Gene Summary

Gene:SIPA1; signal-induced proliferation-associated 1
Aliases: SPA1
Summary:The product of this gene is a mitogen induced GTPase activating protein (GAP). It exhibits a specific GAP activity for Ras-related regulatory proteins Rap1 and Rap2, but not for Ran or other small GTPases. This protein may also hamper mitogen-induced cell cycle progression when abnormally or prematurely expressed. It is localized to the perinuclear region. Two alternatively spliced variants encoding the same isoform have been characterized to date. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:signal-induced proliferation-associated protein 1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Genetic Predisposition
  • Cervical Cancer
  • Extracellular Matrix
  • Neoplasm Metastasis
  • Single Nucleotide Polymorphism
  • Biomarkers, Tumor
  • rap GTP-Binding Proteins
  • rap1 GTP-Binding Proteins
  • Signal Transduction
  • Apoptosis Regulatory Proteins
  • Cell Proliferation
  • Cell Adhesion
  • GTPase-Activating Proteins
  • Lymph Nodes
  • Mutation
  • Transcription Factors
  • Genetic Association Studies
  • Promoter Regions
  • Polymorphism
  • Cancer Gene Expression Regulation
  • Estrogen Receptors
  • siRNA
  • Risk Factors
  • Chromosomal Proteins, Non-Histone
  • Germ-Line Mutation
  • Staging
  • Lymphatic Metastasis
  • Cell Movement
  • Chromosome 11
  • T-Lymphocytes
  • Tissue Distribution
  • Breast Cancer
  • Disease Progression
  • Nuclear Proteins
  • Repressor Proteins
  • Case-Control Studies
  • RT-PCR
  • Genotype
  • Neoplasm Invasiveness
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SIPA1 (cancer-related)

Xiao P, Dolinska M, Sandhow L, et al.
Blood Adv. 2018; 2(5):534-548 [PubMed] Free Access to Full Article Related Publications
Mutations of signal-induced proliferation-associated gene 1 (

Shah F, Goossens E, Atallah NM, et al.
APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing.
Mol Oncol. 2017; 11(12):1711-1732 [PubMed] Free Access to Full Article Related Publications
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.

Li JY, Wang JB, Liu CB, et al.
Dynamic relationship between SIPA1 gene and protein expression and the development of gastric cancer.
Genet Mol Res. 2017; 16(1) [PubMed] Related Publications
Association of signal-induced proliferation-associated 1 (SIPA) gene and protein expression with gastric cancer development was examined. SIPA1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and western blot, respectively, in 40 gastric tumor and tumor-adjacent normal tissues. SIPA1, VEGF-A, and FVIII levels in 60 gastric tumor and 40 tumor-adjacent normal tissues were examined by immunohistochemical staining. Correlations between SIPA1, VEGF-A, and microvessel density (MVD) were analyzed. SIPA1 mRNA levels were significantly lower in tumor tissues than in tumor-adjacent normal tissues (P < 0.05). Similarly, protein levels were significantly lower in tumor tissues (0.3043 ± 0.1062) than in tumor-adjacent normal tissues (0.5423 ± 0.0682, P < 0.05). Positive staining rates of SIPA1 (48.3%) and VEGF-A (36.7%) were lower and higher, respectively, in tumor tissues than in tumor-adjacent normal tissues (65.0 and 2.5%, P < 0.05). Positive protein staining rates in tumor tissues correlated with the degree of differentiation, lymph node metastases, and clinical grading (P < 0.05) and not with sex, age, or tumor size (P > 0.05). Significantly higher MVD (57.4 ± 9.3) was observed in tumor tissues displaying positive SIPA1 staining than in tumor-adjacent normal tissues (41.2 ± 5.7, P < 0.05). SIPA1 and VEGF-A expression in tumor tissues were negatively correlated (r = -0.736, P < 0.05). SIPA1 and its protein may play important roles in gastric cancer invasion, metastasis, and biological behavior. Low SIPA1 levels in gastric cancer may accelerate tumor development and progression by promoting VEGF-A expression to increase vascular density.

Roberts MR, Sucheston-Campbell LE, Zirpoli GR, et al.
Single nucleotide variants in metastasis-related genes are associated with breast cancer risk, by lymph node involvement and estrogen receptor status, in women with European and African ancestry.
Mol Carcinog. 2017; 56(3):1000-1009 [PubMed] Free Access to Full Article Related Publications
Single nucleotide polymorphisms (SNPs) in pathways influencing lymph node (LN) metastasis and estrogen receptor (ER) status in breast cancer may partially explain inter-patient variability in prognosis. We examined 154 SNPs in 12 metastasis-related genes for associations with breast cancer risk, stratified by LN and ER status, in European-American (EA) and African-American (AA) women. Two-thousand six hundred and seventy-one women enrolled in the Women's Circle of Health Study were genotyped. Pathway analyses were conducted using the adaptive rank truncated product (ARTP) method, with p

Ugenskienė R, Myrzaliyeva D, Jankauskaitė R, et al.
The contribution of SIPA1 and RRP1B germline polymorphisms to breast cancer phenotype, lymph node status and survival in a group of Lithuanian young breast cancer patients.
Biomarkers. 2016; 21(4):363-70 [PubMed] Related Publications
The germline polymorphisms in signal-inducing proliferation-associated protein 1 (SIPA1) and ribosomal RNR processing 1B (RRP1B) might be involved in breast cancer metastasis. The aim of this study was to analyze how SIPA1 and RRP1B polymorphisms contribute to breast cancer phenotype, lymph node status and survival. A group of 100 young, I-II stage breast cancer patients were analyzed for SIPA1 and RRP1B polymorphisms with PCR-RFLP assay. SIPA1 c.2760G > A, c.545C > T and RRP1B c.436T > C polymorphisms were associated with lymph node status, survival and tumor grade, respectively. Our results suggest that SIPA1 and RRP1B germline polymorphisms are important for breast cancer prognosis.

