed: date

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 December, 2014     Cancer Genetics Web, Established 1999