CTAG1B

Gene Summary

Gene:CTAG1B; cancer/testis antigen 1B
Aliases: CTAG, ESO1, CT6.1, CTAG1, LAGE-2, LAGE2B, NY-ESO-1
Location:Xq28
Summary:The protein encoded by this gene is an antigen that is overexpressed in many cancers but that is also expressed in normal testis. This gene is found in a duplicated region of the X-chromosome and therefore has a neighboring gene of identical sequence. [provided by RefSeq, Jan 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cancer/testis antigen 1
Source:NCBIAccessed: 13 March, 2017

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Latest Publications: CTAG1B (cancer-related)

Theodoraki MN, Lorenz KJ, Schneider J, et al.
Influence of Photodynamic Therapy on the Expression of Cancer/Testis Antigens in Squamous Cell Carcinoma of the Head and Neck.
Anticancer Res. 2016; 36(8):3973-82 [PubMed] Related Publications
BACKGROUND: Photodynamic therapy (PDT) represents a palliative treatment resulting in induction of inflammatory reactions with importance for the development of an antitumor immunity. Cancer/testis antigens (CTAs) have been associated with poor prognosis in different types of cancer, including head and neck squamous cell carcinoma (HNSCC).
MATERIALS AND METHODS: Tumor tissue samples before and after PDT were evaluated for the expression of four different CTAs by immunohistochemistry. Expression intensity and subcellular expression pattern were assessed.
RESULTS: Before PDT, expression of any CTA was detectable in 91%. Comparing the overall expression of CTAs, a decreased expression of all melanoma-associated antigens (MAGEs) post-treatment and a slightly increased expression of New York esophageal squamous cell carcinoma 1 (NY-ESO-1) was visible. The simultaneous cytoplasmic and nuclear expression of pan-MAGE or MAGE-A3/A4 correlated with reduced treatment-failure-free-survival (TFFS).
CONCLUSION: This study investigated the impact of PDT on CTA expression in HNSCC, detecting modified expression patterns after PDT. These changes may have been caused by immunological pressure or epigenetic regulation of CTA expression.

Park TS, Groh EM, Patel K, et al.
Expression of MAGE-A and NY-ESO-1 in Primary and Metastatic Cancers.
J Immunother. 2016; 39(1):1-7 [PubMed] Related Publications
Melanoma-associated antigen-A (MAGE-A) and New York esophageal squamous cell cancer-1 (NY-ESO-1) are 2 cancer testis antigens (CTA) demonstrating potential for use in targeted immunotherapy. Clinical trials in melanoma and synovial sarcomas targeting these antigens in immune-based therapies have demonstrated durable tumor regression. Although protein expression of NY-ESO-1 has been assessed in a variety of cancer types, the expression of MAGE-A has not been studied in depth. In this study we analyzed MAGE-A and NY-ESO-1 expression in 314 melanoma specimens from 301 melanoma patients, 38 patients with squamous cell cancers and 111 patients with adenocarcinomas. Our results demonstrated higher expression of MAGE-A compared with NY-ESO-1 in melanomas (32% vs. 13%) and squamous cell carcinomas (45% vs. 7.9%), and higher expression of both CTAs in metastatic versus primary tumors. CTA expression in adenocarcinomas was low (MAGE-A: 10%, NY-ESO-1: 0.9%). In addition, we looked at concordance of expression among metastatic melanoma lesions within the same patient and found concordant expression in 38 of 47 patients for MAGE-A and 43 of 47 patients for NY-ESO-1. Our study demonstrated that the MAGE-A family may be of greater utility than NY-ESO-1 for targeted immunotherapy in a variety of cancer histologies, in particular metastatic melanomas and squamous cell carcinomas.

Matsuzaki J, Tsuji T, Luescher IF, et al.
Direct tumor recognition by a human CD4(+) T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses.
Sci Rep. 2015; 5:14896 [PubMed] Free Access to Full Article Related Publications
Tumor antigen-specific CD4(+) T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4(+) T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4(+) helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4(+) T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8(+) T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8(+) T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients.

Lee HJ, Kim JY, Song IH, et al.
Expression of NY-ESO-1 in Triple-Negative Breast Cancer Is Associated with Tumor-Infiltrating Lymphocytes and a Good Prognosis.
Oncology. 2015; 89(6):337-44 [PubMed] Related Publications
OBJECTIVES: Accumulating evidence suggests that immunotherapy has great potential for treating triple-negative breast cancer (TNBC). We analyzed the expression of NY-ESO-1, which is a potent immunogenic cancer testis antigen, and its association with clinicopathological factors in large cohorts of breast cancer patients.
METHODS: A total of 623 consecutive breast cancer patients who underwent surgery between 1993 and 1998 and 612 TNBC patients who underwent surgery between 2004 and 2010 at Asan Medical Center were included. Immunohistochemical staining for NY-ESO-1 was performed using tissue microarrays.
RESULTS: NY-ESO-1 was expressed in 2.6% of consecutive breast cancers, all of which were TNBC (p < 0.001). NY-ESO-1 expression was identified in 9.7% of the TNBC cohort and was significantly correlated with a higher level of tumor-infiltrating lymphocytes (TIL; p = 0.026). In survival analyses, a lower level of TIL (all, p < 0.001) and the absence of NY-ESO-1 expression (p = 0.024) were significantly associated with poor disease-free survival. Additionally, positive NY-ESO-1 expression was an independent favorable prognostic factor in TNBC patients (p = 0.046).
CONCLUSIONS: NY-ESO-1 is specifically expressed in TNBC, and NY-ESO-1 expression is an independent good prognostic factor in TNBC. Evaluation of NY-ESO-1 expression in TNBC might be useful for selecting patients who may benefit from vaccination therapy and also has a prognostic significance in TNBC.

