Gene Summary

Gene:P2RX7; purinergic receptor P2X, ligand gated ion channel, 7
Aliases: P2X7
Summary:The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel and is responsible for ATP-dependent lysis of macrophages through the formation of membrane pores permeable to large molecules. Activation of this nuclear receptor by ATP in the cytoplasm may be a mechanism by which cellular activity can be coupled to changes in gene expression. Multiple alternatively spliced variants have been identified, most of which fit nonsense-mediated decay (NMD) criteria. [provided by RefSeq, Jul 2010]
Databases:OMIM, HGNC, GeneCard, Gene
Protein:P2X purinoceptor 7
Source:NCBIAccessed: 17 June, 2015


What does this gene/protein do?
Show (87)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Uridine Triphosphate
  • Alleles
  • Cell Line
  • Lymphocytes
  • Tumor Markers
  • Polymorphism
  • Mutation
  • Ryanodine Receptor Calcium Release Channel
  • Apoptosis
  • Polymerase Chain Reaction
  • Receptors, Purinergic P2
  • Cancer Gene Expression Regulation
  • Messenger RNA
  • Single Nucleotide Polymorphism
  • Disease Progression
  • Genotype
  • ZAP-70 Protein-Tyrosine Kinase
  • Adenosine
  • Neuroblastoma
  • Case-Control Studies
  • Restriction Fragment Length Polymorphism
  • Receptors, Purinergic P2X7
  • Prostate Cancer
  • Vidarabine
  • Chromosome 12
  • Genetic Predisposition
  • Adenosine Monophosphate
  • Survival Rate
  • Up-Regulation
  • Adenosine Triphosphate
  • Cancer DNA
  • Gene Expression
  • Multiple Myeloma
  • Chronic Lymphocytic Leukemia
  • Transfection
  • Western Blotting
  • Calcium Signaling
  • Signal Transduction
Tag cloud generated 17 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: P2RX7 (cancer-related)

Adinolfi E, Capece M, Franceschini A, et al.
Accelerated tumor progression in mice lacking the ATP receptor P2X7.
Cancer Res. 2015; 75(4):635-44 [PubMed] Related Publications
The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion.

Giuliani AL, Colognesi D, Ricco T, et al.
Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma.
PLoS One. 2014; 9(9):e107224 [PubMed] Free Access to Full Article Related Publications
The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca(2+) mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently coupled to cell growth or activity.

Boldrini L, Giordano M, Alì G, et al.
P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC).
J Negat Results Biomed. 2014; 13:16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: P2X7, a purinergic receptor, plays important roles in inflammatory diseases, but recently its expression has been found in several tumors, suggesting a potential role as a cancer cell biomarker. Moreover, the relative amount of P2X7 varies among human individuals due to numerous single nucleotide polymorphisms resulting in either a loss- or gain-of-function; the P2X7 gene is highly polymorphic, and polymorphisms in the promoter or coding region may modify its expression or function. A polymorphism in exon 13 of the P2X7 receptor gene at the +1513 position (Glu496Ala substitution, corresponding to SNP rs3751143) has been shown to eradicate the function of this receptor and has been correlated with histological variants and clinical parameters in thyroid cancer. Until now, no data regarding P2X7 expression and polymorphisms in lung cancer have been published; based on these premises, we decided to evaluate the impact of the P2X7 expression and polymorphisms in ninety-seven cases of non-small cell lung cancer (NSCLC).
RESULTS: No significant difference in the genotype frequency of the A1513C polymorphism was found between the two histological variants of NSCLC, adenocarcinoma and squamous cell carcinoma, and no statistically significant associations were observed between P2X7 protein expression and the main clinico-pathological characteristics of the NSCLC patients.
CONCLUSIONS: Based on our results, P2X7 expression and polymorphisms seem to have no potential impact in patients with non-small cell lung cancer; however, further studies will surely provide deeper insights regarding the role of this receptor at the clinical level in NSCLC.

Brim H, Abu-Asab MS, Nouraie M, et al.
An integrative CGH, MSI and candidate genes methylation analysis of colorectal tumors.
PLoS One. 2014; 9(1):e82185 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Different DNA aberrations processes can cause colorectal cancer (CRC). Herein, we conducted a comprehensive molecular characterization of 27 CRCs from Iranian patients.
MATERIALS AND METHODS: Array CGH was performed. The MSI phenotype and the methylation status of 15 genes was established using MSP. The CGH data was compared to two established lists of 41 and 68 cancer genes, respectively, and to CGH data from African Americans. A maximum parsimony cladogram based on global aberrations was established.
RESULTS: The number of aberrations seem to depend on the MSI status. MSI-H tumors displayed the lowest number of aberrations. MSP revealed that most markers were methylated, except RNF182 gene. P16 and MLH1 genes were primarily methylated in MSI-H tumors. Seven markers with moderate to high frequency of methylation (SYNE1, MMP2, CD109, EVL, RET, LGR and PTPRD) had very low levels of chromosomal aberrations. All chromosomes were targeted by aberrations with deletions more frequent than amplifications. The most amplified markers were CD248, ERCC6, ERGIC3, GNAS, MMP2, NF1, P2RX7, SFRS6, SLC29A1 and TBX22. Most deletions were noted for ADAM29, CHL1, CSMD3, FBXW7, GALNS, MMP2, NF1, PRKD1, SMAD4 and TP53. Aberrations targeting chromosome X were primarily amplifications in male patients and deletions in female patients. A finding similar to what we reported for African American CRC patients.
CONCLUSION: This first comprehensive analysis of CRC Iranian tumors reveals a high MSI rate. The MSI tumors displayed the lowest level of chromosomal aberrations but high frequency of methylation. The MSI-L were predominantly targeted with chromosomal instability in a way similar to the MSS tumors. The global chromosomal aberration profiles showed many similarities with other populations but also differences that might allow a better understanding of CRC's clinico-pathological specifics in this population.

