CD19

Gene Summary

Gene:CD19; CD19 molecule
Aliases: B4, CVID3
Location:16p11.2
Summary:Lymphocytes proliferate and differentiate in response to various concentrations of different antigens. The ability of the B cell to respond in a specific, yet sensitive manner to the various antigens is achieved with the use of low-affinity antigen receptors. This gene encodes a cell surface molecule which assembles with the antigen receptor of B lymphocytes in order to decrease the threshold for antigen receptor-dependent stimulation. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:B-lymphocyte antigen CD19
HPRD
Source:NCBIAccessed: 26 February, 2015

Ontology:

What does this gene/protein do?
Show (8)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 26 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 26 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD19 (cancer-related)

Liu Z, Xu J, He J, et al.
A critical role of autocrine sonic hedgehog signaling in human CD138+ myeloma cell survival and drug resistance.
Blood. 2014; 124(13):2061-71 [PubMed] Free Access to Full Article Related Publications
Hedgehog (Hh) signaling plays an important role in the oncogenesis of B-cell malignancies such as multiple myeloma (MM). However, the source of Hh ligand sonic hedgehog (SHH) and its target cells remains controversial. Previous studies showed that stromally induced Hh signaling is essential for the tumor cells and that CD19(+)CD138(-) MM stem cells are the target cells of Hh signaling. Here we demonstrate that SHH was mainly secreted by human myeloma cells but not by stromal cells in MM bone marrow. Autocrine SHH enhanced CD138(+) myeloma cell proliferation and protected myeloma cells from spontaneous and stress-induced apoptosis. More importantly, autocrine SHH protected myeloma cells against chemotherapy-induced apoptosis in vitro and in vivo. Combinational treatment with chemotherapy and SHH-neutralizing antibody displayed synergistic antimyeloma effects. Mechanistic studies showed that SHH signaling activated the SHH/GLI1/BCL-2 axis, leading to the inhibition of myeloma cell apoptosis. Thus, this study identifies the myeloma autocrine Hh signaling pathway as a potential target for the treatment of MM. Targeting this pathway may improve the efficacy of chemotherapy in MM patients.

Shim H, Ha JH, Lee H, et al.
Expression of myeloid antigen in neoplastic plasma cells is related to adverse prognosis in patients with multiple myeloma.
Biomed Res Int. 2014; 2014:893243 [PubMed] Free Access to Full Article Related Publications
We evaluated the association between the expression of myeloid antigens on neoplastic plasma cells and patient prognosis. The expression status of CD13, CD19, CD20, CD33, CD38, CD56, and CD117 was analyzed on myeloma cells from 55 newly diagnosed patients, including 36 men (65%), of median age 61 years (range: 38-78). Analyzed clinical characteristics and laboratory parameters were as follows: serum β 2-microglobulin, lactate dehydrogenase, calcium, albumin, hemoglobin, serum creatinine concentrations, bone marrow histology, and cytogenetic findings. CD13+ and CD33+ were detected in 53% and 18%, respectively. Serum calcium (P = 0.049) and LDH (P = 0.018) concentrations were significantly higher and morphologic subtype of immature or plasmablastic was more frequent in CD33+ than in CD33- patients (P = 0.022). CD33 and CD13 expression demonstrate a potential prognostic impact and were associated with lower overall survival (OS; P = 0.001 and P = 0.025) in Kaplan-Meier analysis. Multivariate analysis showed that CD33 was independently prognostic of shorter progression free survival (PFS; P = 0.037) and OS (P = 0.001) with correction of clinical prognostic factors. This study showed that CD13 and CD33 expression associated with poor prognosis in patients with MM implicating the need of analysis of these markers in MM diagnosis.

Hojer C, Frankenberger S, Strobl LJ, et al.
B-cell expansion and lymphomagenesis induced by chronic CD40 signaling is strictly dependent on CD19.
Cancer Res. 2014; 74(16):4318-28 [PubMed] Related Publications
CD40, a member of the TNF receptor family, is expressed on all mature B cells and on most B-cell lymphomas. Recently, we have shown that constitutive activation of CD40 signaling in B cells induced by a fusion protein consisting of the transmembrane part of the Epstein-Barr viral latent membrane protein 1 (LMP1) and the cytoplasmic part of CD40 (LMP1/CD40) drives B-cell lymphoma development in transgenic mice. Because LMP1/CD40-expressing B cells showed an upregulation of CD19, we investigated CD19's function in CD40-driven B-cell expansion and lymphomagenesis. Here, we demonstrate that ablation of CD19 in LMP1/CD40 transgenic mice resulted in a severe loss and reduced lifespan of mature B cells and completely abrogated development of B-cell lymphoma. CD19 is localized to lipid rafts and constitutively activated by the LMP1/CD40 fusion protein in B cells. We provide evidence that the improved survival and malignant transformation of LMP1/CD40-expressing B cells are dependent on activation of the MAPK Erk that is mediated through CD19 in a PI3K-dependent manner. Our data suggest that constitutively active CD40 is dependent on CD19 to transmit survival and proliferation signals. Moreover, we detected a similarly functioning prosurvival pathway involving phosphorylated CD19 and PI3K-dependent Erk phosphorylation in human diffuse large B-cell lymphoma cell lines. Our data provide evidence that CD19 plays an important role in transmitting survival and proliferation signals downstream of CD40 and therefore might be an interesting therapeutic target for the treatment of lymphoma undergoing chronic CD40 signaling.