Criscitiello C, Curigliano G
Immunotherapy of Breast Cancer.
Prog Tumor Res. 2015; 42:30-43 [PubMed] Related Publications
Cancer immunoediting is the process by which the immune system protects the host from tumor development and guides the somatic evolution of tumors by eliminating highly immunogenic tumor cells. A fundamental dogma of tumor immunology and of cancer immunosurveillance in particular is that cancer cells express antigens that differentiate them from their nontransformed counterparts. Molecular studies clearly show that these antigens were often products of mutated cellular genes, aberrantly expressed normal genes, or genes encoding viral proteins. There is a strict correlation between genetic instability and the immune landscape of a breast cancer. Mutational heterogeneity in breast cancer is associated with new cancer-associated genes and new cancer antigens. Frequencies of somatic mutations or mutational burden can be related to the immunogenicity of breast cancer. We believe that molecular subtypes of breast cancer that are triple negative, luminal B-like or HER2-positive have a high mutational burden and can be considered immunogenic. The increasing knowledge of the immune system's capacity to not only recognize and destroy cancer, but also to shape cancer immunogenicity will develop more informed attempts to control cancer via immunological approaches. To be effective in breast cancer, immunotherapies will have to increase the quality or quantity of immune effector cells, reveal additional protective tumor antigens, and/or eliminate cancer-induced immunosuppressive mechanisms. Multiple immunotherapy approaches are under investigation in patients with breast cancer. These include vaccine approaches to elicit strong specific immune responses to tumor antigens such as WT-1, HER2 and NY-ESO-1, approaches involving adoptive transfer of in vitro-expanded, naturally arising or genetically engineered tumor-specific lymphocytes, therapeutic administration of monoclonal antibodies to target and eliminate tumor cells, and approaches that inhibit or destroy the molecular or cellular mediators of cancer-induced immunosuppression, such as CTLA-4, PD-1 or Treg cells. Here we provide a concise and comprehensive review on the role and utility of promising immunotherapeutics for the treatment of patients with breast cancer.

Reardon ES, Hong JA, Straughan DM, et al.
Pulmonary Metastases Exhibit Epigenetic Clonality: Implications for Precision Cancer Therapy.
Ann Thorac Surg. 2015; 100(5):1839-48; discussion 1848 [PubMed] Related Publications
BACKGROUND: Development of effective cancer therapies may be limited by intratumoral heterogeneity, which facilitates outgrowth and organ-specific dissemination of treatment resistant clones. At present, limited information is available regarding epigenetic landscapes of pulmonary metastases. This study was undertaken to characterize epigenetic signatures of pulmonary metastases and to identify potential therapeutic targets.
METHODS: RNA and DNA were extracted from 65 pulmonary metastases resected from 12 patients (5 with sarcoma, 7 with adrenocortical carcinoma). Quantitative reverse transcription polymerase chain reaction techniques were used to evaluate expression levels of cancer-testis (CT) genes (NY-ESO-1, MAGE-A3, MAGE-A9, MAGE-A12, GAGE1, CT-45, SSX-1, and SSX-2), tumor suppressor (TS) genes (p16 and RASSF1A), and genes encoding epigenetic modifiers (DNMT1, DNMT3A, DNMT3B, EZH2, EED, and SUZ12), aberrantly expressed in human malignant diseases. Pyrosequencing techniques were used to quantitate DNA methylation levels in LINE1, NBL2, and D4Z4 repetitive sequences and promoter methylation status of differentially regulated genes. Results of these analyses were compared with a standardized panel of normal lung tissues.
RESULTS: Pulmonary metastases exhibited histologically related and patient-specific global DNA demethylation. Significant interpatient heterogeneity of gene expression was observed even among patients with similar tumor histologic features. Epigenetic signatures appeared consistent among metastases from the same patient, irrespective of the time of resection (synchronous/metachronous) or the anatomic location. EZH2, EED, and SUZ12 (core components of Polycomb repressive complex-2 [PRC-2]) were upregulated in the majority of metastases.
CONCLUSIONS: Pulmonary metastases exhibit patient-specific epigenetic clonality, which may be exploited for precision therapies targeting aberrant CT or TS gene expression. PRC-2 may be a shared target for epigenetic therapy of pulmonary metastases.

Miyai M, Eikawa S, Hosoi A, et al.
Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.
PLoS One. 2015; 10(8):e0136086 [PubMed] Free Access to Full Article Related Publications
Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring.

Frøsig TM
Elucidating the immunological effects of 5-azacytidine treatment in patients with myelodysplastic syndrome and identifying new conditional ligands and T-cell epitopes of relevance in melanoma.
Dan Med J. 2015; 62(8):B5144 [PubMed] Related Publications
This review is focused on research within three different areas of tumor immunology: discovery of new T-cell epitopes and a new immunological antigen (reported in Paper I and II), elucidation of the immunological effects of treatment with a hypomethylating drug (reported in Paper III) and discovery of new conditional ligands (reported in Paper IV). Many melanoma-associated T-cell epitopes have been described, but 45% of these are restricted to human leukocyte antigen (HLA)-A2, leaving the remaining 36 different HLA molecules with only a few described T-cell epitopes each. Therefore we wanted to expand the number of T-cell epitopes restricted to HLA-A1, -A3, -A11 and -B7, all HLA molecules frequently expressed in Caucasians in Western Europe and Northern America. In Paper I we focused on the proteins gp100, Mart1, MAGE-A3, NY-ESO-1, tyrosinase and TRP-2, all melanoma-associated antigens frequently recognized by T cells from HLA-A2 patients. On contrary, in Paper II we wanted to investigate the protein Nodal as a novel immunological target. We took advantage of a T-cell epitope mapping platform in which HLA ligands are predicted by computer-based algorithms, further tested in the laboratory by an ELISA-based method and used for flow cytometry-based detection of specific T-cell responses by use of combinatorial encoded major histocompatibility (MHC) class I multimers. This procedure resulted in 127 (Paper I) and 32 (Paper II) confirmed HLA ligands, respectively, which we used for screening of the T-cell recognition within peripheral blood mononuclear cell samples from melanoma patients. As spontaneous tumor-specific T-cell responses tend to be of very low frequency and probably below the detection threshold of the method, we incorporated a T-cell enrichment step prior to the detection of these responses. Our screening of 39 melanoma patients resulted in 26 (17 different) T-cell responses against the common melanoma-associated antigens and 10 (8 different) T-cell responses against Nodal. We were further able to show processing and presentation on the cell-surface in K562 and melanoma cells expressing relevant protein and HLA molecules of four of these peptide sequences from tyrosinase, gp100 (2 peptides) and Nodal, respectively. However, one of the gp100 peptides has previously been described as a T-cell epitope. In addition to identifying new melanoma-associated T-cell epitopes we could thus describe Nodal as a new immunological antigen found of relevance in melanoma patients. In Paper III we wanted to investigate if the hypomethylating drug 5-azactytidine (Vidaza, Celgene Inc.) modulates the immune system in patients with myeloproliferative diseases. It has previ-ously been shown that 5-azacytidine-mediated demethylation of gene promoter regions results in enhanced transcription and expression of tumor suppressor genes and cancer-testis antigens. Cancer-testis antigens have frequently been recognized by T-cells in many cancers, and we hypothesized that 5-azacytidine treat-ment in the clinic would increase their frequency with resulting enhanced anti-tumor reactivity. We investigated separately the effect on T cells and tumor cells, and found that tumor cells af-fected by the treatment were better recognized, resulting in higher numbers of activated T cells, than tumor cells not exposed to 5-azacytidine. No effects were observed on the T-cell population. A screen of the T-cell recognition of 43 cancer-testis antigens in blood from our patients revealed increased T-cell recognition upon start of therapy which, though, stabilized or declined at later time points. We further investigated the general immune effector and inhibitory cell populations and found only minor effects of drug exposure, suggesting that 5-azacytidine primarily affects the tumor cells. From these results we are currently initiating a phase I clinical trial of cancer-testis antigen-peptide vaccination in combination with 5-azacytidine therapy for patients with myeloproliferative diseases. In Paper IV we wanted to expand the library of conditional ligands for use with the UV light-mediated peptide-exchange method. This method enables high-throughput generation of MHC class I molecules with different peptide-specificities. These MHC monomers can be multimerized and used for detection of specific T cell populations by flow or mass cytometry. The HLA molecules are highly genetically variable and this necessitates unique design of conditional ligands for each HLA molecule. Thus, to screen for the T-cell recognition in a given setting within all patients or healthy donors present in a cohort, a broad library of conditional ligands is needed. We designed and evaluated conditional ligands for HLA-B*08:01, HLA-B*35:01 and HLA-B*44:02/03/05, all HLA-B molecules present in high frequency among Caucasians. In addition, we provided proof for the use of a conditional ligand first designed for HLA-B*15:02 in complex with HLA-B*15:01. We compared the staining patterns of HLA-B*15:01 and HLA-B*15:02 MHC multimers and found remarkable dissimilarities, although the two heavy chains in these MHC molecules only differ in a few amino acid positions.