Ghalali A, Wiklund F, Zheng H, et al.
Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells.
Carcinogenesis. 2014; 35(7):1547-55 [PubMed] Related Publications
Epidemiological studies indicate that statins, cholesterol-lowering drugs, prevent aggressive prostate cancer and other types of cancer. Employing essentially non-prostate cell lines, we previously showed that statins rapidly downregulate nuclear levels of phosphorylated Akt via P2X7, a purinergic receptor recently implicated in invasive growth. Here, we present studies on phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-positive prostatic cells. We document an involvement of EH domain-binding protein 1 (EHBP1), previously associated with aggressive prostate cancer and insulin-stimulated trafficking and cell migration, in P2X7 signaling. We also show that EHBP1 is essential for an anti-invasive effect of atorvastatin. Furthermore, EHBP1 interacted with P-Rex1, a guanine nucleotide exchange factor previously implicated in invasive growth. Mevalonate did not prevent this anti-invasive effect of atorvastatin. These data indicate that atorvastatin modulates invasiveness via P2X7, EHBP1 and P-Rex1. Interestingly, the interaction between EHBP1 and P-Rex1 was not induced by extracellular adenosine triphosphate (ATP), the endogenous P2X7 ligand, and statins counteracted invasiveness stimulated by extracellular ATP. In support of these experimental data, a population-based genetic analysis showed that a loss of function allele in the P2X7 gene (rs3751143) associated with non-aggressive cancer, and the common allele with aggressive cancer. Our data indicate a novel signaling pathway that inhibits invasiveness and that is druggable. Statins may reduce the risk of aggressive prostate cancer via P2X7 and by counteracting invasive effects of extracellular ATP.

Chadet S, Jelassi B, Wannous R, et al.
The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway.
Carcinogenesis. 2014; 35(6):1238-47 [PubMed] Related Publications
Adenosine 5'-triphosphate (ATP) is found in high concentrations in the extracellular microenvironment of tumours and is postulated to play critical roles in cancer progression. In the present study, we found that stimulation of human MCF-7 breast cancer cells with 30 µM ATP increased their migration by 140 ± 31%, whereas it had minor or no effect on their proliferation. This effect was prevented by the ectonucleotidase apyrase and was antagonized by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, consistently with the participation of P2 receptors. MCF-7 cells expressed messenger RNA for all known P2Y receptors and for P2X2, P2X4, P2X5, P2X6 and P2X7 receptors. Brief applications (20 s) of external ATP resulted in a 50 pA P2X-like inward current. ATP, but not adenosine diphosphate or uridine diphosphate, increased the intracellular calcium concentration in absence of extracellular calcium, and this effect was prevented by the inhibition of phospholipase C. Uridine triphosphate (UTP) (10 µM) and 2-thio-UTP (10 µM) increased intracellular calcium concentration and cell migration to the same extent as ATP. The UTP-dependent increase in cell migration was absent in cells knocked-down for P2Y2. It was inhibited by MEK inhibitor PD98059. UTP induced a time-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which was prevented by the incubation with PD98059. Taken together, these results highlight the importance of the purinergic signalling in cancer cells and indicate that the activation of P2Y2 receptors enhances breast cancer cells migration through the activation of a MEK-ERK1/2-dependent signalling pathway.

Huang S, Chen Y, Wu W, et al.
miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor.
PLoS One. 2013; 8(12):e80707 [PubMed] Free Access to Full Article Related Publications
The P2X7 receptor regulates cell growth through mediation of apoptosis. Low level expression of P2X7 has been linked to cancer development because tumor cells harboring a defective P2X7 mechanism can escape P2X7 pro-apoptotic control. microRNAs (miRNAs) function as negative regulators of post-transcriptional gene expression, playing major roles in cellular differentiation, proliferation, and metastasis. In this study, we found that miR-150 was over-expressed in breast cancer cell lines and tissues. In these breast cancer cell lines, blocking the action of miR-150 with inhibitors leads to cell death, while ectopic expression of the miR-150 results in increased cell proliferation. We deploy a microRNA sponge strategy to inhibit miR-150 in vitro, and the result demonstrates that the 3'-untranslated region (3'UTR) of P2X7 receptor contains a highly conserved miR-150-binding motif and its direct interaction with miR-150 down-regulates endogenous P2X7 protein levels. Furthermore, our findings demonstrate that miR-150 over-expression promotes growth, clonogenicity and reduces apoptosis in breast cancer cells. Meanwhile, these findings can be decapitated in nude mice with breast cancer xenografts. Finally, these observations strengthen our working hypothesis that up-regulation of miR-150 in breast cancer is inversely associated with P2X7 receptor expression level. Together, these findings establish miR-150 as a novel regulator of P2X7 and a potential therapeutic target for breast cancer.

Tafani M, De Santis E, Coppola L, et al.
Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression.
Biomed Pharmacother. 2014; 68(1):1-5 [PubMed] Related Publications
Thyroid cancer is a common endocrine-related cancer with a higher incidence in women than in men. Thyroid tumors are classified on the basis of their histopathology as papillary, follicular, medullary, and undifferentiated or anaplastic. Epidemiological and in vitro or in vivo studies have suggested a correlation between incidence of thyroid malignancies and hormones. In particular, growing evidence indicates a role of estrogens and estrogen receptors (ERs) in thyroid tumorigenesis, reprogramming and progression. In this scenario, estrogens are hypothesized to contribute to the observed female predominance of thyroid cancer in reproductive years. However, the precise contribution of estrogens in thyroid proliferative disease initiation and progression is not well understood. HIF-1α and NF-κB are two transcription factors very frequently activated in tumors and involved in tumor growth, progression and resistance to chemotherapy. In fact, HIF-1α and NF-κB together regulate transcription of over a thousand genes that, in turn, control vital cellular processes such as adaptation to the hypoxia, metabolic and differentiation reprogramming, inflammatory-reparative response, extracellular matrix digestion, migration and invasion, adhesion, etc. Because of this wide involvement, they could control in an integrated manner the origin of the malignant phenotype. Interestingly, hypoxia and inflammation have been sequentially bridged in tumors by the discovery that alarmin receptors genes such as RAGE, P2X7 and some TLRs are activated by HIF-1α; and that, in turn, alarmin receptors strongly activate NF-κB and proinflammatory gene expression, evidencing all the hallmarks of the malignant phenotype. Recently, a large number of drugs have been identified that inhibit one or both transcription factors with promising results in terms of controlling tumor progression. In addition, many of these inhibitors are natural compounds or off-label drugs already used to cure other pathologies. Some of them are undergoing clinical trials and soon they will be used alone or in combination with standard anti-tumoral agents to achieve a better treatment of tumors to achieve a reduction of metastasis formation and, more importantly, a net increase in survival. This review highlights the central role of HIF-1α activated in hypoxic regions of the tumor, of NF-κB activation and proinflammatory gene expression in transformed thyroid cells to understand their progression toward malignancy. The role of ER-α will be underlined, considering also its role in reprogramming cancer cells.