Supper E, Tahir S, Imai T, et al.
Modification of Gene Expression, Proliferation, and Function of OP9 Stroma Cells by Bcr-Abl-Expressing Leukemia Cells.
PLoS One. 2015; 10(7):e0134026 [PubMed] Free Access to Full Article Related Publications
Expression of the Bcr-Abl fusion gene in hematopoietic progenitor cells (HPCs) results in the development of chronic myelogenous leukemia (CML), for which hematopoietic microenvironment plays an important role. We investigated the specific effects of an HPC line transduced with Bcr-Abl, KOBA, on BM-derived OP9 stroma cells. DNA microarray analysis revealed that OP9 cells co-cultured with KOBA cells (OP9/L) show diverse changes in the gene expression. OP9/L cells showed significant down-regulation of Cdkn genes and up-regulation of Icam1, leading to the increased proliferation capacity of OP9 cells and enhanced transmigration of leukemia cells through them. The effects were attributed to direct Notch activation of OP9 cells by KOBA cells. OP9/L cells also showed a markedly altered cytokine gene expression pattern, including a robust increase in a variety of proinflammatory genes and a decrease in hematopoietic cytokines such as Cxcl12, Scf, and Angpt1. Consequently, OP9/L cells promoted the proliferation of KOBA cells more efficiently than parental OP9 cells, whereas the activity supporting normal myelopoiesis was attenuated. In mice bearing KOBA leukemia, the characteristic genetic changes observed in OP9/L cells were reflected differentially in the endothelial cells (ECs) and mesenchymal stroma cells (MCs) of the BM. The ECs were markedly increased with Notch-target gene activation and decreased Cdkn expression, whereas the MCs showed a marked increase in proinflammatory gene expression and a profound decrease in hematopoietic genes. Human CML cell lines also induced essentially similar genetic changes in OP9 cells. Our results suggest that CML cells remodel the hematopoietic microenvironment by changing the gene expression patterns differentially in ECs and MCs of BM.

Hunter K
The role of individual inheritance in tumor progression and metastasis.
J Mol Med (Berl). 2015; 93(7):719-25 [PubMed] Free Access to Full Article Related Publications
Metastasis, the dissemination and growth of tumor cells at secondary sites, is the primary cause of patient mortality from solid tumors. Metastasis is an extremely complex, inefficient process requiring contributions of not only the tumor cell but also local and distant environmental factors, at both the cellular and molecular level. Variation in the function of any of the steps in the metastatic cascade may therefore have profound implications for the ultimate course of the disease. In addition to the somatic and cellular heterogeneity that can affect cancer outcome, an individual's specific ancestry or genetic background can also significantly influence metastatic progression. These inherited variants not only encoded for metastatic susceptibility but also provided a window to study critical factors that are not easily accessible with current technologies. Furthermore, investigations into inherited metastatic susceptibility enable identification of important molecular and cellular processes that are not subject to mutation and are consequently not detectable by standard cancer genome sequencing strategies. Incorporation of inherited variation into metastasis research therefore provides methods to more comprehensively investigate the etiology of the lethal consequences of tumor progression.

Gdowicz-Kłosok A, Giglok M, Drosik A, et al.
The SIPA1 -313A>G polymorphism is associated with prognosis in inoperable non-small cell lung cancer.
Tumour Biol. 2015; 36(2):1273-8 [PubMed] Related Publications
Polymorphism in signal-induced proliferation-associated 1 (SIPA1) gene may contribute to the development of metastasis in human cancers. In this preliminary study, we examined the association of the SIPA1 -313A>G (rs931127) polymorphism with overall survival (OS) and progression-free survival (PFS) in 351 inoperable patients with non-small cell lung cancer (NSCLC) treated with radiotherapy or radiochemotherapy (curative or palliative). The GG homozygotes had significantly shorter PFS under codominant and recessive models in all patients (hazard ratio (HR) 1.47, p = 0.035, and HR 1.47, p = 0.022, respectively) and in advanced stage subgroup (HR 1.49, p = 0.037, and HR 1.48, p = 0.023, respectively). The GG genotype was also associated with reduced OS and PFS (codominant model: HR 2.41, p = 0.020, and HR 2.34, p = 0.020, respectively; recessive model: HR 2.16, p = 0.026, and HR 2.18, p = 0.022, respectively) in radiotherapy alone subgroup. Moreover, the SIPA1 -313GG was identified as an independent adverse prognostic factor for PFS in the cohort. Our results indicate, for the first time, that the SIPA1 -313A>G may have a prognostic role in unresected NSCLC making it a potential predictor of poor survival due to earlier progression.