Su C, Xu Y, Li X, et al.
Predictive and prognostic effect of CD133 and cancer-testis antigens in stage Ib-IIIA non-small cell lung cancer.
Int J Clin Exp Pathol. 2015; 8(5):5509-18 [PubMed] Free Access to Full Article Related Publications
CD133 and cancer-testis antigens (CTAs) may be potential predicted markers of adjuvant chemotherapy or immune therapy, and they may be the independent prognostic factor of NSCLC. Nowadays, there is still no predictive biomarker identified for the use of adjuvant chemotherapy in non-small cell lung cancer (NSCLC) patients. To clarify the role of CD133 and CTAs as a predictive marker for adjuvant chemotherapy or prognostic factors of overall survival, we performed a retrospective study in 159 stage Ib-IIIA NSCLC patients receiving adjuvant chemotherapy or observe from April 2003 to March 2004 in our institute. Clinical data and gene anaylisis results were collected, while CD133 and three CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were determined according to their monoclonal antibodies such as CD133, 57B, D8.38 and 3GA11 by immunohistochemistry. All CTAs were more frequently expressed in squamous cell carcinoma (SCC) (50.0%, 26.9%, 34.6%) than in adenocarcinoma (16.2%, 16.2%, 16.2%). CD133 was more frequently found in patients with adenocarcinoma (P=0.044). Negative expression of CD133 was associated with a significantly longer overall survival compared to positive expression of CD133 (62.5 vs. 48.5 months, P=0.035). When combined with MAGEA4, NY-ESO-1or MAGE-A10, patients' OS showed significantly difference among different combination. (CD133-MAGEA4-/CD133-MAGEA4+/CD133+MAGEA4-/CD133+MAGEA4+: 65.6 months vs.51.5 months vs.32.2 months vs.19.8 months, P=0.000, CD133-NY-ESO-1-/ CD133+NY-ESO-1-/CD133-NY-ESO-1+/ CD133+NY-ESO-1+: 57.8 months vs. 55.7 months vs. 44.6 months vs. 28.5 months, P=0.000, CD133-MAGEA10-/CD133+ MAGEA10-/CD133-MAGEA10-/CD133+MAGEA10+: 66.2 months vs. 57.2 months vs. 48.8 months vs. 41.4 months, P=0.001). There is no difference between patients received adjuvant chemotherapy or not, but subgroup analysis showed that the patients with CD133+NY-ESO-1+ expression who received chemotherapy will survive longer than not receive adjuvant chemotherapy (received vs. not received, 52.1 vs. 27.1 months, P=0.020). In the subgroup with EGFR mutation/ALK translocation/Ros1 translocation/Ret fusion, the trend remained but without a statistically significant difference. Multivariate COX regression analysis showed that stage, CD133, CD133-MAGEA4- and CD133-NY-ESO-1- are independent prognostic factors. In conclusion, CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were more likely expressed in patients with squamous cell carcinoma and when CTAs combined with CD133, they can be better prognostic factors. Patients with CD133+NY-ESO-1+ expression may survive longer when treated with adjuvant chemotherapy, which indicates that the CD133 and CTAs might be a potential marker to guide adjuvant chemotherapy in this population.

Krishnadas DK, Shusterman S, Bai F, et al.
A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma.
Cancer Immunol Immunother. 2015; 64(10):1251-60 [PubMed] Related Publications
Antigen-specific immunotherapy was studied in a multi-institutional phase 1/2 study by combining decitabine (DAC) followed by an autologous dendritic cell (DC)/MAGE-A1, MAGE-A3 and NY-ESO-1 peptide vaccine in children with relapsed/refractory solid tumors. Patients aged 2.5-15 years with relapsed neuroblastoma, Ewing's sarcoma, osteosarcoma and rhabdomyosarcoma were eligible to receive DAC followed by DC pulsed with overlapping peptides derived from full-length MAGE-A1, MAGE-A3 and NY-ESO-1. The primary endpoints were to assess the feasibility and tolerability of this regimen. Each of four cycles consisted of week 1: DAC 10 mg/m(2)/day for 5 days and weeks 2 and 3: DC vaccine once weekly. Fifteen patients were enrolled in the study, of which 10 were evaluable. Generation of DC was highly feasible for all enrolled patients. The treatment regimen was generally well tolerated, with the major toxicity being DAC-related myelosuppression in 5/10 patients. Six of nine patients developed a response to MAGE-A1, MAGE-A3 or NY-ESO-1 peptides post-vaccine. Due to limitations in number of cells available for analysis, controls infected with a virus encoding relevant genes have not been performed. Objective responses were documented in 1/10 patients who had a complete response. Of the two patients who had no evidence of disease at the time of treatment, one remains disease-free 2 years post-therapy, while the other experienced a relapse 10 months post-therapy. The chemoimmunotherapy approach using DAC/DC-CT vaccine is feasible, well tolerated and results in antitumor activity in some patients. Future trials to maximize the likelihood of T cell responses post-vaccine are warranted.