Joosten LA, Netea MG, Dinarello CA
Interleukin-1β in innate inflammation, autophagy and immunity.
Semin Immunol. 2013; 25(6):416-24 [PubMed] Related Publications
Although IL-1β is the master inflammatory cytokine in the IL-1 family, after more than ten years of continuous breeding, mice deficient in IL-1β exhibit no spontaneous disease. Therefore, one concludes that IL-1β is not needed for homeostasis. However, IL-1β-deficient mice are protected against local and systemic inflammation due to live infections, autoimmune processes, tumor metastasis and even chemical carcinogenesis. Based on a large number of preclinical studies, blocking IL-1β activity in humans with a broad spectrum of inflammatory conditions has reduced disease severity and for many, has lifted the burden of disease. Rare and common diseases are controlled by blocking IL-1β. Immunologically, IL-1β is a natural adjuvant for responses to antigen. Alone, IL-1β is not a growth factor for lymphocytes; rather in antigen activated immunocompetent cells, blocking IL-1 reduces IL-17 production. IL-1β markedly increases in the expansion of naive and memory CD4T cells in response to challenge with their cognate antigen. The response occurs when only specific CD4T cells respond to IL-1β and not to IL-6 or CD-28. A role for autophagy in production of IL-1β has emerged with deletion of the autophagy gene ATG16L1. Macrophages from ATG16L1-deficient mice produce higher levels of IL-1β after stimulation with TLR4 ligands via a mechanism of caspase-1 activation. The implications for increased IL-1β release in persons with defective autophagy may have clinical importance for disease.

Light KC, Agarwal N, Iacob E, et al.
Differing leukocyte gene expression profiles associated with fatigue in patients with prostate cancer versus chronic fatigue syndrome.
Psychoneuroendocrinology. 2013; 38(12):2983-95 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Androgen deprivation therapy (ADT) often worsens fatigue in patients with prostate cancer, producing symptoms similar to chronic fatigue syndrome (CFS). Comparing expression (mRNA) of many fatigue-related genes in patients with ADT-treated prostate cancer versus with CFS versus healthy controls, and correlating mRNA with fatigue severity may clarify the differing pathways underlying fatigue in these conditions.
METHODS: Quantitative real-time PCR was performed on leukocytes from 30 fatigued, ADT-treated prostate cancer patients (PCF), 39 patients with CFS and 22 controls aged 40-79, together with ratings of fatigue and pain severity. 46 genes from these pathways were included: (1) adrenergic/monoamine/neuropeptides, (2) immune, (3) metabolite-detecting, (4) mitochondrial/energy, (5) transcription factors.
RESULTS: PCF patients showed higher expression than controls or CFS of 2 immune transcription genes (NR3C1 and TLR4), chemokine CXCR4, and mitochondrial gene SOD2. They showed lower expression of 2 vasodilation-related genes (ADRB2 and VIPR2), 2 cytokines (TNF and LTA), and 2 metabolite-detecting receptors (ASIC3 and P2RX7). CFS patients showed higher P2RX7 and lower HSPA2 versus controls and PCF. Correlations with fatigue severity were similar in PCF and CFS for only DBI, the GABA-A receptor modulator (r=-0.50, p<0.005 and r=-0.34, p<0.05). Purinergic P2RY1 was correlated only with PCF fatigue and pain severity (r=+0.43 and +0.59, p=0.025 and p=0.001).
CONCLUSIONS: PCF patients differed from controls and CFS in mean expression of 10 genes from all 5 pathways. Correlations with fatigue severity implicated DBI for both patient groups and P2RY1 for PCF only. These pathways may provide new targets for interventions to reduce fatigue.

Volonté C, Apolloni S, Skaper SD, Burnstock G
P2X7 receptors: channels, pores and more.
CNS Neurol Disord Drug Targets. 2012; 11(6):705-21 [PubMed] Related Publications
Purine nucleotides are well established as extracellular signaling molecules. P2X7 receptors (P2X7Rs) are members of the family of ionotropic ATP-gated receptors. Their activity can be found in a limited number of cell types, but is readily detectable in cells of hemopoietic lineage including macrophages, microglia, and certain lymphocytes, and mediates the influx of Ca2+ and Na+ as well as the release of pro-inflammatory cytokines. Amongst P2X receptors, P2X7Rs behave as a bifunctional molecule. The binding of ATP induces within milliseconds the opening of a channel selective for small cations, and within seconds a larger pore opens which allows permeation by molecules with a mass of up to 900 Da. In humans at least, the P2RX7 gene is highly polymorphic, and genetic differences within P2X7R affect receptor pore formation and channel function. ATP can act as a neurotransmitter, while the presence of P2X7Rs on immune cells suggests that they also regulate immune function and inflammatory responses. In addition, activation of the P2X7R has dramatic cytotoxic properties. The role of extracellular ATP and purinoceptors in cytokine regulation and neurological disorders is, in fact, the focus of a rapidly expanding area of research. P2X7Rs may affect neuronal cell death by regulating the processing and release of interleukin-1β, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7Rs provides an inflammatory stimulus, and P2X7R-deficient mice display a marked attenuation of inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X7R activity, by regulating the release of pro-inflammatory cytokines, may be involved in the pathophysiology of neuropsychiatric disorders. The P2X7R may thus represent a critical communication link between the nervous and immune systems, while providing a target for therapeutic exploitation. In this review we discuss current biology and pharmacology of the P2X7R, as well as insights into the role for this receptor in neurological/psychiatric diseases.