Zhou Y, Liu X, Xu L, et al.
Transcriptional repression of plasma cell differentiation is orchestrated by aberrant over-expression of the ETS factor SPIB in Waldenström macroglobulinaemia.
Br J Haematol. 2014; 166(5):677-89 [PubMed] Related Publications
In Waldenström macroglobulinaemia (WM), the mechanism(s) responsible for repression of B-cell differentiation remains unknown. We found that expression of SPIB and ID2 were significantly increased and decreased, respectively, in WM lymphoplasmacytic cells (LPC). Ectopic expression of SPIB in healthy donor CD19(+) cells inhibited plasmacytic differentiation in conjunction with decreased transcription of IRF4 and XBP1 spliced form. In primary WM LPC, knock-down of SPIB induced plasmacytic differentiation in conjunction with increased transcription of PRDM1, XBP1 spliced form, IRF4 and ID2. Knock-down of SPIB also led to decreased BCL2 expression. Given that SPIB is a direct target of POU2AF1 (OBF1) in complex with POU2F2 or POU2F1, we next examined their expression in WM LPC. POU2F2 transcription, as well as POU2F2 and POU2AF1 protein expression was higher in WM LPC. Ectopic expression of POU2F2 in healthy donor CD19(+) cells induced transcription of SPIB and suppressed transcription of PRDM1 and IRF4. Chromatin immunoprecipitation analysis in BCWM.1 WM cells confirmed binding of POU2F2 and POU2AF1 in SPIB and ID2 promoters. These findings establish a molecular hierarchy among POU2F2, SPIB and ID2 during B-cell differentiation, and suggest that aberrant expression of these transcription factors plays an important role in arresting plasmacytic differentiation in WM.

Xu Y, Zhang M, Ramos CA, et al.
Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15.
Blood. 2014; 123(24):3750-9 [PubMed] Article available free on PMC after 12/06/2015 Related Publications
Adoptive transfer of T lymphocytes expressing a CD19-specific chimeric antigen receptor (CAR.CD19) induces complete tumor regression in patients with lymphoid malignancies. Although in vivo persistence of CAR-T cells correlates with clinical responses, it remains unknown whether specific cell subsets within the CAR-T-cell product correlate with their subsequent in vivo expansion and persistence. We analyzed 14 patients with B-cell malignancies infused with autologous CAR.CD19-redirected T cells expanded ex vivo using IL-2, and found that their in vivo expansion only correlated with the frequency within the infused product of a CD8(+)CD45RA(+)CCR7(+) subset, whose phenotype is closest to "T-memory stem cells." Preclinical models showed that increasing the frequency of CD8(+)CD45RA(+)CCR7(+) CAR-T cells in the infused line by culturing the cells with IL-7 and IL-15 produced greater antitumor activity of CAR-T cells mediated by increased resistance to cell death, following repetitive encounters with the antigen, while preserving their migration to secondary lymphoid organs. This trial was registered at www.clinicaltrials.gov as #NCT00586391 and #NCT00709033.

Schuler PJ, Saze Z, Hong CS, et al.
Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells.
Clin Exp Immunol. 2014; 177(2):531-43 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
While murine CD4(+) CD39(+) regulatory T cells (T(reg)) co-express CD73 and hydrolyze exogenous (e) adenosine triphosphate (ATP) to immunosuppressive adenosine (ADO), surface co-expression of CD73 on human circulating CD4(+) CD39(+) T(reg) is rare. Therefore, the ability of human T(reg) to produce and utilize ADO for suppression remains unclear. Using mass spectrometry, we measured nucleoside production by subsets of human CD4(+) CD39(+) and CD4(+) CD39(-)CD73(+) T cells or CD19(+) B cells isolated from blood of 30 volunteers and 14 cancer patients. CD39 and CD73 expression was evaluated by flow cytometry, Western blots, confocal microscopy or reverse transcription-polymerase chain reaction (RT-PCR). Circulating CD4(+) CD39(+) T(reg) which hydrolyzed eATP to 5'-AMP contained few intracytoplasmic granules and had low CD73 mRNA levels. Only ∼1% of these T(reg) were CD39(+) CD73(+) . In contrast, CD4(+) CD39(neg) CD73(+) T cells contained numerous CD73(+) granules in the cytoplasm and strongly expressed surface CD73. In vitro-generated T(reg) (Tr1) and most B cells were CD39(+) CD73(+) . All these CD73(+) T cell subsets and B cells hydrolyzed 5'-AMP to ADO. Exosomes isolated from plasma of normal control (NC) or cancer patients carried enzymatically active CD39 and CD73(+) and, when supplied with eATP, hydrolyzed it to ADO. Only CD4(+) CD39(+) T(reg) co-incubated with CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes produced ADO. Thus, contact with membrane-tethered CD73 was sufficient for ADO production by CD4(+) CD39(+) T(reg). In microenvironments containing CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes, CD73 is readily available to CD4(+) CD39(+) CD73(neg) T(reg) for the production of immunosuppressive ADO.