Nanchari SR, Cingeetham A, Meka P, et al.
Rrp1B gene polymorphism (1307T>C) in metastatic progression of breast cancer.
Tumour Biol. 2015; 36(2):615-21 [PubMed] Related Publications
Rrp1B (ribosomal RNA processing1 homolog B) is a novel candidate metastasis modifier gene in breast cancer. Functional gene assays demonstrated that a physical and functional interaction existing between Rrp1b and metastasis modifier gene SIPA1 causes reduction in the tumor growth and metastatic potential. Ectopic expression of Rrp1B modulates various metastasis predictive extra cellular matrix (ECM) genes associated with tumor suppression. The aim of this study is to determine the functional significance of single nucleotide polymorphism (SNP) in human Rrp1B gene (1307 T>C; rs9306160) with breast cancer development and progression. The study consists of 493 breast cancer cases recruited from Nizam's Institute of Medical Sciences, Hyderabad, and 558 age-matched healthy female controls from rural and urban areas. Genomic DNA was isolated by non-enzymatic method. Genotyping was done by amplification refractory mutation system (ARMS-PCR) method. Genotypes were reconfirmed by sequencing and results were analyzed statistically. We have performed Insilco analysis to know the RNA secondary structure by using online tool m fold. The TT genotype and T allele frequencies of Rrp1B1307 T>C polymorphism were significantly elevated in breast cancer (χ (2); p = <0.008) cases compared to controls under different genetic models. The presence of T allele had conferred 1.75-fold risk for breast cancer development (OR = 1.75; 95% CI = 1.15-2.67). The frequency of TT genotype of Rrp1b 1307T>C polymorphism was significantly elevated in obese patients (χ (2); p = 0.008) and patients with advanced disease (χ (2); p = 0.01) and with increased tumor size (χ (2); p = 0.01). Moreover, elevated frequency of T allele was also associated with positive lymph node status (χ (2); p = 0.04) and Her2 negative receptor status (χ (2); p = 0.006). Presence of Rrp1b1307TT genotype and T allele confer strong risk for breast cancer development and progression.

Zhang Y, Gong Y, Hu D, et al.
Nuclear SIPA1 activates integrin β1 promoter and promotes invasion of breast cancer cells.
Oncogene. 2015; 34(11):1451-62 [PubMed] Related Publications
SIPA1 (signal-induced proliferation-associated protein 1) is a GTPase activation protein that can catalyze the hydrolysis of Rap1 bound GTP to GDP. Recently attention has been paid to a potential role for SIPA1 in cancer metastasis; however, the underlying mechanism of how changes in SIPA1 levels may lead to increased metastasis remains poorly understood. In this study, we showed that SIPA1 was mainly localized to the nuclei in highly invasive breast cancer tumor tissue and MDA-MB-231 cells. Knockdown of SIPA1 in MDA-MB-231 altered cell morphology and cell proliferation ability. Furthermore, this study is the first to establish that nuclear SIPA1 can interact with the integrin β1 promoter and activate its transcription; this interaction appears to be important for SIPA1-dependent MDA-MB-231 cell adhesion and invasion. We also demonstrated that the phosphorylation of FAK, Akt and the expression of MMP9, downstream signaling molecules of integrin β1, were decreased upon SIPA1 knockdown, and MDA-MB-231 cell invasion was impaired. Taken together, these results suggest nuclear SIPA1 contributes to breast cancer cell invasion through the regulation of integrin β1 signaling.

Yi SM, Li GY
The association of SIPA1 gene polymorphisms with breast cancer risk: evidence from published studies.
Tumour Biol. 2014; 35(1):441-5 [PubMed] Related Publications
Previous studies have focused on the association of signal-induced proliferation associated 1 gene (SIPA1) with carcinogenesis of many cancers, including breast cancer. It has been suggested that SIPA1 polymorphisms are associated with susceptibility to breast cancer. In the present study, we performed a meta-analysis to systematically summarize the possible association between SIPA1 and the risk for breast cancer. We conducted a search of case-control studies on the associations of SPIA1 with susceptibility to breast cancer in PubMed, Embase, International Statistical Institute Web of Science, Wanfang Database in China, and Chinese National Knowledge Infrastructure databases. Data from eligible studies were extracted for meta-analysis. Breast cancer risk associated with SIPA1 was estimated by pooled odds ratios and 95% confidence intervals. Four studies on SIPA1 and breast cancer were included in our meta-analysis. Our results showed that rs746429 was associated with the risk of breast cancer. However, rs931127 and rs3741378 were not found to be associated with breast cancer in our analysis. This meta-analysis suggests that rs746429 is associated with the risk of breast cancer. Well-designed studies with larger sample size and more ethnic groups are required to further validate the results.