Takai E, Tsukimoto M, Harada H, et al.
Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells.
J Cell Sci. 2012; 125(Pt 21):5051-60 [PubMed] Related Publications
TGF-β1 plays a key role in cancer progression through induction of various biological effects, including cell migration. Extracellular nucleotides, such as ATP, released from cells play a role in signaling through activation of P2 receptors. We show here that exocytosis of ATP followed by activation of P2 receptors play a key role in TGF-β1-induced actin remodeling associated with cell migration. Treatment with TGF-β1 facilitated migration of human lung cancer A549 cells, which was blocked by pretreatment with ecto-nucleotidase and P2 receptor antagonists. ATP and P2 agonists facilitated cell migration. TGF-β1-induced actin remodeling, which contributes to cell migration, was also suppressed by pretreatment with ecto-nucleotidase and P2 receptor antagonists. Knockdown of P2X7 receptor suppressed TGF-β1-induced migration and actin remodeling. These results indicate the involvement of TGF-β1-induced ATP release in cell migration, at least in part, through activation of P2X7 receptors. TGF-β1 caused release of ATP from A549 cells within 10 minutes. Both ATP-enriched vesicles and expression of a vesicular nucleotide transporter (VNUT) SLC17A9, which is responsible for exocytosis of ATP, were found in cytosol of A549 cells. TGF-β1 failed to induce release of ATP from SLC17A9-knockdown cells. TGF-β1-induced cell migration and actin remodeling were also decreased in SLC17A9-knockdown cells. These results suggest the importance of exocytosis of ATP in cell migration. We conclude that autocrine signaling through exocytosis of ATP and activation of P2 receptors is required for the amplification of TGF-β1-induced migration of lung cancer cells.

Adinolfi E, Raffaghello L, Giuliani AL, et al.
Expression of P2X7 receptor increases in vivo tumor growth.
Cancer Res. 2012; 72(12):2957-69 [PubMed] Related Publications
The P2X7 receptor is an ATP-gated ion channel known for its cytotoxic activity. However, recent evidence suggests a role for P2X7 in cell proliferation. Here, we found that P2X7 exhibits significant growth-promoting effects in vivo. Human embryonic kidney cells expressing P2X7 exhibited a more tumorigenic and anaplastic phenotype than control cells in vivo, and the growth rate and size of these tumors were significantly reduced by intratumoral injection of the P2X7 inhibitor-oxidized ATP. The accelerated growth of P2X7-expressing tumors was characterized by increased proliferation, reduced apoptosis, and a high level of activated transcription factor NFATc1. These tumors also showed a more developed vascular network than control tumors and secreted elevated amounts of VEGF. The growth and neoangiogenesis of P2X7-expressing tumors was blocked by intratumoral injection of the VEGF-blocking antibody Avastin (bevacizumab), pharmacologic P2X7 blockade, or P2X7 silencing in vivo. Immunohistochemistry revealed strong P2X7 positivity in several human cancers. Together, our findings provide direct evidence that P2X7 promotes tumor growth in vivo.

Mohammed A, Qian L, Janakiram NB, et al.
Atorvastatin delays progression of pancreatic lesions to carcinoma by regulating PI3/AKT signaling in p48Cre/+ LSL-KrasG12D/+ mice.
Int J Cancer. 2012; 131(8):1951-62 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is the one of most common causes of cancer deaths and has the worst prognosis. Clinical observational studies suggest that statins may reduce the risk of pancreatic cancer. The chemopreventive efficacy of the statin atorvastatin (Lipitor(®)) and the role of the phosphatidyl-inositol 3-kinase (PI3/AKT) signaling pathway were evaluated for the progression of pancreatic intraepithelial neoplasms (PanINs) to pancreatic ductal adenocarcinoma (PDAC) in conditional p48(Cre/+) -LSL-Kras(G12D/+) transgenic mice. Six-week-old male p48(Cre/+) -LSL-Kras(G12D/+) (20/group) mice were fed AIN-76A diets containing 0, 200 and 400 ppm atorvastatin for 35 weeks. At termination, pancreata were evaluated histopathologically for PanINs and PDAC, and for various PI3/AKT signaling markers, and inflammatory cytokines, by immunohistochemistry/immunohistoflourscence, ELISA, Western blotting and/or reverse transcription-PCR methods. Control diet-fed mice showed 85% incidence of PDAC; whereas, mice fed with atorvastatin showed PDAC incidence of 65 and 35%, respectively (p < 0.0001). Similarly, significant suppression of PanIN-3 (22.6%) was observed in mice fed 400 ppm atorvastatin. Importantly, pancreata from atorvastatin-treated mice were ∼68% free from ductal lesions. Furthermore, pancreas of mice administered with atorvastatin had significantly reduced expressions levels of PCNA, p2X7, p-ERK, RhoA, cyclin D1, survivin, Akt, pAKT, β-catenin, cyclin E, cdK2 and caveolin-1. Also, atorvastatin-treated mice had shown dose-dependent suppression of inflammatory cytokines and a significant increase in tunnel-positive cells, p21 and PARP expression levels in pancreas. Atorvastatin significantly delays the progression of PanIN-1 and -2 lesions to PanIN-3 and PDAC by modulating PI3/AKT signal molecules in a preclinical model, suggesting potential clinical benefits of statins for high-risk pancreatic cancer patients.

Erten S, Bebek G, Koyutürk M
Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks.
J Comput Biol. 2011; 18(11):1561-74 [PubMed] Free Access to Full Article Related Publications
Genome-wide linkage and association studies have demonstrated promise in identifying genetic factors that influence health and disease. An important challenge is to narrow down the set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI) networks are useful in extracting the functional relationships between known disease and candidate genes, based on the principle that products of genes implicated in similar diseases are likely to exhibit significant connectivity/proximity. Information flow?based methods are shown to be very effective in prioritizing candidate disease genes. In this article, we utilize the topology of PPI networks to infer functional information in the context of disease association. Our approach is based on the assumption that PPI networks are organized into recurrent schemes that underlie the mechanisms of cooperation among different proteins. We hypothesize that proteins associated with similar diseases would exhibit similar topological characteristics in PPI networks. Utilizing the location of a protein in the network with respect to other proteins (i.e., the "topological profile" of the proteins), we develop a novel measure to assess the topological similarity of proteins in a PPI network. We then use this measure to prioritize candidate disease genes based on the topological similarity of their products and the products of known disease genes. We test the resulting algorithm, Vavien, via systematic experimental studies using an integrated human PPI network and the Online Mendelian Inheritance in Man (OMIM) database. Vavien outperforms other network-based prioritization algorithms as shown in the results and is available at www.diseasegenes.org.