Sideras K, Bots SJ, Biermann K, et al.
Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area.
Br J Cancer. 2015; 112(12):1911-20 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Identification of tumour antigens is crucial for the development of vaccination strategies against hepatocellular carcinoma (HCC). Most studies come from eastern-Asia, where hepatitis-B is the main cause of HCC. However, tumour antigen expression is poorly studied in low-endemic, western areas where the aetiology of HCC differs.
METHODS: We constructed tissue microarrays from resected HCC tissue of 133 patients. Expression of a comprehensive panel of cancer-testis (MAGE-A1, MAGE-A3/4, MAGE-A10, MAGE-C1, MAGE-C2, NY-ESO-1, SSX-2, sperm protein 17), onco-fetal (AFP, Glypican-3) and overexpressed tumour antigens (Annexin-A2, Wilms tumor-1, Survivin, Midkine, MUC-1) was determined by immunohistochemistry.
RESULTS: A higher prevalence of MAGE antigens was observed in patients with hepatitis-B. Patients with expression of more tumour antigens in general had better HCC-specific survival (P=0.022). The four tumour antigens with high expression in HCC and no, or weak, expression in surrounding tumour-free-liver tissue, were Annexin-A2, GPC-3, MAGE-C1 and MAGE-C2, expressed in 90, 39, 17 and 20% of HCCs, respectively. Ninety-five percent of HCCs expressed at least one of these four tumour antigens. Interestingly, GPC-3 was associated with SALL-4 expression (P=0.001), an oncofetal transcription factor highly expressed in embryonal stem cells. SALL-4 and GPC-3 expression levels were correlated with vascular invasion, poor differentiation and higher AFP levels before surgery. Moreover, patients who co-expressed higher levels of both GPC-3 and SALL-4 had worse HCC-specific survival (P=0.018).
CONCLUSIONS: We describe a panel of four tumour antigens with excellent coverage and good tumour specificity in a western area, low-endemic for hepatitis-B. The association between GPC-3 and SALL-4 is a novel finding and suggests that GPC-3 targeting may specifically attack the tumour stem-cell compartment.

Shida A, Futawatari N, Fukuyama T, et al.
Frequent High Expression of Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1) in Gastric Cancer.
Anticancer Res. 2015; 35(6):3575-9 [PubMed] Related Publications
BACKGROUND: The tumor-associated antigen Kita-Kyushu lung cancer antigen-1 (KK-LC-1) has been reported as not being expressed in normal tissues, except for the testis, and in the setting of non-small cell lung cancer. The present study demonstrated that KK-LC-1 is expressed in gastric cancer.
MATERIALS AND METHODS: We analyzed the expression of KK-LC-1 and cancer/testis antigens (CTAs) in surgical specimens of 49 gastric carcinomas. The expression of KK-LC-1 and CTAs was assessed using reverse transcription-polymerase chain reaction.
RESULTS: KK-LC-1 expression was observed in gastric carcinomas. The number of lesions with expression of KK-LC-1, Melanoma antigen gene encoding-A1 (MAGE-A1), MAGE-A3 and New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) was 40 (81.6%), 17 (34.7%), 22 (44.9%) and 8 (16.3%) out of the 49 specimens, respectively.
CONCLUSION: KK-LC-1 should be categorized as a CTA. The frequency of KK-LC-1 expression was higher than that of the other CTAs. KK-LC-1 might be a useful target for immunotherapy and in diagnosis of gastric cancer.

Rozera C, Cappellini GA, D'Agostino G, et al.
Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma.
J Transl Med. 2015; 13:139 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Advanced melanoma patients have an extremely poor long term prognosis and are in strong need of new therapies. The recently developed targeted therapies have resulted in a marked antitumor effect, but most responses are partial and some degree of toxicity remain the major concerns. Dendritic cells play a key role in the activation of the immune system and have been typically used as ex vivo antigen-loaded cell drugs for cancer immunotherapy. Another approach consists in intratumoral injection of unloaded DCs that can exploit the uptake of a wider array of tumor-specific and individual unique antigens. However, intratumoral immunization requires DCs endowed at the same time with properties typically belonging to both immature and mature DCs (i.e. antigen uptake and T cell priming). DCs generated in presence of interferon-alpha (IFN-DCs), due to their features of partially mature DCs, capable of efficiently up-taking, processing and cross-presenting antigens to T cells, could successfully carry out this task. Combining intratumoral immunization with tumor-destructing therapies can induce antigen release in situ, facilitating the injected DCs in triggering an antitumor immune response.
METHODS: We tested in a phase I clinical study in advanced melanoma a chemo-immunotherapy approach based on unloaded IFN-DCs injected intratumorally one day after administration of dacarbazine. Primary endpoint of the study was treatment safety and tolerability. Secondary endpoints were immune and clinical responses of patients.
RESULTS: Six patients were enrolled, and only three completed the treatment. The chemo-immunotherapy was well tolerated with no major side effects. Three patients showed temporary disease stabilization and two of them showed induction of T cells specific for tyrosinase, NY-ESO-1 and gp100. Of interest, one patient showing a remarkable long-term disease stabilization kept showing presence of tyrosinase specific T cells in PBMC and high infiltration of memory T cells in the tumor lesion at 21 months.
CONCLUSION: We tested a chemo-immunotherapeutic approach based on IFN-DCs injected intratumorally one day after DTIC in advanced melanoma. The treatment was well tolerated, and clinical and immunological responses, including development of vitiligo, were observed, therefore warranting additional clinical studies aimed at evaluating efficacy of this approach.
TRIAL REGISTRATION: Trial Registration Number not publicly available due to EudraCT regulations: https://www.clinicaltrialsregister.eu/doc/EU_CTR_FAQ.pdf.

Esfandiary A, Ghafouri-Fard S
New York esophageal squamous cell carcinoma-1 and cancer immunotherapy.
Immunotherapy. 2015; 7(4):411-39 [PubMed] Related Publications
New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a known cancer testis gene with exceptional immunogenicity and prevalent expression in many cancer types. These characteristics have made it an appropriate vaccine candidate with the potential application against various malignancies. This article reviews recent knowledge about the NY-ESO-1 biology, function, immunogenicity and expression in cancers as well as and the results of clinical trials with this antigen.