Jelen MM, Chen Z, Kocjan BJ, et al.
Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences.
J Virol. 2014; 88(13):7307-16 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
UNLABELLED: Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution.
IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.

Asmar F, Hother C, Kulosman G, et al.
Diffuse large B-cell lymphoma with combined TP53 mutation and MIR34A methylation: Another "double hit" lymphoma with very poor outcome?
Oncotarget. 2014; 5(7):1912-25 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
MiR34A, B and C have been implicated in lymphomagenesis, but information on their role in normal CD19+ B-cells (PBL-B) and de novo diffuse large B-cell lymphoma (DLBCL) is limited. We show that in normal and activated B-cells miR34A-5p plays a dominant role compared to other miR34 family members. Only miR34A-5p is expressed in PBL-B, and significantly induced in activated B-cells and reactive lymph nodes. In PBL-B, the MIR34A and MIR34B/C promoters are unmethylated, but the latter shows enrichment for the H3K4me3/H3K27me3 silencing mark. Nine de novo DLBCL cases (n=150) carry both TP53 mutation and MIR34A methylation ("double hit") and these patients have an exceedingly poor prognosis with a median survival of 9.4 months (P<0.0001), while neither TP53 mutation, MIR34A or MIR34B/C promoter methylation alone ("single hit") influence on survival. The TP53/MIR34A "double-hit" is an independent negative prognostic factor for survival (P=0.0002). In 2 DLBCL-cell lines with both TP53 mutation and promoter methylation of MIR34A, miR34A-5p is upregulated by 5-aza-2'deoxycytidine. Thus, the TP53/MIR34A "double hit" characterizes a very aggressive subgroup of DLBCL, which may be treatable with epigenetic therapy prior to or in combination with conventional immunochemotherapy.

Medina DJ, Abass-Shereef J, Walton K, et al.
Cobblestone-area forming cells derived from patients with mantle cell lymphoma are enriched for CD133+ tumor-initiating cells.
PLoS One. 2014; 9(4):e91042 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
Mantle cell lymphoma (MCL) is associated with a significant risk of therapeutic failure and disease relapse, but the biological origin of relapse is poorly understood. Here, we prospectively identify subpopulations of primary MCL cells with different biologic and immunophenotypic features. Using a simple culture system, we demonstrate that a subset of primary MCL cells co-cultured with either primary human mesenchymal stromal cells (hMSC) or murine MS-5 cells form in cobblestone-areas consisting of cells with a primitive immunophenotype (CD19-CD133+) containing the chromosomal translocation t (11;14)(q13;q32) characteristic of MCL. Limiting dilution serial transplantation experiments utilizing immunodeficient mice revealed that primary MCL engraftment was only observed when either unsorted or CD19-CD133+ cells were utilized. No engraftment was seen using the CD19+CD133- subpopulation. Our results establish that primary CD19-CD133+ MCL cells are a functionally distinct subpopulation of primary MCL cells enriched for MCL-initiating activity in immunodeficient mice. This rare subpopulation of MCL-initiating cells may play an important role in the pathogenesis of MCL.

Saulep-Easton D, Vincent FB, Le Page M, et al.
Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia.
Leukemia. 2014; 28(10):2005-15 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5(+)CD19(+) B cells in the peripheral blood, and in primary and secondary lymphoid organs. A major complication associated with CLL is severe recurrent infections, which are often fatal. Vulnerability to infection is due to a wide variety of immunological defects, yet the initiating events of immunodeficiency in CLL are unclear. Using CLL patient samples and a mouse model of CLL, we have discovered that plasmacytoid dendritic cells (pDCs), which underpin the activity of effector immune cells critical for anti-viral immunity and anti-tumor responses, are reduced in number and functionally impaired in progressive CLL. As a result, the levels of interferon alpha (IFNα) production, a cytokine critical for immunity, are markedly reduced. Lower pDC numbers with impaired IFNα production was due to the decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 (TLR9), respectively. Reduced Flt3 expression was reversed using inhibitors of TGF-β and TNF, an effect correlating with a reduction in tumor load. Defects in pDC numbers and function offer new insight into mechanisms underpinning the profound immunodeficiency affecting CLL patients and provide a potentially novel avenue for restoring immunocompetency in CLL.