Roberts MR, Hong CC, Edge SB, et al.
Case-only analyses of the associations between polymorphisms in the metastasis-modifying genes BRMS1 and SIPA1 and breast tumor characteristics, lymph node metastasis, and survival.
Breast Cancer Res Treat. 2013; 139(3):873-85 [PubMed] Free Access to Full Article Related Publications
Lymph node metastases and tumor characteristics predict breast cancer prognosis but correlate imperfectly with likelihood of metastatic relapse. Discovery of genetic polymorphisms affecting metastasis may improve identification of patients requiring aggressive adjuvant therapy to prevent recurrence. We investigated associations between several variants in the BRMS1 and SIPA1 metastasis-modifying genes and lymph node metastases, tumor subtype and grade, recurrence, disease-free survival, and overall survival. This cross-sectional and prospective prognostic analysis included 859 patients who received surgery for incident breast cancer at Roswell Park Cancer Institute, participated in the DataBank and BioRepository shared resource, and had DNA, clinical, and pathology data available for analysis. Genotyping for BRMS1 (rs11537993, rs3116068, and rs1052566) and SIPA1 (rs75894763, rs746429, rs3741378, and rs2306364) polymorphisms was performed using Sequenom(®) iPLEX Gold and Taqman(®) real-time PCR assays. Logistic and Cox proportional hazards regressions were used to estimate odds ratios (OR) and hazard ratios (HR), respectively. BRMS1 rs1052566 heterozygous individuals were more likely to have node-positive tumors (OR = 1.58, 95 % CI 1.13-2.23), although there was no dose-response relationship, and those with at least one variant allele were less likely to have the luminal B subtype (AG + AA: OR = 0.59, 95 % CI 0.36-0.98). BRMS1 rs3116068 was associated with increased likelihood of having the luminal B and the HER2-enriched tumor subtype (P trend = 0.03). Two SIPA1 SNPs, rs746429 and rs2306364, were associated with decreased risk of triple-negative tumors (P trend = 0.04 and 0.07, respectively). Presence of 8 or more risk alleles was associated with an increased likelihood of having a node-positive tumor (OR = 2.14, 95 % CI 1.18-3.36, P trend = 0.002). There were no significant associations with survival. Polymorphisms in metastasis-associated genes may be related to tumor characteristics and lymph node metastasis, but not survival. Future evaluation of metastasis-modifying gene variants is necessary to better understand the biology of metastasis.

Xie C, Yang L, Yang X, et al.
Sipa1 promoter polymorphism predicts risk and metastasis of lung cancer in Chinese.
Mol Carcinog. 2013; 52 Suppl 1:E110-7 [PubMed] Related Publications
Signal-induced proliferation associated gene 1 (Sipa1) is a signal transducer to activate the Ras-related proteins and modulate cell progression, differentiation, adhesion and cancer metastasis. In this study, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in Sipa1 are associated with lung cancer risk and metastasis. Three common SNPs (rs931127A > G, rs2448490G > A, and rs3741379G > T) were genotyped in a discovery set of southern Chinese population and then validated the promising SNPs in a validation set of an eastern Chinese population in a total of 1559 lung cancer patients and 1679 cancer-free controls. The results from the two sets were consistent, the rs931127GG variant genotype had an increased risk of lung cancer compared to the rs931127AA/GA genotypes (OR = 1.27; 95% CI = 1.09-1.49) after combination of the two populations, and the rs931127GG interacted with pack-year smoked on increasing lung cancer risk (P = 0.037); this SNP also had an effect on patients' clinical stages (P = 0.012) that those patients with the rs931127GG genotype had a significant higher metastasis rate and been advanced N, M stages at diagnosis. However, these associations were not observed for rs2448490G > A and rs3741379G > T in the discovery set. Our data suggest that the SNP rs931127A > G in the promoter of Sipa1 was significantly associated with lung cancer risk and metastasis, which may be a biomarker to predict the risk and metastasis of lung cancer.

Minato N
Rap G protein signal in normal and disordered lymphohematopoiesis.
Exp Cell Res. 2013; 319(15):2323-8 [PubMed] Related Publications
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.

Pei R, Xu Y, Wei Y, et al.
Association of SIPA1 545 C > T polymorphism with survival in Chinese women with metastatic breast cancer.
Front Med. 2013; 7(1):138-42 [PubMed] Related Publications
It has been demonstrated that single nucleotide polymorphisms (SNPs) of SIPA1 (signal-induced proliferation associated gene 1) are associated with metastatic efficiency in both human and rodents. The purpose of this study was to determine whether SIPA1 545 C > T polymorphism was associated with overall survival in patients with metastatic breast cancer. In this study, SIPA1 545 C > T polymorphism was detected in 185 metastatic breast cancer patients using polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP). Survival curves for patients with SIPA1 545 C > T polymorphism was compared using the Kaplan-Meier method with log-rank tests. We found that SIPA1 545 C > T polymorphism was significantly associated with survival in 185 patients with metastatic breast cancer. Patients with SIPA1 545 T/T genotype had a significantly worse overall survival (OS) than did patients with C/T or C/C genotype (50.0% vs. 62.9%, P = 0.042). Moreover, in multivariate analysis, as compared with the C/C or C/T genotype, the T/T genotype remained an independent unfavorable prognostic marker of OS in this cohort (hazard ratio [HR] = 2.16; 95% CI = 1.12-4.15; P = 0.022). Our findings indicate that metastatic breast cancer patients with SIPA1 545 T/T genotype have a poorer survival compared to patients with C/C or C/T genotype.