Ryu JK, Jantaratnotai N, Serrano-Perez MC, et al.
Block of purinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model.
J Neuropathol Exp Neurol. 2011; 70(1):13-22 [PubMed] Related Publications
We examined the expression and pharmacological modulation of the purinergic receptor P2X7R in a C6 glioma model. Intrastriatal injection of C6 cells induced a time-dependent growth of tumor; at 2 weeks postinjection immunohistochemical analysis demonstrated higher levels of P2X7R in glioma-injected versus control vehicle-injected brains. P2X7R immunoreactivity colocalized with tumor cells and microglia, but not endogenous astrocytes. Intravenous administration of the P2X7R antagonist brilliant blue G (BBG) inhibited tumor growth in a spatially dependent manner from the C6 injection site. Treatment with BBG reduced tumor volume by 52% versus that in controls. Double immunostaining indicated that BBG treatment did not alter microgliosis, astrogliosis, or vasculature vessels in C6-injected animals. In vitro, BBG reduced the expression of P2X7R and glioma chemotaxis induced by the P2X7R ligand, 2',3'-O-(4-benzoyl-benzoyl)adenosine triphosphate (BzATP). Immunohistochemical staining of human glioblastoma tissue samples demonstrated greater expression of P2X7R compared to control nontumor samples. These results suggest that the efficacy of BBG in inhibiting tumor growth is primarily mediated by direct actions of the compound on P2X7R in glioma cells and that pharmacological inhibition of this purinergic receptor might serve as a strategy to slow the progression of brain tumors.

Chong JH, Zheng GG, Ma YY, et al.
The hyposensitive N187D P2X7 mutant promotes malignant progression in nude mice.
J Biol Chem. 2010; 285(46):36179-87 [PubMed] Free Access to Full Article Related Publications
Nucleotides are new players in the intercellular communication network. P2X7 is a member of the P2X family of receptors, which are ATP-gated plasma membrane ion channels with diverse biological functions. Abnormal expression and dysfunction of P2X7 have been reported in leukemias. Here, we report a new P2X7 mutant (an A(559)-to-G substitution causing N187D P2X7) cloned from J6-1 leukemia cells. The characteristics of N187D P2X7 were studied by establishing stably transfected K562 cell lines. Our results show that N187D P2X7 required a higher concentration of agonist for its activation, leading to Ca(2+) influx (EC(50) = 293.3 ± 6.6 μm for the mutant and 93.6 ± 2.2 μm for wild-type P2X7) and ERK phosphorylation, which were not caused by differential cell-surface expression or related to high ATPase activity on the cell surface and in the extracellular space. K562 cells expressing this N187D mutant showed a proliferative advantage and reduced pro-apoptosis effects in vitro and in vivo. Furthermore, elevated angiogenesis and CD206-positive macrophage infiltration were found in tumor tissues formed by K562-M cells. In addition, higher expression of VEGF and MCP1 could be detected in tumor tissues formed by K562-M cells. Our results suggest that N187D P2X7, representing mutants hyposensitive to agonist, might be a positive regulator in the progression of hematopoietic malignancies.

Orellano EA, Rivera OJ, Chevres M, et al.
Inhibition of neuronal cell death after retinoic acid-induced down-regulation of P2X7 nucleotide receptor expression.
Mol Cell Biochem. 2010; 337(1-2):83-99 [PubMed] Free Access to Full Article Related Publications
Apoptosis is a major mechanism for cell death in the nervous system during development. P2X(7) nucleotide receptors are ionotropic ATP receptors that mediate cell death under pathological conditions. We developed an in vitro protocol to investigate the expression and functional responses of P2X(7) nucleotide receptors during retinoic acid (RA)-induced neuronal differentiation of human SH-SY5Y neuroblastoma cells. Neuronal differentiation was examined measuring cellular growth arrest and neuritic processes elongation. We found that SH-SY5Y cells treated for 5 days with RA under low serum content exhibited a neuron-like phenotype with neurites extending more than twice the length of the cell body and cell growth arrest. Concurrently, we detected the abolishment of intracellular-free calcium mobilization and the down-regulation of P2X(7) nucleotide receptor protein expression that protected differentiated cells from neuronal cell death and reduced caspase-3 cleavage-induced by P2X(7) nucleotide receptor agonist. The role of P2X(7) nucleotide receptors in neuronal death was established by selectively antagonizing the receptor with KN-62 prior to its activation. We assessed the involvement of protein kinases and found that p38 signaling was activated in undifferentiated after nucleotide stimulation, but abolished by the differentiating RA pretreatment. Importantly, P2X(7) receptor-induced caspase-3 cleavage was blocked by the p38 protein kinase specific inhibitor PD169316. Taken together, our results suggest that RA treatment of human SH-SY5Y cells leads to decreased P2X(7) nucleotide receptor protein expression thus protecting differentiated cells from extracellular nucleotide-induced neuronal death, and p38 signaling pathway is critically involved in this protection of RA-differentiated cells.