Hoxha M, Fabris S, Agnelli L, et al.
Relevance of telomere/telomerase system impairment in early stage chronic lymphocytic leukemia.
Genes Chromosomes Cancer. 2014; 53(7):612-21 [PubMed] Related Publications
Several studies have proposed telomere length and telomerase activity as prognostic factors in chronic lymphocytic leukemia (CLL), whereas information addressing the role of telomere-associated genes is limited. We measured relative telomere length (RTL) and TERT expression levels in purified peripheral CD19(+) B-cells from seven healthy donors and 77 untreated CLLs in early stage disease (Binet A). Data were correlated with the major biological and cytogenetic markers, global DNA methylation (Alu and LINE-1), and clinical outcome. The expression profiles of telomere-associated genes were also investigated. RTL was decreased in CLLs as compared with controls (P < 0.001); within CLL, a progressive and significant RTL shortening was observed in patients from 13q- through +12, 11q-, and 17p- alterations; short telomeres were significantly associated with unmutated IGHV configuration and global DNA hypomethylation. Decreased RTL was associated with a shorter time to first treatment. A significant upregulation of POT1, TRF1, RAP1, MRE11A, RAD50, and RPA1 transcript levels was observed in CLLs compared with controls. Our study suggests that impairment of telomere/telomerase system represents an early event in CLL pathogenesis. Moreover, the correlation between telomere shortening and global DNA hypomethylation supports the involvement of DNA hypomethylation to increase chromosome instability. © 2014 Wiley Periodicals, Inc.

Freedman A
Follicular lymphoma: 2014 update on diagnosis and management.
Am J Hematol. 2014; 89(4):429-36 [PubMed] Related Publications
DISEASE OVERVIEW: Follicular lymphoma is generally an indolent B cell lymphoproliferative disorder of transformed follicular center B cells. Follicular lymphoma (FL) is characterized by diffuse lymphoadenopathy, bone marrow involvement, splenomegaly, and less commonly other extranodal sites of involvement. In general cytopenias can occur but constitutional symptoms of fever, nightsweats, and weight loss are uncommon.
DIAGNOSIS: Diagnosis is based on histology of preferably a biopsy of a lymph node. Immunohistochemical staining is positive in virtually all cases for cell surface CD19, CD20, CD10, and monoclonal immunoglobulin, as well as cytoplasmic expression of bcl-2 protein. The overwhelming majority of cases have the characteristic t(14;18) translocation involving the IgH/bcl-2 genes.
RISK STRATIFICATION: The Follicular Lymphoma International Prognostic Index prognostic model for FL uses five independent predictors of inferior survival: age >60 years, hemoglobin <12 g/dL, serum LDH > normal, Ann Arbor stage III/IV, number of involved nodal areas > 4. The presence of 0, 1, 2, and  ≥ 3 adverse factors defines low, intermediate, and high-risk disease. With the use of more modern therapies, outcomes have improved.
RISK-ADAPTED THERAPY: Observation continues to be adequate for asymptomatic patients with low bulk disease and no cytopenias. For patients needing therapy, most patients are treated with chemotherapy plus rituximab, which has improved response rates, duration of response and overall survival. Randomized studies have shown additional benefit for maintenance rituximab both following chemotherapy-rituximab and single agent rituximab. Experimental therapies as well as stem cell transplantation (SCT) are considered for recurrent disease.

Ramos CA, Savoldo B, Dotti G
CD19-CAR trials.
Cancer J. 2014 Mar-Apr; 20(2):112-8 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
CD19 is a B-lineage-specific transmembrane glycoprotein, the expression of which is maintained on more than 95% B-cell malignancies. This strict lineage restriction makes CD19 an ideal target for immune therapies using chimeric antigen receptors (CARs). Here, we review published phase 1 trials of T cells expressing CARs targeting CD19 and describe briefly the biological questions that they addressed. All patients treated in these trials had relapsed B-cell malignancies, which in many cases were chemorefractory. Nonetheless, major responses have been observed, especially in patients with chronic lymphocytic leukemia and acute lymphoblastic leukemia. Many of these responses were accompanied by a systemic inflammatory reaction syndrome that could be life threatening but was almost always reversible with adequate medical management. Given their remarkable activity, CD19-CAR T cells are likely to be quickly incorporated into the management of B-cell neoplasms; these cells have become the paradigm for similar strategies targeting other cancers.

Paíno T, Sarasquete ME, Paiva B, et al.
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.
PLoS One. 2014; 9(3):e92378 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations--CD138++ (95-99%) and CD138low (1-5%)--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells.