Ji K, Ye L, Toms AM, et al.
Expression of signal-induced proliferation-associated gene 1 (SIPA1), a RapGTPase-activating protein, is increased in colorectal cancer and has diverse effects on functions of colorectal cancer cells.
Cancer Genomics Proteomics. 2012 Sep-Oct; 9(5):321-7 [PubMed] Related Publications
BACKGROUND: Signal-induced proliferation-associated gene 1 (SIPA1) codes for a GTPase-activating protein, known to be a negative regulator of Ras-related Protein (RAP) which belongs to the Ras superfamily. It has been implicated in certain malignancies, including leukemia, cervical cancer and breast cancer. However the role of this molecule in colorectal cancer remains unknown. The current study aimed to investigate the expression of SIPA1 in colorectal tumour tissues and its impact on the function of colorectal cancer cells.
MATERIALS AND METHODS: A total of 94 colorectal cancer tissues together with 80 normal background tissues were used to examine the expression of SIPA1 transcript and protein using real-time quantitative Polymerase Chain Reaction (PCR) and immunohistochemical methods, respectively. Any association with clinical and histopathological characteristics was then identified. Ribozyme transgenes targeting SIPA1 were prepared to knockdown the expression of SIPA1 in colorectal cancer cells. The impact on their functions was subsequently determined, using respective in vitro function assays.
RESULTS: An increased expression of SIPA1 was evident in colorectal cancer tissues compared with its expression in normal background tissues (p<0.001). In colorectal tumours, its expression appeared to be lower in poorly-differentiated samples and in patients who had lymphatic metastasis. Knockdown of SIPA1 in colorectal cancer cells resulted in reduced cell growth in vitro. The knockdown exhibited a contrasting effect on invasion and migration, both of which were increased in SIPA1-knockdown cells compared with the controls.
CONCLUSION: SIPA1 is up-regulated in colorectal cancer. This suggests that SIPA1 plays diverse roles during disease progression as has contrasting effects on growth and motility of colorectal cancer cells.

Mathieu V, Pirker C, Schmidt WM, et al.
Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation.
Oncotarget. 2012; 3(4):399-413 [PubMed] Free Access to Full Article Related Publications
Melanoma is a devastating skin cancer characterized by distinct biological subtypes. Besides frequent mutations in growth- and survival-promoting genes like BRAF and NRAS, melanomas additionally harbor complex non-random genomic alterations. Using an integrative approach, we have analysed genomic and gene expression changes in human melanoma cell lines (N=32) derived from primary tumors and various metastatic sites and investigated the relation to local growth aggressiveness as xenografts in immuno-compromised mice (N=22). Although the vast majority >90% of melanoma models harbored mutations in either BRAF or NRAS, significant differences in subcutaneous growth aggressiveness became obvious. Unsupervised clustering revealed that genomic alterations rather than gene expression data reflected this aggressive phenotype, while no association with histology, stage or metastatic site of the original melanoma was found. Genomic clustering allowed separation of melanoma models into two subgroups with differing local growth aggressiveness in vivo. Regarding genes expressed at significantly altered levels between these subgroups, a surprising correlation with the respective gene doses (>85% accordance) was found. Genes deregulated at the DNA and mRNA level included well-known cancer genes partly already linked to melanoma (RAS genes, PTEN, AURKA, MAPK inhibitors Sprouty/Spred), but also novel candidates like SIPA1 (a Rap1GAP). Pathway mining further supported deregulation of Rap1 signaling in the aggressive subgroup e.g. by additional repression of two Rap1GEFs. Accordingly, siRNA-mediated down-regulation of SIPA1 exerted significant effects on clonogenicity, adherence and migration in aggressive melanoma models. Together our data suggest that an aneuploidy-driven gene expression deregulation drives local aggressiveness in human melanoma.

Shimizu Y, Hamazaki Y, Hattori M, et al.
SPA-1 controls the invasion and metastasis of human prostate cancer.
Cancer Sci. 2011; 102(4):828-36 [PubMed] Related Publications
Recent studies suggest that SIPA1 encoding a Rap GTPase-activating protein SPA-1 is a candidate metastasis efficiency-modifying gene in human breast cancer. In this study, we investigated the expression and function of SPA-1 in human prostate cancer (CaP). Immunohistochemical studies of tumor specimens from CaP patients revealed a positive correlation of SPA-1 expression with disease progression and metastasis. The correlation was recapitulated in human CaP cell lines; LNCaP that rarely showed metastasis in SCID mice expressed an undetectable level of SPA-1, whereas highly metastatic PC3 showed abundant SPA-1 expression. Moreover, SIPA1 transduction in LNCaP caused prominent abdominal lymph node metastasis without affecting primary tumor size, whereas shRNA-mediated SIPA1 knockdown or expression of a dominant-active Rap1 mutant (Rap1V12) in PC3 suppressed metastasis. LNCaP transduced with SPA-1 (LNCaP/SPA-1) showed attenuated adhesion to the precoated extracellular matrices (ECM) including collagens and fibronectin, due to defective ECM-medicated Rap1 activation. In addition, LNCaP/SPA-1 showed a diminished level of nuclear Brd4, which is known to bind SPA-1, resulting in reduced expression of a series of ECM-related genes. These results suggest that SPA-1 plays an important role in controlling metastasis efficiency of human CaP by regulating the expression of and interaction with ECM in the primary sites.