Zintzaras E, Kitsios GD
Synopsis and synthesis of candidate-gene association studies in chronic lymphocytic leukemia: the CUMAGAS-CLL information system.
Am J Epidemiol. 2009; 170(6):671-8 [PubMed] Related Publications
A comprehensive and systematic assessment of the current status of candidate-gene association studies for chronic lymphocytic leukemia (CLL) was conducted. Data from 989 candidate-gene association studies (1992-2009) involving 905 distinct genetic variants were analyzed and cataloged in CUMAGAS-CLL, a Web-based information system which allows the retrieval and synthesis of data from candidate-gene association studies on CLL (http://biomath.med.uth.gr). Nine genetic variants (BAX (rs4645878), GSTM1 (null/present), GSTT1 (null/present), IL10 (rs1800896), LTA (rs909253), MTHFR (rs1801131), MTHFR (rs1801133), P2RX7 (rs3751143), and TNF (rs1800629)) were investigated in 4 or more studies, and their results were meta-analyzed. In individual studies, 147 variants showed a significant association with CLL risk under any genetic model. For 53 variants, the association was significant at P < 0.01 with an increased risk greater than 40%. Only 0.3% of studies had statistical power greater than 80%. In meta-analyses, none of the variants showed significant results, and heterogeneity ranged from none to high. Large and rigorous genetic studies (candidate-gene association studies and genome-wide association studies) designed to investigate epistatic and gene-environment interactions may produce more conclusive evidence about the genetic etiology of CLL. CUMAGAS-CLL would be a useful tool for current genomic epidemiology research in the field of CLL.

Ravenna L, Sale P, Di Vito M, et al.
Up-regulation of the inflammatory-reparative phenotype in human prostate carcinoma.
Prostate. 2009; 69(11):1245-55 [PubMed] Related Publications
BACKGROUND: Recent studies have underlined the role of tumor cells in the endogenous synthesis of pro-inflammatory molecules. We tested whether malignant progression in prostate cancer was associated with the activation of a phenotype typical of the innate immune system.
METHODS: The expression of a set of molecules involved in tissue inflammation and repair was measured by real-time PCR and Western blot analysis in prostate samples in the absence or slight presence of a detectable leukocyte infiltrate. Whole tumor and non-tumor samples were analyzed in addition to laser-capture microdissected tumor and host epithelium. Receptor for advanced glycation end products, purine receptor, inducible enzymes cyclooxygenase-2 and nitric oxide synthase-2, pentraxin-3 and growth-survival factor receptors such as epithelial growth factor and estrogen alpha and beta receptors were all studied.
RESULTS: A global survey approach showed an up-regulation in tumor samples of all of the studied genes, with the exception of ERbeta. A laser-capture microdissection approach highlighted over-expression of pro-inflammatory molecules in each tumor sample examined. Nuclear translocation of nuclear factor-kB subunit p65 was observed in tumor tissues.
CONCLUSIONS: These data support the evidence that molecules typical of the innate immune system, similar to that of activated leukocytes, are produced by prostate epithelial cells and that their expression is up-regulated in malignant cells. We suggest that the observed pro-inflammatory and repair process activation may represent an important molecular mechanism in the progression of prostate cancer.

Dardano A, Falzoni S, Caraccio N, et al.
1513A>C polymorphism in the P2X7 receptor gene in patients with papillary thyroid cancer: correlation with histological variants and clinical parameters.
J Clin Endocrinol Metab. 2009; 94(2):695-8 [PubMed] Related Publications
INTRODUCTION: The modulation of the purinergic receptor P2X7 may be implicated in human carcinogenesis. The 1513A>C and 489C>T polymorphisms of P2X7R gene induce loss of function and gain of function, respectively.
AIM: The aim of the study was to assess the frequency of both 1513A>C and 489C>T polymorphisms in patients with papillary thyroid carcinoma (PTC) and to evaluate the possible association with clinical and histological features.
PATIENTS AND METHODS: P2X7R analysis was performed in lymphocytes from 121 PTC patients (100 women, 21 men; aged 43.4 +/- 13.6 yr), 100 matched healthy subjects, and 80 patients with nodular goiter.
RESULTS: The minor allele frequency for 1513A>C polymorphism in PTC patients with the classical variant was similar to controls (0.21 and 0.20, respectively), whereas it resulted in a significant increase in patients with the follicular variant (0.36; P = 0.01 vs. classical variant, and P = 0.005 vs. controls). In detail, 13.6% of patients with PTC follicular variant were homozygous for the 1513C allele, compared to 2.6% of patients with the classical variant and 2% of controls. Moreover, a positive relationship between 1513A>C polymorphism and either cancer diameter (Rho = 0.22; P = 0.02) or TNM stage (Rho = 0.38; P < 0.001) was found. No significant difference in the genotype frequency of 489C>T polymorphism between PTC patients and healthy controls was observed (0.42 and 0.47, respectively).
CONCLUSIONS: Our data show, for the first time, a strong association between 1513A>C polymorphism of P2X7R gene and the follicular variant of PTC. Further studies are needed to confirm the possible role of this polymorphism as a novel clinical marker of PTC follicular variant and its usefulness in selecting patients with different clinical outcome.

Donnelly-Roberts DL, Namovic MT, Surber B, et al.
[3H]A-804598 ([3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors.
Neuropharmacology. 2009; 56(1):223-9 [PubMed] Related Publications
ATP-sensitive P2X7 receptors are localized on cells of immunological origin including peripheral macrophages and glial cells in the CNS. Activation of P2X7 receptors leads to rapid changes in intracellular calcium concentrations, release of the pro-inflammatory cytokine IL-1beta, and following prolonged agonist exposure, the formation of cytolytic pores in plasma membranes. Data from gene knockout studies and recently described selective antagonists indicate a role for P2X7 receptor activation in inflammation and pain. While several species selective P2X7 antagonists exist, A-804598 represents a structurally novel, competitive, and selective antagonist that has equivalent high affinity at rat (IC50 = 10 nM), mouse (IC50 = 9 nM) and human (IC50 = 11 nM) P2X7 receptors. A-804598 also potently blocked agonist stimulated release of IL-1beta and Yo-Pro uptake from differentiated THP-1 cells that natively express human P2X7 receptors. A-804598 was tritiated ([3H]A-804598; 8.1Ci/mmol) and utilized to study recombinant rat P2X7 receptors expressed in 1321N1 cells. [3H]A-804598 labeled a single class of high affinity binding sites (Kd=2.4 nM and apparent Bmax=0.56 pmol/mg). No specific binding was observed in untransfected 1321N1 cells. The pharmacological profile for P2X antagonists to inhibit [3H]A-804598 binding correlated with their ability to block functional activation of P2X7 receptors (r=0.95, P<0.05). These data demonstrate that A-804598 is one of the most potent and selective antagonists for mammalian P2X7 receptors described to date and [3H]A-804598 is a high affinity antagonist radioligand that specifically labels rat P2X7 receptors.