Cheadle EJ, Sheard V, Rothwell DG, et al.
Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen receptor T cells in a mouse model.
J Immunol. 2014; 192(8):3654-65 [PubMed] Related Publications
T cells engrafted with chimeric AgRs (CAR) are showing exciting potential for targeting B cell malignancies in early-phase clinical trials. To determine whether the second-generation CAR was essential for optimal antitumor activity, two CD28-based CAR constructs targeting CD19 were tested for their ability to redirect mouse T cell function against established B cell lymphoma in a BALB/c syngeneic model system. T cells armed with either CAR eliminated A20 B cell lymphoma in vivo; however, one construct induced a T cell dose-dependent acute toxicity associated with a raised serum Th1 type cytokine profile on transfer into preconditioned mice. Moreover, a chronic toxicity manifested as granuloma-like formation in spleen, liver, and lymph nodes was observed in animals receiving T cells bearing either CD28 CAR, albeit with different kinetics dependent upon the specific receptor used. This phenotype was associated with an expansion of CD4+ CAR+ T cells and CD11b+ Gr-1(+) myeloid cells and increased serum Th2-type cytokines, including IL-10 and IL-13. Mouse T cells engrafted with a first-generation CAR failed to develop such autotoxicity, whereas toxicity was not apparent when T cells bearing the same receptors were transferred into C57BL/6 or C3H animals. In summary, the adoptive transfer of second-generation CD19-specific CAR T cells can result in a cell dose-dependent acute toxicity, whereas the prolonged secretion of high levels of Th2 cytokines from these CAR T cells in vivo drives a granulomatous reaction resulting in chronic toxicity. Strategies that prevent a prolonged Th2-cytokine biased CAR T cell response are clearly warranted.

Takiguchi S, Korenaga N, Inoue K, et al.
Involvement of CXCL14 in osteolytic bone metastasis from lung cancer.
Int J Oncol. 2014; 44(4):1316-24 [PubMed] Related Publications
To investigate the molecular mechanisms of lung cancer-induced bone metastasis, we established a bone-seeking subclone (HARA-B4) from a human squamous lung cancer cell line (HARA) using an in vivo selection method. We compared comprehensive gene expression profiles between HARA and HARA-B4, and identified the critical factors for the formation of bone metastasis using in vitro and in vivo assays. The number of bone metastatic colonies in the hind legs was significantly higher in HARA-B4-inoculated mice than in HARA-inoculated mice at 4 weeks after inoculation. In addition, visceral (adrenal) metastases were not found in HARA-B4-inoculated mice at autopsy, suggesting an increase in cancer cell tropism to bone in HARA-B4. Based on a comprehensive gene expression analysis, the expression level of CXC chemokine ligand 14 (CXCL14) was 5-fold greater in HARA-B4 than in HARA. Results of a soft agar colony formation assay showed that anchorage-independent growth ability was 4.5-fold higher with HARA-B4 than with HARA. The murine pre-osteoblast cell line MC3T3-E1 and the pre-osteoclast/macrophage cell line RAW264.7 migrated faster toward cultured HARA-B4 cells than toward HARA cells in a transwell cell migration assay. Interestingly, CXCL14 was shown to be involved in all events (enhancement of cancer cell tropism to the bone, anchorage-independent growth and/or recruitment of bone marrow cells) based on siRNA experiments in HARA-B4 cells. Furthermore, in clinical specimens of lung cancer-induced bone metastasis, expression of CXCL14 was observed in the tumor cells infiltrated in bone marrow in all specimens examined. CXCL14 was able to promote bone metastasis through enhancement of cancer cell tropism to the bone and/or recruitment of bone marrow cells around metastatic cancer cells.

Abdulateef NA, Ismail MM, Aljedani H
Clinical significance of co-expression of aberrant antigens in acute leukemia: a retrospective cohort study in Makah Al Mukaramah, Saudi Arabia.
Asian Pac J Cancer Prev. 2014; 15(1):221-7 [PubMed] Related Publications
BACKGROUND: Aberrant phenotypes in acute leukemia have variable frequency and their prognostic and predictive relevance is controversial, despite several reports of clinical significance.
AIMS: To determine the prevalence of aberrant antigen expression in acute leukemia, assess clinical relevance and demonstrate immunophenotype-karyotype correlations.
MATERIALS AND METHODS: A total of 73 (40 AML and 33 ALL) newly diagnosed acute leukemia cases presenting to KAMC, Kingdom of Saudi Arabia, were included. Diagnosis was based on WHO criteria and FAB classification. Immunophenotyping by flow cytometry, conventional karyotyping and fluorescence in situ hybridization for gene rearrangements were performed.
RESULTS: Aberrant antigens were detected in 27/40 (67.5%) of AML and in 14/33 (42.4%) in ALL cases. There were statistically significant higher TLC in Ly+ AML than in Ly-AML (p=0.05) and significant higher blast count in ALL with aberrant antigens at presentation and day 14 (p=0.005, 0.046). There was no significant relation to clinical response, relapse free survival (RFS) or overall survival (p>0.05), but AML cases expressing ≥2 Ly antigens showed a lower median RFS than those expressing a single Ly antigen. In AML, CD 56 was expressed in 11/40. CD7 was expressed in 7/40, having a significant relation with an unfavorable cytogenetic pattern (p=0.046). CD4 was expressed in 5/40. CD19 was detected in 4/40 AML associated with M2 and t (8; 21). In ALL cases, CD33 was expressed in 7/33 and CD13 in 5/33. Regarding T Ag in B-ALL CD2 was expressed in 2 cases and CD56 in 3 cases.
CONCLUSIONS: Aberrant antigen expression may be associated with adverse clinical data at presentation. AML cases expressing ≥2 Ly antigens may have shorter median RFS. No specific cytogenetic pattern is associated with aberrant antigen expression but individual antigens may be related to particular cytogenetic patterns. Immunophenotype-karyotype correlations need larger studies for confirmation.