Brooks R, Kizer N, Nguyen L, et al.
Polymorphisms in MMP9 and SIPA1 are associated with increased risk of nodal metastases in early-stage cervical cancer.
Gynecol Oncol. 2010; 116(3):539-43 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Heritable polymorphisms modulate metastatic efficiency in Cancer Single nucleotide polymorphisms (SNPs) in MMP9 (rs17576) and SIPA1 (rs746429, rs931127) have been associated with nodal metastases in multiple cancers. We investigated the association of these SNPs with nodal metastases in early-stage cervical cancer.
METHODS: Consecutive patients with stage IB cervical cancer who underwent a pelvic lymph node (LN) dissection were included. Cases (>1 positive LN, n=101) were compared with controls (negative LN pathology, n=273). Genotyping was performed on genomic DNA in the 3 SNPs using a TaqMan assay and correlated with clinical variables.
RESULTS: The G allele at SIPA1 rs931127 was associated with an increased risk of nodal disease (OR 1.9, P=0.03) and approached significance at SIPA 1 rs746429 (OR 2.2, P=0.09) and MMP9 rs17576 (OR 1.5, 0.08). In patients with stage Ib1 lesions (n=304), the G allele at both SIPA1 SNPs was associated with LN metastases (rs746429 OR 10.1, P=0.01; rs931127 OR 2.4, P=0.01). In patients with no lymph vascular space invasion, SIPA1 SNPs were again associated with LN metastases, and all patients with nodal disease had at least one G allele at SIPA1 rs746429.
CONCLUSIONS: In this case-control study, SNPs in SIPA1 varied statistically in cervical cancer patients with and without nodal metastases and in MMP9 after controlling for stage and lymphvascular space invasion. Further work is needed to characterize inherited polymorphisms that provide a permissive background for the metastatic cascade.

Hsieh SM, Look MP, Sieuwerts AM, et al.
Distinct inherited metastasis susceptibility exists for different breast cancer subtypes: a prognosis study.
Breast Cancer Res. 2009; 11(5):R75 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Previous studies in mouse models and pilot epidemiology studies have demonstrated that inherited polymorphisms are associated with inherited risk of tumor progression and poor outcome in human breast cancer. To extend these studies and gain better understanding of the function of inherited polymorphism in breast cancer progression, a validation prognosis study was performed in a large independent breast cancer patient population.
METHODS: The study population consisted of 1863 Dutch patients with operable primary breast cancer from Rotterdam, The Netherlands. Genomic DNA was genotyped for the missense Pro436Leu RRP1B single nucleotide polymorphism (SNP) rs9306160 and the intronic SIPA1 SNP rs2448490 by SNP-specific PCR.
RESULTS: A significant association of variants in RRP1B with metastasis-free survival was observed (P = 0.012), validating the role of RRP1B with inherited metastatic susceptibility. Stratification of patients revealed that association with patients' survival was found to be specifically restricted to estrogen receptor positive, lymph node-negative (ER+/LN-) patients (P = 0.011). The specific association with metastasis-free survival only in ER+/LN- patients was replicated for SIPA1, a second metastasis susceptibility gene known to physically interact with RRP1B (P = 0.006). Combining the genotypes of these two genes resulted in the significant ability to discriminate patients with poor metastasis-free survival (HR: 0.40, 95% CI: 0.24 to 0.68, P = 0.001).
CONCLUSIONS: These results validate SIPA1 and RRP1B as metastasis susceptibility genes and suggest that genotyping assays may be a useful supplement to other clinical and molecular indicators of prognosis. The results also suggest that lymphatic and hematogeneous metastases are genetically distinct that may involve different mechanisms. If true, these results suggest that metastatic disease, like primary breast cancer, may be multiple diseases and that stratification of late stage patients may therefore be required to fully understand breast cancer progression and metastasis.

Hsieh SM, Smith RA, Lintell NA, et al.
Polymorphisms of the SIPA1 gene and sporadic breast cancer susceptibility.
BMC Cancer. 2009; 9:331 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (Sipa1) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing Sipa1 cell line developing 1.5 to 2 fold more surface pulmonary metastases. Sipa1 encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline SIPA1 SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that SIPA1 may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of SIPA1 and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia.
METHODS: The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program.
RESULTS: Results indicated significance with SIPA1 SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence.
CONCLUSION: This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of SIPA1 in breast tumourgenesis. SIPA1 SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that SIPA1 may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the SIPA1 gene as playing a potential role in breast cancer.