Solini A, Cuccato S, Ferrari D, et al.
Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease?
Endocrinology. 2008; 149(1):389-96 [PubMed] Related Publications
Nucleotides are increasingly recognized as nonredundant extracellular signals for chemotaxis, cell growth, and cytokine release. Effects of extracellular nucleotides are mediated by P2 receptors, among which the P2X(7) subtype is attracting increasing attention for its involvement in apoptosis, cell growth, and cytokine release. Recent studies showed that P2X(7) is overexpressed in chronic lymphocytic leukemia and breast and prostate cancer. The aim of the present study was to better understand the clinical significance of P2X(7) receptor expression in normal and cancer human thyroid tissues. P2X(7) receptor message and protein expression and functional activity were tested in two cell lines (FB1 and FB2) established from either anaplastic or papillary primary thyroid cancer and in several histological samples of human papillary cancer. We show here that human thyroid papillary carcinoma, whether of the classical or follicular variant, expresses the P2X(7) receptor (P2X(7)R) to a much higher level than normal thyroid tissue. The P2X(7)R was similarly up-regulated in FB1 and FB2 cell lines. In contrast to normal thyroid cells, both cell lines responded to extracellular nucleotide stimulation with a large increase in intracellular Ca(2+) and secretion of IL-6. Ca(2+) increase was attenuated and release of IL-6 was fully blocked by P2X(7)R inhibitors. Finally, the thyroid carcinoma cell lines had at least a 3-fold higher intracellular ATP concentration and maintained at least a 3-fold higher extracellular ATP level, compared with control cells. These data suggest that an enhanced P2X(7)R function might be a feature of human thyroid cancer.

Lee KH, Park SS, Kim I, et al.
P2X7 receptor polymorphism and clinical outcomes in HLA-matched sibling allogeneic hematopoietic stem cell transplantation.
Haematologica. 2007; 92(5):651-7 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: The P2X7 receptor (P2X7 R) is a key player in the processing and release of interleukin (IL)-1. To evaluate whether the A1513C polymorphism of the P2X7 R gene is related to allogeneic stem cell transplantation outcome, we performed an association analysis between this polymorphism and clinical outcomes in patients treated with an HLA-matched sibling stem cell transplant.
DESIGN AND METHODS: Patients (n=152) with a malignancy or aplastic anemia underwent allogeneic stem cell transplantation at a single institute. Peripheral blood DNA of these 152 patients and their 152 donors was genotyped. Genotypes of 145 recipients and 150 donors were obtained and analyzed for the polymorphism.
RESULTS: The frequencies of the A and C alleles in all 295 study subjects were 72% and 28%, respectively. The genotypes in patients were AA in 75, AC in 58, and CC in 12; the genotypes in donors were AA in 74, AC in 70, and CC in 6. Overall survival was significantly shorter for recipients with the CC genotype than for those with the AA or AC genotype (92 days for 1513CC vs. 821 days for 1513AA or 1513AC, p=0.012), and for recipients from donors with the CC genotype than for recipients from donors with the AA or AC genotype (63 days for 1513CC vs. 702 days for 1513AA or 1513AC, p=0.024). Multivariate analyses, which included sex, age, transplant method (reduced intensity conditioning vs. conventional conditioning), stem cell source, risk group, and P2X7R recipient and donor genotypes, as parameters, identified high-risk group (hazard ratio 3.25, 95% confidence interval 1.83~5.77) and a donor 1513CC genotype (hazard ratio 2.66, 95% confidence interval 1.02~6.91) as risk factors for a shorter survival. Microbiologically documented bacteremia occurred in 66.7% of recipients with the CC donor genotype and in 17.6% of recipients of transplants of AA or AC genotype (p=0.014).
INTERPRETATION AND CONCLUSIONS: We conclude that the A1513C polymorphism in the P2X7R gene is related to the occurrence of infections and survival after allogeneic stem cell transplantation. Thus, the determination of this polymorphism may be helpful for the optimal selection of patients and donors.

Deli T, Varga N, Adám A, et al.
Functional genomics of calcium channels in human melanoma cells.
Int J Cancer. 2007; 121(1):55-65 [PubMed] Related Publications
Ca(2+)-signaling of human melanoma is in the focus of intensive research since the identification of the role of WNT-signaling in melanomagenesis. Genomic and functional studies pointed to the important role of various Ca(2+) channels in melanoma, but these data were contradictory. In the present study we clearly demonstrate, in a number of different ways including microarray analysis, DNA sequencing and immunocytochemistry, that various human melanoma cell lines and melanoma tissues overexpress ryanodine receptor type 2 (RyR2) and express P2X(7) channel proteins as compared to melanocytes. These channels, although retain some of their usual characteristics and pharmacological properties, display unique features in melanoma cells, including a functional interaction between the two molecules. Unlike P2X(7), RyR2 does not function as a calcium channel. On the other hand, the P2X(7) receptor has an antiapoptotic function in melanoma cells, since ATP-activation suppresses induced apoptosis, while knock down of the gene expression significantly enhances that.

Yoon MJ, Lee HJ, Kim JH, Kim DK
Extracellular ATP induces apoptotic signaling in human monocyte leukemic cells, HL-60 and F-36P.
Arch Pharm Res. 2006; 29(11):1032-41 [PubMed] Related Publications
Extracellular adenosine 5'-triphosphate (ATP) affects the function of many tissues and cells. To confirm the biological activity of ATP on human myeloid leukemic cells, F-36P and HL-60, cells were treated with a variety of concentrations of ATP. The stimulation with extracellular ATP induced the arrest of cell proliferation and cell death from the analysis of Annexin-V staining and caspase activity by flow cytometry. The Annexin-V positive cells in both cell lines were dramatically increased following ATP stimulation. The expression of P2 purinergic receptor genes was confirmed, such as P2X1, P2X4, P2X5, P2X7 and P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y11 in both leukemic cell lines. Interestingly, ATP induced intracellular calcium flux in HL-60 cells but not in F-36P cells, as determined by Fluo-3 AM staining. Cell cycle analysis revealed that ATP treatment arrested both F-36P and HL-60 cells at G1/GO. Taken together, these data showed that extracellular ATP via P2 receptor genes was involved in the cell proliferation and survival in human myeloid leukemic cells, HL-60 and F-36P cells by the induction of apoptosis and control of cell cycle. Our data suggest that treatment with extracellular nucleotides may be a novel and powerful therapeutic avenue for myeloid leukemic disease.