Harms KL, Harms PW, Anderson T, et al.
Mycosis fungoides with CD20 expression: report of two cases and review of the literature.
J Cutan Pathol. 2014; 41(6):494-503 [PubMed] Related Publications
CD20 expression is exceedingly rare in T-cell lymphomas. Most published cases have been diagnosed as peripheral T-cell lymphomas, not otherwise specified. Only 18 cases of CD20-positive mycosis fungoides (MF) have been previously reported. Here, we describe two cases of CD20-positive MF. Patient 1 was an 84-year-old woman who presented with a 5-year history of multiple pruritic erythematous papules coalescing into thin plaques over 80% of her body surface area. She expired after developing tumors and large cell transformation. Patient 2 was a 67-year-old woman with a long-standing history of tumor stage MF with large cell transformation. She developed a nodular plaque while receiving topical and systemic therapy. In both cases, the neoplastic T-cells demonstrated a CD4-positive immunophenotype with loss of pan-T-cell markers and a monoclonal T-cell receptor gamma gene rearrangement. CD20 was expressed by a significant population of the neoplastic T-cells, but these T-cells lacked expression of other B-cell markers, including CD79a, CD19 and PAX5. This report adds to and summarizes the small body of literature describing CD20-positive MF, and discusses diagnostic and clinical implications.

Tembhare PR, Yuan CM, Venzon D, et al.
Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases.
Leuk Res. 2014; 38(3):371-6 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Flow cytometric (FC) enumeration of abnormal plasma cells (APCs) for diagnosis and prognostication of plasma cell dyscrasias (PCD) is challenging. We studied antigen expression in normal plasma cells (NPC) (N = 34) and APC in a series of unselected PCD (N = 59). NPC subpopulations often demonstrated CD19(-), CD20(+), CD45(-) or dim and CD56(+), an immunophenotype observed in PCD. However abnormal CD81 was only observed in APCs (APC detection sensitivity 95%; specificity 100%). We evaluated differences in antigen expression patterns among MGUS (N = 14), SMM (N = 35) and MM (N = 10), finding the combination of CD45 and CD56 helpful in differentiating MGUS from SMM and MM (p = 0.0002).

Chapiro E, Antony-Debre I, Marchay N, et al.
Sex chromosome loss may represent a disease-associated clonal population in chronic lymphocytic leukemia.
Genes Chromosomes Cancer. 2014; 53(3):240-7 [PubMed] Related Publications
Whether sex chromosome loss (SCL) is an age-related phenomenon or a cytogenetic marker of hematological disease is unclear. To address this issue in chronic lymphocytic leukemia (CLL), we investigated 20 cases with X or Y chromosome loss detected by conventional cytogenetics (CC). The frequency of SCL was low in CLL (2.3%). It was the sole abnormality, as detected by CC, in 10/20 (50%) patients. Fluorescence in situ hybridization (FISH) analyses confirmed SCL in all patients tested, present in 5-88% of cells (median: 68%). Deletions of 13q were observed by FISH in 16/20 (80%) patients. Compared with CLL without SCL, SCL was significantly associated with 13q deletion, especially when bi-allelic (P = 0.04). Co-hybridization analyses showed that SCL could be a concomitant, primary or secondary change, or be present in an independent clone. FISH analyses were performed on blood sub-populations isolated by Ficoll or flow cytometry. Comparing mononuclear cells (including CLL cells) and polynuclear cells separated by Ficoll, a maximum of 2% of polynuclear cells were found with SCL, whereas mononuclear cells exhibited a significantly higher loss frequency (range: 6-87%) (P = 0.03). Comparing B-cells (including CLL cells) and T-cells sorted by flow cytometry, the proportion of B-CD19+ cells with SCL was significantly higher (range: 88-96%) than that observed in T-CD3+ cells (range: 2-6%) (P = 0.008). We conclude that SCL has to be considered as a clonal aberration in CLL that may participate in the oncogenic process.

Bojarska-Junak A, Hus I, Chocholska S, et al.
CD1d expression is higher in chronic lymphocytic leukemia patients with unfavorable prognosis.
Leuk Res. 2014; 38(4):435-42 [PubMed] Related Publications
Through the analysis of CD1d expression by flow cytometry and qRT-PCR we showed lower CD1d molecule and CD1d mRNA expression in B cells of CLL patients than of healthy controls. The frequency of CD1d(+)/CD19(+) cells, CD1d staining intensity and CD1d transcript levels increased with the disease stage. CD1d expression was positively associated with ZAP-70 and CD38 expressions as well as with unfavourable cytogenetic changes. We established the relationship between high CD1d expression and shorter time to treatment and overall survival. We observed that CD1d expression in individual patients significantly changed over time. The percentage of CD1d(+)/CD19(+) cells inversely correlated with the percentage of iNKT cells.