Gaudet MM, Hunter K, Pharoah P, et al.
Genetic variation in SIPA1 in relation to breast cancer risk and survival after breast cancer diagnosis.
Int J Cancer. 2009; 124(7):1716-20 [PubMed] Free Access to Full Article Related Publications
Genetic variation in SIPA1, signal-induced proliferation-associated gene 1, has been proposed to be associated with aggressive breast tumor characteristics related to metastasis and worse prognosis in humans and rodents. To test this hypothesis, we genotyped 3 single nucleotide polymorphisms (SNP) located at -3092 (AT, rs3741378), and exon 14 + 14 (C>T, rs746429), and examined them in relation to breast cancer risk and overall survival, stratified by tumor characteristics in 2 independent case-control studies conducted in Poland (1,995 cases, 2,296 controls) and in Britain (2,142 cases, 2,257 controls). Vital status (n = 396 deaths) was available for 911 Polish and 1,919 British breast cancer cases with an average follow-up time of 5.5 years. Overall, we found no significant associations between genetic variants of SIPA1 SNPs and breast cancer risk (per allele odds ratios, 95% confidence intervals (CI): rs931127-0.99, 0.93-1.06; rs3741378-1.03, 0.94-1.13; and, rs74642-0.98, 0.92-1.04). In both studies, SIPA1 polymorphisms were not related to overall mortality (per allele hazard ratios, 95% CI: 1.02, 0.88-1.17; 0.90, 0.72-1.11; 1.04, 0.90-1.21, respectively). Our results do not support a relationship between SIPA1 polymorphisms and breast cancer risk or subsequent survival.

Crawford NP, Alsarraj J, Lukes L, et al.
Bromodomain 4 activation predicts breast cancer survival.
Proc Natl Acad Sci U S A. 2008; 105(17):6380-5 [PubMed] Free Access to Full Article Related Publications
Previous work identified the Rap1 GTPase-activating protein Sipa1 as a germ-line-encoded metastasis modifier. The bromodomain protein Brd4 physically interacts with and modulates the enzymatic activity of Sipa1. In vitro analysis of a highly metastatic mouse mammary tumor cell line ectopically expressing Brd4 demonstrates significant reduction of invasiveness without altering intrinsic growth rate. However, a dramatic reduction of tumor growth and pulmonary metastasis was observed after s.c. implantation into mice, implying that activation of Brd4 may somehow be manipulating response to tumor microenvironment in the in vivo setting. Further in vitro analysis shows that Brd4 modulates extracellular matrix gene expression, a class of genes frequently present in metastasis-predictive gene signatures. Microarray analysis of the mammary tumor cell lines identified a Brd4 activation signature that robustly predicted progression and/or survival in multiple human breast cancer datasets analyzed on different microarray platforms. Intriguingly, the Brd4 signature also almost perfectly matches a molecular classifier of low-grade tumors. Taken together, these data suggest that dysregulation of Brd4-associated pathways may play an important role in breast cancer progression and underlies multiple common prognostic signatures.

Crawford NP, Walker RC, Lukes L, et al.
The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival.
Clin Exp Metastasis. 2008; 25(4):357-69 [PubMed] Free Access to Full Article Related Publications
Microarray expression signature analyses have suggested that extracellular matrix (ECM) gene dysregulation is predictive of metastasis in both mouse mammary tumorigenesis and human breast cancer. We have previously demonstrated that such ECM dysregulation is influenced by hereditary germline-encoded variation. To identify novel metastasis efficiency modifiers, we performed expression QTL (eQTL) mapping in recombinant inbred mice by characterizing genetic loci modulating metastasis-predictive ECM gene expression. Three reproducible eQTLs were observed on chromosomes 7, 17 and 18. Candidate genes were identified by correlation analyses and known associations with metastasis. Seven candidates were identified (Ndn, Pi16, Luc7l, Rrp1b, Brd4, Centd3 and Csf1r). Stable transfection of the highly metastatic Mvt-1 mouse mammary tumor cell line with expression vectors encoding each candidate modulated metastasis-predictive ECM gene expression. Implantation of these cells into mice demonstrated that candidate gene ectopic expression impacts tumor progression. Gene expression analyses facilitated the construction of a transcriptional network that we have termed the 'Diasporin Pathway'. This pathway contains the seven candidates, as well as metastasis-predictive ECM genes and metastasis suppressors. Brd4 and Rrp1b appear to form a central node within this network, which likely is a consequence of their physical interaction with the metastasis efficiency modifier Sipa1. Furthermore, we demonstrate that the microarray gene expression signatures induced by activation of ECM eQTL genes in the Mvt-1 cell line can be used to accurately predict survival in a human breast cancer cohort. These data imply that the Diasporin Pathway may be an important nexus in tumor progression in both mice and humans.

Crawford NP, Qian X, Ziogas A, et al.
Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.
PLoS Genet. 2007; 3(11):e214 [PubMed] Free Access to Full Article Related Publications
A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

Hsieh SM, Lintell NA, Hunter KW
Germline polymorphisms are potential metastasis risk and prognosis markers in breast cancer.
Breast Dis. 2006-2007; 26:157-62 [PubMed] Related Publications
A number of theories have been proposed to account for the origins of metastasis, although none as yet have adequately explained all of its characteristics. With approximately 90% of cancer-related deaths due to the effects of disseminated tumors, improved understanding of this process is critical for reducing cancer-associated morbidity and mortality. Extensive research to investigate the molecular basis of this process has been conducted, and our lab has focused on the role of germline polymorphism in this complex process. Simple breeding experiments using a highly metastatic mouse model showed that germline polymorphisms significantly contribute to metastasis susceptibility. Genetic mapping studies revealed that a number of genomic regions are linked to metastasis susceptibility, including a metastasis modifier on mouse chromosome 19. Subsequent analysis identified Sipa1 as the most likely candidate for the observed linkage on Chr 19. Evaluation of SNPs in SIPA1 in a pilot association study in a human breast cancer cohort supported this possibility and demonstrated that SIPA1 polymorphisms are associated with various markers of poor prognosis including differential sentinel lymph node status. Taken together, these data suggest that germline polymorphism is an important modulating component in metastatic progression that needs to be investigated if we are to fully understand the metastatic process.