Shemon AN, Sluyter R, Wiley JS
Rottlerin inhibits P2X(7) receptor-stimulated phospholipase D activity in chronic lymphocytic leukaemia B-lymphocytes.
Immunol Cell Biol. 2007; 85(1):68-72 [PubMed] Related Publications
Phospholipase D (PLD) is a ubiquitous enzyme that can be activated by extracellular adenosine 5'-triphosphate (ATP) or phorbol 12-myristate 13-acetate (PMA) in B-lymphocytes from subjects with chronic lymphocytic leukaemia (CLL). In this study, ATP- but not PMA-induced PLD stimulation in CLL B-lymphocytes was abolished in the presence of an anti-P2X(7) receptor monoclonal antibody, as well as in B-lymphocytes from CLL subjects homozygous for the Glu(496) to Ala loss-of-function P2X(7) polymorphism. Rottlerin, an inhibitor of novel protein kinase C (PKC) isoforms, but not GF 109203X, an inhibitor of conventional PKC isoforms, impaired the ATP-stimulated PLD activity in CLL B-lymphocytes. In contrast, both inhibitors impaired PLD activity stimulated by PMA, a known mediator of PKC activation. The inhibition of P2X(7)-stimulated PLD activity by rottlerin was attributed to a target downstream of P2X(7) activation, as the ATP-mediated (86)Rb(+) efflux from CLL B-lymphocytes was not altered in the presence of rottlerin. Our results indicate a possible role for novel PKC isoforms in the regulation of P2X(7)-mediated PLD activity.

Feng YH, Li X, Zeng R, Gorodeski GI
Endogenously expressed truncated P2X7 receptor lacking the C-terminus is preferentially upregulated in epithelial cancer cells and fails to mediate ligand-induced pore formation and apoptosis.
Nucleosides Nucleotides Nucleic Acids. 2006; 25(9-11):1271-6 [PubMed] Related Publications
A truncated naturally occurring variant of the human purinergic receptor P2X7 (P2X7-R) was found in human cancer cervical cells. The novel protein consists of 258 amino acids, and compared to the wild-type P2X7-R it lacks the entire intracellular carboxy terminus, the second transmembrane domain, and the distal third of the extracellular loop. The truncated P2X7-R failed to form pores and mediate apoptosis, and it interacted with the wild-type P2X7-R in a manner suggesting auto-hetero-oligomerization. In contrast to cancer cells the novel truncated P2X7-R was expressed relatively little in normal cervical cells. These data raise the possibility that coexpression of the truncated form could block P2X7 mediated apoptosis and promote uncontrolled growth of cells.

Künzli BM, Berberat PO, Giese T, et al.
Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease.
Am J Physiol Gastrointest Liver Physiol. 2007; 292(1):G223-30 [PubMed] Related Publications
Chronic inflammation, fibrosis, atrophy, malignant transformation, and thromboembolic events are hallmarks of chronic pancreatic disease. Extracellular nucleotides have been implicated as inflammatory mediators in many pathological situations. However, there are minimal data detailing expression of ectonucleotidases and type-2 purinergic receptors (P2R) in chronic pancreatitis and pancreatic cancer. We have therefore defined tissue distribution and localization of the CD39 family of ectonucleotidases and associated P2R in human disease. Transcripts of ectonucleotidases (CD39 and CD39L1) together with P2R (P2X7, P2Y2, and P2Y6) are significantly increased in both chronic pancreatitis and pancreatic cancer. CD39 and CD39L1 are preferentially associated with the vasculature and stromal elements in pathological tissues. P2X7 mRNA upregulation was associated with chronic pancreatitis, and heightened protein expression was found to be localized to infiltrating cells. P2Y2 was markedly upregulated in biopsies of pancreatic cancer tissues and expressed by fibroblasts adjacent to tumors. High-tissue mRNA levels of CD39 significantly correlated with better long-term survival after tumor resection in patients with pancreatic cancer. Heightened expression patterns and localization patterns of CD39, P2X7, and P2Y2 infer associations with chronic inflammation and neoplasia of the pancreas. Our data suggest distinct roles for CD39 and P2-purinergic signaling in both tissue remodeling and fibrogenesis with respect to human pancreatic diseases.

Feng YH, Li X, Wang L, et al.
A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization.
J Biol Chem. 2006; 281(25):17228-37 [PubMed] Free Access to Full Article Related Publications
A truncated naturally occurring variant of the human receptor P2X7 was identified in cancer cervical cells. The novel protein (P2X7-j), a polypeptide of 258 amino acids, lacks the entire intracellular carboxyl terminus, the second transmembrane domain, and the distal third of the extracellular loop of the full-length P2X7 receptor. The P2X7-j was expressed in the plasma membrane; it showed diminished ligand-binding and channel function capacities and failed to form pores and mediate apoptosis in response to treatment with the P2X7 receptor agonist benzoyl-ATP. The P2X7-j interacted with the full-length P2X7 in a manner suggesting heterooligomerization and blocked the P2X7-mediated actions. Interestingly, P2X7-j immunoreactivity and mRNA expression were similar in lysates of human cancer and normal cervical tissues, but full-length P2X7 immunoreactivity and mRNA expression were higher in normal than in cancer tissues, and cancer tissues lacked 205-kDa P2X7 immunoreactivity suggesting lack of P2X7 homo(tri)-oligomerization. These results identify a novel P2X7 variant with apoptosis-inhibitory actions, and demonstrate a distinct regulatory property for a truncated variant to antagonize its full-length counterpart through hetero-oligomerization. This may represent a general paradigm for regulation of a protein function by its variant.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. P2RX7, Cancer Genetics Web: http://www.cancer-genetics.org/P2RX7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 June, 2015     Cancer Genetics Web, Established 1999