Srivastava P, Paluch BE, Matsuzaki J, et al.
Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts.
Epigenetics. 2015; 10(3):237-46 [PubMed] Free Access to Full Article Related Publications
We aimed to determine the effect of SGI-110 on methylation and expression of the cancer testis antigens (CTAs) NY-ESO-1 and MAGE-A in epithelial ovarian cancer (EOC) cells in vitro and in vivo and to establish the impact of SGI-110 on expression of major histocompatibility (MHC) class I and Intracellular Adhesion Molecule 1 (ICAM-1) on EOC cells, and on recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. We also tested the impact of combined SGI-110 and NY-ESO-1-specific CD8+ T-cells on tumor growth and/or murine survival in a xenograft setting. EOC cells were treated with SGI-110 in vitro at various concentrations and as tumor xenografts with 3 distinct dose schedules. Effects on global methylation (using LINE-1), NY-ESO-1 and MAGE-A methylation, mRNA, and protein expression were determined and compared to controls. SGI-110 treated EOC cells were evaluated for expression of immune-modulatory genes using flow cytometry, and were co-cultured with NY-ESO-1 specific T-cell clones to determine immune recognition. In vivo administration of SGI-110 and CD8+ T-cells was performed to determine anti-tumor effects on EOC xenografts. SGI-110 treatment induced hypomethylation and CTA gene expression in a dose dependent manner both in vitro and in vivo, at levels generally superior to azacitidine or decitabine. SGI-110 enhanced the expression of MHC I and ICAM-1, and enhanced recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. Sequential SGI-110 and antigen-specific CD8+ cell treatment restricted EOC tumor growth and enhanced survival in a xenograft setting. SGI-110 is an effective hypomethylating agent and immune modulator and, thus, an attractive candidate for combination with CTA-directed vaccines in EOC.

Elia AR, Circosta P, Sangiolo D, et al.
Cytokine-induced killer cells engineered with exogenous T-cell receptors directed against melanoma antigens: enhanced efficacy of effector cells endowed with a double mechanism of tumor recognition.
Hum Gene Ther. 2015; 26(4):220-31 [PubMed] Related Publications
Cytokine-induced killer (CIK) cells consist of a heterogeneous population of polyclonal T lymphocytes displaying NK phenotype and HLA-unrestricted cytotoxic activity against a broad range of tumors. We sought to determine whether transduction of CIK cells with T cell receptor (TCR) genes specific for tumor-associated antigens could generate effector cells endowed with a double mechanism of tumor recognition. HLA-A2-restricted TCR-transduced (TD) CIK directed against the melanoma antigens Mart1 and NY-ESO1 were generated by lentiviral transduction and successfully expanded over a 3-4-week period. TD-CIK cells were both CD3(+)/CD56(-) and CD3(+)/CD56(+) (31±8% and 59±9%, respectively), indicating that both major histocompatibility complex (MHC)-restricted T cells and MHC-unrestricted CIK could be targeted by lentiviral transduction. At the end of the culture, the majority of both unmodified and TD-CIK displayed an effector memory phenotype, without considerable expression of replicative senescence and exhaustion markers. Functionally, TD-CIK specifically recognized tumor cells expressing the relevant antigen as well as maintained their MHC-unrestricted tumor activity. The cytotoxic activity of TD-CIK against HLA-A2(+) melanoma cell lines was significantly higher than the untransduced counterparts at a low effector:target ratio (cytotoxic activity of TD-CIK was from 1.9- to 4.3-fold higher than untransduced counterparts). TD-CIK were highly proficient in releasing high amount of IFN-γ upon antigen-specific stimulation and were able to recognize primary melanoma targets. In conclusion, we showed that (1) the reproducibility and simplicity of CIK transduction and expansion might solve the problem of obtaining adequate numbers of potent antitumor effector cells for adoptive immunotherapy; (2) the presence of both terminal effectors as well as of less differentiated progenitors might confer them long survival in vivo; and (3) the addition of an MHC-restricted antigen recognition allows not only targeting tumor surface antigens but also a wider range of cytoplasmic or nuclear antigens, involved in tumor proliferation and survival. TD-CIK cells with a double mechanism of tumor recognition are an attractive and alternative tool for the development of efficient cell therapeutic strategies.

Srivastava P, Paluch BE, Matsuzaki J, et al.
Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts.
Leuk Res. 2014; 38(11):1332-41 [PubMed] Related Publications
The mechanism of clinical action for the FDA approved hypomethylating drugs azacitidine and decitabine remains unresolved and in this context the potential immunomodulatory effect of these agents on leukemic cells is an area of active investigation. Induced expression of methylated Cancer Testis Antigen (CTA) genes has been demonstrated in leukemic cell lines following exposure to hypomethylating drugs in vitro. SGI-110 is a novel hypomethylating dinucleotide with prolonged in vivo exposure and clinical activity in patients with MDS and AML. We demonstrate that this agent, like decitabine, produces robust re-expression of the CTAs NY-ESO-1 and MAGE-A, both in vitro and in leukemia-bearing AML xenografts. Upregulation of these genes in vitro was sufficient to induce cytotoxicity by HLA-compatible CD8+ T-cells specific for NY-ESO-1, a well-recognized and immunogenic CTA. Additionally, exposure to SGI-110 enhances MHC class I and co-stimulatory molecule expression, potentially contributing to recognition of CTAs. SGI-110, like the parent compound decitabine, induces expression of CTAs and might modulate immune recognition of myeloid malignancy.