Crawford NP, Ziogas A, Peel DJ, et al.
Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer.
Breast Cancer Res. 2006; 8(2):R16 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: There is growing evidence that heritable genetic variation modulates metastatic efficiency. Our previous work using a mouse mammary tumor model has shown that metastatic efficiency is modulated by the GTPase-activating protein encoded by Sipa1 ('signal-induced proliferation-associated gene 1'). The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) within the human SIPA1 gene are associated with metastasis and other disease characteristics in breast cancer.
METHOD: The study population (n = 300) consisted of randomly selected non-Hispanic Caucasian breast cancer patients identified from a larger population-based series. Genomic DNA was extracted from peripheral leukocytes. Three previously described SNPs within SIPA1 (one within the promoter [-313G>A] and two exonic [545C>T and 2760G>A]) were characterized using SNP-specific PCR.
RESULTS: The variant 2760G>A and the -313G>A allele were associated with lymph node involvement (P = 0.0062 and P = 0.0083, respectively), and the variant 545C>T was associated with estrogen receptor negative tumors (P = 0.0012) and with progesterone negative tumors (P = 0.0339). Associations were identified between haplotypes defined by the three SNPs and disease progression. Haplotype 3 defined by variants -313G>A and 2760G>A was associated with positive lymph node involvement (P = 0.0051), and haplotype 4 defined by variant 545C>T was associated with estrogen receptor and progesterone receptor negative status (P = 0.0053 and P = 0.0199, respectively).
CONCLUSION: Our findings imply that SIPA1 germline polymorphisms are associated with aggressive disease behavior in the cohort examined. If these results hold true in other populations, then knowledge of SIPA1 SNP genotypes could potentially enhance current staging protocols.

Park YG, Zhao X, Lesueur F, et al.
Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1.
Nat Genet. 2005; 37(10):1055-62 [PubMed] Free Access to Full Article Related Publications
We previously identified loci in the mouse genome that substantially influence the metastatic efficiency of mammary tumors. Here, we present data supporting the idea that the signal transduction molecule, Sipa1, is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Analysis of candidate genes identified a nonsynonymous amino acid polymorphism in Sipa1 that affects the Sipa1 Rap-GAP function. Spontaneous metastasis assays using cells ectopically expressing Sipa1 or cells with knocked-down Sipa1 expression showed that metastatic capacity was correlated with cellular Sipa1 levels. We examined human expression data and found that they were consistent with the idea that Sipa1 concentration has a role in metastasis. Taken together, these data suggest that the Sipa1 polymorphism is one of the genetic polymorphisms underlying the Mtes1 locus. This report is also the first demonstration, to our knowledge, of a constitutional genetic polymorphism affecting tumor metastasis.

Kometani K, Ishida D, Hattori M, Minato N
Rap1 and SPA-1 in hematologic malignancy.
Trends Mol Med. 2004; 10(8):401-8 [PubMed] Related Publications
Rap1 is a member of the Ras family of GTPases and, depending on the cellular context, has an important role in the regulation of proliferation or cell adhesion. In lymphohematopoietic tissues, SPA-1 is a principal Rap1 GTPase-activating protein. Mice that are deficient for the SPA-1 gene develop age-dependent progression of T-cell immunodeficiency followed by a spectrum of late onset myeloproliferative disorders, mimicking human chronic myeloid leukemia. Recent studies reveal that deregulated Rap1 activation in SPA-1-deficient mice causes enhanced expansion of the bone marrow hematopoietic progenitors, but induces progressive unresponsiveness or anergy in T cells. Rap1 and its regulator, SPA-1, could, therefore, provide unique molecular targets for the control of human hematologic malignancy.

Ishida D, Kometani K, Yang H, et al.
Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice.
Cancer Cell. 2003; 4(1):55-65 [PubMed] Related Publications
SPA-1 (signal-induced proliferation-associated gene-1) is a principal Rap1 GTPase-activating protein in hematopoietic progenitors. SPA-1-deficient mice developed a spectrum of myeloid disorders that resembled human chronic myelogenous leukemia (CML) in chronic phase, CML in blast crisis, and myelodysplastic syndrome as well as anemia. Preleukemic SPA-1-deficient mice revealed selective expansion of marrow pluripotential hematopoietic progenitors, which showed abnormal Rap1GTP accumulation. Overexpression of an active form of Rap1 promoted the proliferation of normal hematopoietic progenitors, while SPA-1 overexpression markedly suppressed it. Furthermore, restoring SPA-1 gene in a SPA-1-deficient leukemic blast cell line resulted in the dissolution of Rap1GTP accumulation and concomitant loss of the leukemogenicity in vivo. These results unveiled a role of Rap1 in myeloproliferative stem cell disorders and a tumor suppressor function of SPA-1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SIPA1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999