Wang LQ, Kwong YL, Kho CS, et al.
Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia--implications on constitutive activation of NFκB pathway.
Mol Cancer. 2013; 12:173 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BACKGROUND: The miR-9 family microRNAs have been identified as a tumor suppressor miRNA in cancers. We postulated that miR-9-1, miR-9-2 and miR-9-3 might be inactivated by DNA hypermethylation in chronic lymphocytic leukemia (CLL).
METHODS: Methylation of miR-9-1, miR-9-2 and miR-9-3 was studied in eight normal controls including normal bone marrow, buffy coat, and CD19-sorted peripheral blood B-cells from healthy individuals, seven CLL cell lines, and seventy-eight diagnostic CLL samples by methylation-specific polymerase chain reaction.
RESULTS: The promoters of miR-9-3 and miR-9-1 were both unmethylated in normal controls, but methylated in five (71.4%) and one of seven CLL cell lines respectively. However, miR-9-2 promoter was methylated in normal controls including CD19 + ve B-cells, hence suggestive of a tissue-specific but not tumor-specific methylation, and thus not further studied. Different MSP statuses of miR-9-3, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite methylation analysis. 5-Aza-2'-deoxycytidine treatment resulted in miR-9-3 promoter demethylation and re-expression of pri-miR-9-3 in I83-E95 and WAC3CD5+ cells, which were homozygously methylated for miR-9-3. Moreover, overexpression of miR-9 led to suppressed cell proliferation and enhanced apoptosis together with downregulation of NFκB1 in I83-E95 cells, supporting a tumor suppressor role of miR-9-3 in CLL. In primary CLL samples, miR-9-3 was detected in 17% and miR-9-1 methylation in none of the patients at diagnosis. Moreover, miR-9-3 methylation was associated with advanced Rai stage (≥ stage 2) (P = 0.04).
CONCLUSIONS: Of the miR-9 family, miR-9-3 is a tumor suppressor miRNA relatively frequently methylated, and hence silenced in CLL; whereas miR-9-1 methylation is rare in CLL. The role of miR-9-3 methylation in the constitutive activation of NFκB signaling pathway in CLL warrants further study.

Maher J
Clinical immunotherapy of B-cell malignancy using CD19-targeted CAR T-cells.
Curr Gene Ther. 2014; 14(1):35-43 [PubMed] Related Publications
The CD19 molecule is ubiquitously expressed throughout all stages of B-cell differentiation, but is not found on haemopoietic stem cells. Since most B-cell leukaemias and lymphomas retain CD19 expression, it represents an excellent target for immunotherapy of these malignant disorders. Over the past 10 years, compelling pre-clinical evidence has accrued to indicate that expression of a CD19-targeted chimeric antigen receptor (CAR) in peripheral blood T-cells exerts therapeutic efficacy in diverse models of B-cell malignancy. Building on this, clinical studies are ongoing in several centres in which autologous CD19-specific CAR T-cells are undergoing evaluation in patients with acute and chronic B-cell leukaemia and refractory lymphoma. Early data have generated considerable excitement, providing grounds to speculate that CAR-based immunotherapy will radically alter existing management paradigms in B-cell malignancy. The focus of this mini-review is to evaluate these emerging clinical data and to speculate on clinical prospects for this new therapeutic modality.

Budde LE, Berger C, Lin Y, et al.
Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma.
PLoS One. 2013; 8(12):e82742 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a "suicide gene" relying on inducible activation of caspase 9 (iC9), and a truncated CD19 selectable marker. Rapid expansion (2000 fold) of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20(+) malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned.

Fujiwara H
Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.
Int J Hematol. 2014; 99(2):123-31 [PubMed] Related Publications
The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

Singh H, Huls H, Kebriaei P, Cooper LJ
A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19.
Immunol Rev. 2014; 257(1):181-90 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing methods to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CARs) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR(+) T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential.

Cheadle EJ, Gornall H, Baldan V, et al.
CAR T cells: driving the road from the laboratory to the clinic.
Immunol Rev. 2014; 257(1):91-106 [PubMed] Related Publications
Blockbuster antibody therapies have catapulted immune-based approaches to treat cancer into the consciousness of mainstay clinical research. On the back of this, other emerging immune-based therapies are providing great promise. T-cell therapy is one such area where recent trials using T cells genetically modified to express an antibody-based chimeric antigen receptor (CAR) targeted against the CD19 antigen have demonstrated impressive responses when adoptively transferred to patients with advanced chronic lymphocytic leukemia. The general concept of the CAR T cell was devised some 20 years ago. In this relatively short period of time, the technology to redirect T-cell function has moved at pace facilitating clinical translation; however, many questions remain with respect to developing the approach to improve CAR T-cell therapeutic activity and also to broaden the range of tumors that can be effectively targeted by this approach. This review highlights some of the underlying principles and compromises of CAR T-cell technology using the CD19-targeted CAR as a paradigm and discusses some of the issues that relate to targeting solid tumors with CAR T cells.