Yin B, Zeng Y, Wang X, et al.
Expression and clinical significance of cancer-testis genes in clear cell renal cell carcinoma.
Int J Clin Exp Pathol. 2014; 7(7):4112-9 [PubMed] Free Access to Full Article Related Publications
Cancer-testis (CT) antigens, which are encoded by CT genes, have been recognized as a group of highly attractive targets for cancer immunotherapy. However, the expression and clinical relevance of CT genes in clear cell renal cell carcinoma (ccRCC) remains largely unknown. The present study aims to analyze the expression profile of 6 individual CT genes including MAGE-A1, MAGE-A3, MAGE-A12, cTAGE-1, cTAGE-2, and NY-ESO-1 in ccRCC and further investigate their possible correlations with clinicopathologic characteristics. The mRNA expressions of these CT genes were detected using reverse transcriptase-polymerase chain reaction (RT-PCR) in 105 ccRCC tissue samples (T1-2 in 70 samples, T3-4 in 35 samples; G1-2 in 65 samples, G3-4 in 40 samples) as well as the paired adjacent normal tissues. The most frequently expressed CT gene was MAGE-A3 (27.6%), followed by MAGE-A12 (23.8%), NY-ESO-1 (21%), MAGE-A1 (20%), cTAGE-1 (17.1%), and cTAGE-2 (14.3%). In contrast, no expression of CT genes was detected in the paired adjacent normal tissues. Furthermore, the MAGE-A3 protein expression was determined by Western blot and immunohistochemistry. MAGE-A3 protein was expressed in 21.9% ccRCC samples with a cytoplasmic staining pattern. No MAGE-A3 protein expression was found in the paired adjacent normal tissues. There was a significant correlation between MAGE-A3 expression at both mRNA (P =0.045) and protein (P = 0.03) levels with advanced stages of the disease. Taken together, CT genes may serve as promising targets of specific immunotherapy for ccRCC and particularly, MAGE-A3 may serve as a potential prognostic marker for ccRCC patients.

Luetkens T, Kobold S, Cao Y, et al.
Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation.
Cancer Immunol Immunother. 2014; 63(11):1151-62 [PubMed] Related Publications
BACKGROUND: Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer-testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM.
METHODS: Frequency and characteristics of antibody responses against cancer-testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients.
RESULTS: We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-2(85-90).
CONCLUSIONS: We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.

Braga WM, da Silva BR, Alves VL, et al.
Is there any relationship between gene expression of tumor antigens and CD4+ T cells in multiple myeloma?
Immunotherapy. 2014; 6(5):569-75 [PubMed] Related Publications
AIM: The present study aimed at correlating the expression of cancer/testis antigens (CTAs) with the expression of genes related to tumor-infiltrating T cells.
MATERIALS & METHODS: MAGE-C1/CT-7, MAGEA3/6, NY-ESO-1, LAGE-1 and GAGE expression were evaluated in 46 bone marrow multiple myeloma (MM) aspirates by RT-PCR. Expression of FOXP3/CTLA4 and RORyt, as markers for Tregs and Th17 cells, respectively, was investigated by quantitative PCR.
RESULTS: MAGEC1/CT7 was expressed in 66% of MM samples. We did not find correlation between the presence of single CTA and expression of CTLA4 or RORyt neither expression of CD4(+) T-cell markers and the number of CTA simultaneously expressed in the tumor. However, we did observe a correlation between the percentage of plasma cells and the number of CTAs expressed in the patients' bone marrow.
CONCLUSION: Although CTAs and immunomodulatory CD4(+) T cells represent potential targets for immunotherapy in MM, we did not find association among expression of such genes in MM.

Gunda V, Frederick DT, Bernasconi MJ, et al.
A potential role for immunotherapy in thyroid cancer by enhancing NY-ESO-1 cancer antigen expression.
Thyroid. 2014; 24(8):1241-50 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: NY-ESO-1 is one of the most immunogenic members of the cancer/testis antigen family and its levels can be increased after exposure to demethylating and deacetylating agents. This cytoplasmic antigen can serve as a potent target for cancer immunotherapy and yet has not been well studied in differentiated thyroid cancer cells.
METHODS: We studied the baseline expression of NY-ESO-1 messenger RNA and protein before and after exposure to 5-aza-2'-deoxycytidine (DAC) (72 hours) in a panel of thyroid cancer cell lines using quantitative polymerase chain reaction and Western blot. HLA-A2+, NY-ESO-1+ thyroid cell lines were then co-cultured with peripheral blood lymphocytes transduced with NY-ESO-1 specific T-cell receptor (TCR) and assayed for interferon-gamma and Granzyme-B release in the medium. SCID mice injected orthotopically with BCPAP cells were treated with DAC to evaluate for NY-ESO-1 gene expression in vivo.
RESULTS: None of the thyroid cancer cell lines showed baseline expression of NY-ESO-1. Three cell lines, BCPAP, TPC-1, and 8505c, showed an increase in NY-ESO-1 gene expression with DAC treatment and were found to be HLA-A2 positive. DAC-treated target BCPAP and TPC-1 tumor cells with up-regulated NY-ESO-1 levels were able to mount an appropriate interferon-gamma and Granzyme-B response upon co-culture with the NY-ESO-1-TCR-transduced peripheral blood lymphocytes. In vivo DAC treatment was able to increase NY-ESO-1 expression in an orthotopic mouse model with BCPAP cells.
CONCLUSION: Our data suggest that many differentiated thyroid cancer cells can be pressed to express immune antigens, which can then be utilized in TCR-based immunotherapeutic interventions.

Chen YT, Panarelli NC, Piotti KC, Yantiss RK
Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions.
Cancer Immunol Res. 2014; 2(5):480-6 [PubMed] Related Publications
Cancer-testis (CT) antigens are attractive tumor antigens for cancer immunotherapy. They comprise a group of proteins normally expressed in germ cells and aberrantly activated in a variety of human cancers. The protein expression of eight cancer-testis antigens [MAGEA, NY-ESO-1, GAGE, MAGEC1 (CT7), MAGEC2 (CT10), CT45, SAGE1, and NXF2] was evaluated by immunohistochemistry in 61 esophageal carcinomas (40 adenocarcinoma and 21 squamous cell carcinoma), 50 gastric carcinomas (34 diffuse and 16 intestinal type), and 141 colorectal carcinomas. The highest frequency of expression was found in esophageal squamous cell carcinomas: Positive staining for MAGEA, CT45, CT7, SAGE1, GAGE, NXF2, NY-ESO-1, and CT10 was observed in 57%, 38%, 33%, 33%, 29%, 29%, 19%, and 14% of squamous cell carcinomas, respectively. Similar staining patterns were observed in squamous dysplasias. Expression frequencies of cancer-testis antigens were seen in 2% to 24% of gastroesophageal adenocarcinomas and were not significantly different between adenocarcinomas of the stomach versus the esophagus, or between diffuse and intestinal types of gastric adenocarcinomas. Colorectal cancers did not express NY-ESO-1, CT7, CT10, or GAGE, and only infrequently expressed SAGE1 (0.7%) MAGEA (1.4%), CT45 (3.5%), and NXF2 (8.5%). We conclude that cancer-testis antigens are frequently expressed in esophageal squamous neoplasms. Although cancer-testis antigens are generally considered to be expressed later in tumor progression, they are found in squamous dysplasias, suggesting a potential diagnostic role for cancer-testis antigens in the evaluation of premalignant squamous lesions.

Grupp K, Ospina-Klinck D, Tsourlakis MC, et al.
NY-ESO-1 expression is tightly linked to TMPRSS2-ERG fusion in prostate cancer.
Prostate. 2014; 74(10):1012-22 [PubMed] Related Publications
BACKGROUND: NY-ESO-1 has been suggested as therapeutic cancer vaccine in prostate cancer. This study was undertaken to explore the relationship of NY-ESO-1 with tumor phenotype, biochemical recurrence, and molecular subgroups in hormone-naive prostate cancers.
METHODS: NY-ESO-1 immunohistochemistry was analyzed on a tissue microarray containing 11,152 prostate cancer samples. Results were compared to clinically follow-up data, ERG status, and deletions on PTEN, 3p13, 5q21, and 6q15.
RESULTS: NY-ESO-1 expression was absent in benign prostate glands. In prostate cancer, NY-ESO-1 positivity was found 8.8% of our 8,761 interpretable tumors including 5.8% with weak, 2.5% with moderate, and 0.5% with strong expression. There was a threefold higher rate of NY-ESO-1 expression in ERG fusion positive tumors than in ERG negative cancers (P < 0.0001). There was a significant association with early PSA recurrence, which was largely limited to ERG positive cancers. Within the ERG positive subgroup, high NY-ESO-1 expression was associated with early biochemical recurrence (P = 0.0002) and high Gleason grade (P < 0.0001). In ERG negative cancers, NY-ESO-1 expression was also linked to PTEN (P = 0.0012) and 6q15 deletions (P = 0.0005).
CONCLUSIONS: Our observations indicate a tight link of NY-ESO-1 expression to ERG activation and (to a lesser extent) PTEN- and 6q15-deletions in prostate cancer. The impact of these interactions on the likelihood of response to immunotherapy is unclear. The prognostic impact of NY-ESO-1 expression is little and not independent of histologic variables.

Baia GS, Caballero OL, Ho JS, et al.
NY-ESO-1 expression in meningioma suggests a rationale for new immunotherapeutic approaches.
Cancer Immunol Res. 2013; 1(5):296-302 [PubMed] Related Publications
Meningiomas are the most common primary intracranial tumors. Surgical resection remains the treatment of choice for these tumors. However, a significant number of tumors are not surgically accessible, recur, or become malignant, necessitating the repetition of surgery and sometimes radiation. Chemotherapy is rarely used and is generally not recognized as an effective treatment. Cancer/testis (CT) genes represent a unique class of genes, which are expressed by germ cells, normally silenced in somatic cells, but activated in various cancers. CT proteins can elicit spontaneous immune responses in patients with cancer and this feature makes them attractive targets for immunotherapy-based approaches. We analyzed mRNA expression of 37 testis-restricted CT genes in a discovery set of 18 meningiomas by reverse transcription PCR. The overall frequency of expression of CT genes ranged from 5.6% to 27.8%. The most frequently expressed was NY-ESO-1, in 5 patients (27.8%). We subsequently analyzed NY-ESO-1 protein expression in a larger set of meningiomas by immunohistochemistry and found expression in 108 of 110 cases. In some cases, NY-ESO-1 expression was diffused and homogenous, but in most instances it was heterogeneous. Importantly, NY-ESO-1 expression was positively correlated with higher grade and patients presenting with higher levels of NY-ESO-1 staining had significantly worse disease-free and overall survival. We have also shown that NY-ESO-1 expression may lead to humoral immune response in patients with meningioma. Considering the limited treatment options for patients with meningioma, the potential of NY-ESO-1-based immunotherapy should be explored.

Hayes SJ, Hng KN, Clark P, et al.
Immunohistochemical assessment of NY-ESO-1 expression in esophageal adenocarcinoma resection specimens.
World J Gastroenterol. 2014; 20(14):4011-6 [PubMed] Free Access to Full Article Related Publications
AIM: To assess NY-ESO-1 expression in a cohort of esophageal adenocarcinomas.
METHODS: A retrospective search of our tissue archive for esophageal resection specimens containing esophageal adenocarcinoma was performed, for cases which had previously been reported for diagnostic purposes, using the systematised nomenclature of human and veterinary medicine coding system. Original haematoxylin and eosin stained sections were reviewed, using light microscopy, to confirm classification and tumour differentiation. A total of 27 adenocarcinoma resection specimens were then assessed using immunohistochemistry for NY-ESO-1 expression: 4 well differentiated, 14 moderately differentiated, 4 moderate-poorly differentiated, and 5 poorly differentiated.
RESULTS: Four out of a total of 27 cases of esophageal adenocarcinoma examined (15%) displayed diffuse cytoplasmic and nuclear expression for NY-ESO-1. They displayed a heterogeneous and mosaic-type pattern of diffuse staining. Diffuse cytoplasmic staining was not identified in any of these structures: stroma, normal squamous epithelium, normal submucosal gland and duct, Barrett's esophagus (goblet cell), Barrett's esophagus (non-goblet cell) and high grade glandular dysplasia. All adenocarcinomas showed an unexpected dot-type pattern of staining at nuclear, paranuclear and cytoplasmic locations. Similar dot-type staining, with varying frequency and size of dots, was observed on examination of Barrett's metaplasia, esophageal submucosal gland acini and the large bowel negative control, predominantly at the crypt base. Furthermore, a prominent pattern of apical (luminal) cytoplasmic dot-type staining was observed in some cases of Barrett's metaplasia and also adenocarcinoma. A further morphological finding of interest was noted on examination of haematoxylin and eosin stained sections, as aggregates of lymphocytes were consistently noted to surround submucosal glands.
CONCLUSION: We have demonstrated for the first time NY-ESO-1 expression by esophageal adenocarcinomas, Barrett's metaplasia and normal tissues other than germ cells.