Hinrichs CS, Rosenberg SA
Exploiting the curative potential of adoptive T-cell therapy for cancer.
Immunol Rev. 2014; 257(1):56-71 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Adoptive T-cell therapy (ACT) is a potent and flexible cancer treatment modality that can induce complete, durable regression of certain human malignancies. Long-term follow-up of patients receiving tumor-infiltrating lymphocytes (TILs) for metastatic melanoma reveals a substantial subset that experienced complete, lasting tumor regression - and may be cured. Increasing evidence points to mutated gene products as the primary immunological targets of TILs from melanomas. Recent technological advances permit rapid identification of the neoepitopes resulting from these somatic gene mutations and of T cells with reactivity against these targets. Isolation and adoptive transfer of these T cells may improve TIL therapy for melanoma and permit its broader application to non-melanoma tumors. Extension of ACT to other malignancies may also be possible through antigen receptor gene engineering. Tumor regression has been observed following transfer of T cells engineered to express chimeric antigen receptors against CD19 in B-cell malignancies or a T-cell receptor against NY-ESO-1 in synovial cell sarcoma and melanoma. Herein, we review recent clinical trials of TILs and antigen receptor gene therapy for advanced cancers. We discuss lessons from this experience and consider how they might be applied to realize the full curative potential of ACT.

Slamova L, Starkova J, Fronkova E, et al.
CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage.
Leukemia. 2014; 28(3):609-20 [PubMed] Related Publications
Switches from the lymphoid to myeloid lineage during B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment are considered rare and thus far have been detected in MLL-rearranged leukemia. Here, we describe a novel BCP-ALL subset, switching BCP-ALL or swALL, which demonstrated monocytosis early during treatment. Despite their monocytic phenotype, 'monocytoids' share immunoreceptor gene rearrangements with leukemic B lymphoblasts. All swALLs demonstrated BCP-ALL with CD2 positivity and no MLL alterations, and the proportion of swALLs cases among BCP-ALLs was unexpectedly high (4%). The upregulation of CEBPα and demethylation of the CEBPA gene were significant in blasts at diagnosis, prior to the time when most of the switching occurs. Intermediate stages between CD14(neg)CD19(pos)CD34(pos) B lymphoblasts and CD14(pos)CD19(neg)CD34(neg) 'monocytoids' were detected, and changes in the expression of PAX5, PU1, M-CSFR, GM-CSFR and other genes accompanied the switch. Alterations in the Ikaros and ERG genes were more frequent in swALL patients; however, both were altered in only a minority of swALLs. Moreover, switching could be recapitulated in vitro and in mouse xenografts. Although children with swALL respond slowly to initial therapy, risk-based ALL therapy appears the treatment of choice for swALL. SwALL shows that transdifferentiating into monocytic lineage is specifically associated with CEBPα changes and CD2 expression.

Du J, Romano RA, Si H, et al.
Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation.
J Pathol. 2014; 232(3):356-68 [PubMed] Related Publications
ΔNp63 is known to be critical in skin development and cancer; however, how it triggers proliferation and inflammation in vivo remains to be elucidated. Here, we find that induced ΔNp63 expression in skin of transgenic mice (TG) results in a hyperproliferative epidermis coupled with inflammatory infiltrates. In situ, infiltrating cells include CD45(+) leukocytes, CD19(+) B lymphocytes, CD3(+) T lymphocytes, CD4(+) T helper, CD25(+)/Foxp3(+) Treg, Ly6B(+) neutrophils, S-100(+) dendritic cells, and macrophages bearing CD11b(+), F4/80(+), CD68(+), and CD206(+) M2 type markers. Transcriptional profiling of TG skin revealed increased gene expression involved in inflammation and immune responses, including Th2/M2 cytokines and chemokines. These genes were co-regulated by ΔNp63 and NF-κB RelA or cRel, and enhanced by TNF-α. Elevated cRel, RelA, and IKKs were observed in TG mouse skin and human squamous carcinomas with ΔNp63 overexpression. Thus, our findings unveil a missing link connecting overexpressed ΔNp63 with aberrant NF-κB activation, pro-inflammatory and type 2 cytokines and chemokines, and host infiltrates during skin inflammation and hyperplasia. Our findings provide a missing link between ΔNp63 overexpression and NF-κB-mediated inflammation, of potential relevance to the pathogenesis of squamous carcinoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD19, Cancer Genetics Web: http://www.cancer-genetics.org/CD19.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 26 February, 2015     Cancer Genetics Web, Established 1999