Grah JJ, Katalinic D, Juretic A, et al.
Clinical significance of immunohistochemical expression of cancer/testis tumor-associated antigens (MAGE-A1, MAGE-A3/4, NY-ESO-1) in patients with non-small cell lung cancer.
Tumori. 2014 Jan-Feb; 100(1):60-8 [PubMed] Related Publications
AIMS AND BACKGROUND: This paper deals with the clinical significance of the immunohistochemical expression of MAGE-A1, MAGE-A3/4 and NY-ESO-1 antigens in patients with non-small cell lung cancer (NSCLC).
METHODS AND STUDY DESIGN: The study included 80 patients with NSCLC (40 with adenocarcinoma, 40 with squamous cell carcinoma) who had undergone surgery. MAGE-A1 and MAGE-A3/4 antigen expression was determined by an immunohistochemical method using the monoclonal antibody 57B, and NY-ESO-1 antigen expression was determined with the addition of the B9.8.1.1 antibody. The expression of these antigens was compared with the clinicopathological features of the tumors and the survival of the patients.
RESULTS: MAGE-A1, MAGE-A3/4 and NY-ESO-1 were expressed in 17.3%, 44.4% and 18.5% of NSCLC patients, respectively. A statistically higher immunohistological expression rate of MAGE-A3/4 was found in squamous cell carcinoma (P <0.001) and a significantly higher amount of tumor necrosis was observed in tumors with MAGE-3 expression (P = 0.001), but no correlation with positive lymph nodes was found. There was a statistically significant correlation between MAGE-A1 expression in adenocarcinoma and the presence of tumor necrosis (P = 0.05). Furthermore, there was a significant correlation between NY-ESO-1 expression and positive lymph nodes in adenocarcinoma, but not in squamous cell carcinoma. No statistically significant difference in patient survival was found with regard to tumor type and the observed histopathological characteristics except tumor size. Statistically significantly better survival was found in the group of patients with adenocarcinomas who had positive expression of MAGE-A3/4 (P = 0.012).
CONCLUSIONS: This study demonstrated that the expression of MAGE-A3/4 antigen might be a valuable prognostic factor regarding survival in patients with NSCLC.

Mrklić I, Spagnoli GC, Juretić A, et al.
Co-expression of cancer testis antigens and topoisomerase 2-alpha in triple negative breast carcinomas.
Acta Histochem. 2014; 116(5):740-6 [PubMed] Related Publications
Triple negative breast cancers (TNBC) are characterized by aggressive tumor biology, lack of targeted treatments and poor prognosis. Anthracyclins were shown to induce immunogenic death in target cells, potentially leading to "endogenous" vaccination. We comparatively assessed expression of cancer testis antigens (CTA) and topoisomerase 2-alpha (TOPO2A), a well defined molecular target of anthracyclins, in TNBC fully characterized for basal-like (BL) immunophenotype, BL morphology and conventional clinicopathological factors. The study included 83 patients undergoing surgery between January 2003 and December 2009. Tissue sections were stained with CK5/6, CK14, EGFR, Ki-67, TOPO2A, MAGE-A1, MAGE-A10, NY-ESO and multi-MAGE-A specific reagents. Of the 83 TNBC, >66.3% had BL immunophenotype and 48.2% had BL morphology. MAGE-A1 specific staining was most frequently detectable (69.2%), followed by multi-MAGE-A (58%), NY-ESO (27.1%) and MAGE-A10 (16%) specific staining. MAGE-A10 expression significantly correlated with tumor size (p=0.026). Furthermore, MAGE-A1, MAGE-A10 and multi-MAGE-A specific stainings significantly correlated with advanced clinical stage (p=0.024, p=0.041, p=0.031, respectively). We found no significant association between CTA expression and disease free (DFS) or overall survival (OS). Most interestingly, a significant correlation was observed between expression of MAGE-A10 and NY-ESO and expression of TOPO2A (p=0.005, p=0.013). Expression of defined CTA and TOPO2A are significantly correlated in TNBC. Considering the limited therapeutic options for TNBC, these findings might suggest novel forms of combination therapies that should be further explored.

Odunsi K, Matsuzaki J, James SR, et al.
Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer.
Cancer Immunol Res. 2014; 2(1):37-49 [PubMed] Free Access to Full Article Related Publications
The cancer-testis/cancer-germline antigen NY-ESO-1 is a vaccine target in epithelial ovarian cancer (EOC), but its limited expression is a barrier to vaccine efficacy. As NY-ESO-1 is regulated by DNA methylation, we hypothesized that DNA methyltransferase (DNMT) inhibitors may augment NY-ESO-1 vaccine therapy. In agreement, global DNA hypomethylation in EOC was associated with the presence of circulating antibodies to NY-ESO-1. Pre-clinical studies using EOC cell lines showed that decitabine treatment enhanced both NY-ESO-1 expression and NY-ESO-1-specific CTL-mediated responses. Based on these observations, we performed a phase I dose-escalation trial of decitabine, as an addition to NY-ESO-1 vaccine and doxorubicin liposome (doxorubicin) chemotherapy, in 12 patients with relapsed EOC. The regimen was safe, with limited and clinically manageable toxicities. Both global and promoter-specific DNA hypomethylation occurred in blood and circulating DNAs, the latter of which may reflect tumor cell responses. Increased NY-ESO-1 serum antibodies and T cell responses were observed in the majority of patients, and antibody spreading to additional tumor antigens was also observed. Finally, disease stabilization or partial clinical response occurred in 6/10 evaluable patients. Based on these encouraging results, evaluation of similar combinatorial chemo-immunotherapy regimens in EOC and other tumor types is warranted.

Hemminger JA, Toland AE, Scharschmidt TJ, et al.
Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma.
Mod Pathol. 2014; 27(9):1238-45 [PubMed] Free Access to Full Article Related Publications
Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n=37) and frozen tissue (n=8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1-2+) and percent tumor positivity. The gene expression levels of CTAG2, PRAME, and MAGEA3 were measured by quantitative real-time PCR. In total, 37/37 (100%) of the samples showed predominantly strong, homogenous immunoreactivity for PRAME. There was a variable, focal expression of MAGEA1 (11%) and SSX2 (16%) and no expression of ACRBP. Quantitative real-time PCR demonstrated PRAME and CTAG2 transcripts in all eight samples: six tumors with high mRNA levels; two tumors with low mRNA levels. The gene expression of MAGEA3 was not detected in the majority of cases. In conclusion, myxoid and round-cell liposarcomas consistently express PRAME by immunohistochemistry as well as CTAG2 and PRAME by qualitative real-time PCR. This supports the use of cancer-testis antigen-targeted immunotherapy in the treatment of this malignancy.

Klippel ZK, Chou J, Towlerton AM, et al.
Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC.
Gene Ther. 2014; 21(3):337-42 [PubMed] Free Access to Full Article Related Publications
Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1(+) multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8(+) T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T-cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity (LOH) in the major histocompatibility complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although LOH involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T-cell therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTAG1B (CTAG, NY-ESO-1), Cancer Genetics Web: http://www.cancer-genetics.org/CTAG.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999