Gene Summary

Gene:AXIN2; axin 2
Summary:The Axin-related protein, Axin2, presumably plays an important role in the regulation of the stability of beta-catenin in the Wnt signaling pathway, like its rodent homologs, mouse conductin/rat axil. In mouse, conductin organizes a multiprotein complex of APC (adenomatous polyposis of the colon), beta-catenin, glycogen synthase kinase 3-beta, and conductin, which leads to the degradation of beta-catenin. Apparently, the deregulation of beta-catenin is an important event in the genesis of a number of malignancies. The AXIN2 gene has been mapped to 17q23-q24, a region that shows frequent loss of heterozygosity in breast cancer, neuroblastoma, and other tumors. Mutations in this gene have been associated with colorectal cancer with defective mismatch repair. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (44)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AXIN2 (cancer-related)

Liu X, Liu S, Chen J, et al.
Baicalein suppresses the proliferation of acute T-lymphoblastic leukemia Jurkat cells by inhibiting the Wnt/β-catenin signaling.
Ann Hematol. 2016; 95(11):1787-93 [PubMed] Related Publications
Although the response rates of chemotherapy in patients with acute T-lymphoblastic leukemia (T-ALL) have improved significantly, the outcome of these patients is still poor. Previous studies suggested that baicalein could inhibit the growth of several cancers, while its effect on T-ALL cells remains unclear. We used Jurkat cells as an in vitro model of T-ALL. Cell counting kit-8 assay and cytometric analysis with Annexin V-FITC/PI double staining were used to investigate the proliferation and apoptosis of Jurkat cells treated with increasing concentration of baicalein for indicated time. RT-PCR and western blotting was used to test the expression of Wnt/β-catenin associated genes and proteins. In cell viability assay, baicalein could inhibit the proliferation of Jurkat cells both in dose- and time-dependent manners. In cell apoptosis assay, baicalein could stimulate apoptosis of Jurkat cells both in dose- and time-dependent manners. Moreover, we demonstrated that baicalein could down-regulated the mRNA and protein levels of β-catenin and its widely accepted downstream targets (c-Myc, cyclin D1, and Axin2) in dose-dependent manners. These results proved that baicalein might be a potential choice for the treatment of T-ALL.

Okabe H, Kinoshita H, Imai K, et al.
Diverse Basis of β-Catenin Activation in Human Hepatocellular Carcinoma: Implications in Biology and Prognosis.
PLoS One. 2016; 11(4):e0152695 [PubMed] Free Access to Full Article Related Publications
AIM: β-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC.
METHODS: Gene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues.
RESULTS: Sixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001).
CONCLUSION: This study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism.

Kim SS, Cho HJ, Lee HY, et al.
Genetic polymorphisms in the Wnt/β-catenin pathway genes as predictors of tumor development and survival in patients with hepatitis B virus-associated hepatocellular carcinoma.
Clin Biochem. 2016; 49(10-11):792-801 [PubMed] Related Publications
OBJECTIVES: Wnt/β-catenin signaling has a pivotal role in the pathogenesis of hepatocellular carcinoma (HCC). The present study aimed to determine whether genetic variation in the Wnt/β-catenin signaling pathway is associated with the development and/or progression of HCC and the survival of patients with hepatitis B virus (HBV)-associated HCC.
DESIGN AND METHODS: We assessed seven single nucleotide polymorphisms (SNPs) of the AXIN1, AXIN2, CTNNB1, and WNT2 genes in 245 patients with HBV-associated HCC and 483 chronic HBV carriers without HCC. We analyzed the association of each SNP with HCC development or progression and overall survival.
RESULTS: The CTNNB1 rs3864004 A allele was associated with a decreased risk of HCC development (P=0.049). Haplotype analysis revealed a significantly higher frequency of CTNNB1 G-A/G-A haplotype at rs3864004 and rs4135385 positions in patients with HCC than in chronic HBV carriers without HCC (P=0.042). The AXIN1 rs1805105 T>C SNP was associated with small tumor size and early tumor stage and the WNT2 rs39315 G allele was associated with advanced tumor stage in HCC. In Kaplan-Meier analysis, carriers of the AXIN1 rs214252 C allele showed longer survival than those with the TT genotype (P=0.020). In multivariate Cox regression analysis, absence of CTNNB1 haplotype A-A at rs3864004 and rs4135385 positions and advanced tumor stage were independent poor predictors of patient survival in patients with HCC.
CONCLUSION: These findings suggest that the genetic polymorphisms in CTNNB1 gene might affect tumor development and survival in patients with HBV-associated HCC.

Du Q, Wang Y, Liu C, et al.
Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis.
Oncotarget. 2016; 7(14):17870-84 [PubMed] Free Access to Full Article Related Publications
Nonresolving inflammation in the intestine predisposes individuals to colitis-associated colorectal cancer (CAC), which leads to high morbidity and mortality. Here we show that genistein-27 (GEN-27), a derivative of genistein, inhibited proliferation of human colorectal cancer cells through inhibiting β-catenin activity. Our results showed that GEN-27 increased expressions of adenomatous polyposis coli (APC) and axis inhibition protein 2 (AXIN2), and reduced β-catenin nuclear localization, which resulted from the inhibition of NF-κB/p65 nuclear localization and up-regulation of caudal-related homeobox transcription factor 2 (CDX2). Furthermore, GEN-27 decreased binding of p65 to the silencer region of CDX2 and increased binding of CDX2 to the promoter regions of APC and AXIN2, thus inhibiting the activation of β-catenin induced by TNF-α. Importantly, GEN-27 protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and tumor volume. Histopathology, immunohistochemistry and flow cytometry revealed that dietary GEN-27 significantly decreased secretion of proinflammatory cytokines and macrophage infiltration. Moreover, GEN-27 inhibited AOM/DSS-induced p65 and β-catenin nuclear translocation, while promoted the expression of CDX2, APC, and AXIN2. Taken together, our findings demonstrate that the anti-proliferation effect of GEN-27 in vitro and the prevention of CAC in vivo is mediated by p65-CDX2-β-catenin axis via inhibiting β-catenin target genes. Our results imply that GEN-27 could be a promising candidate for the chemoprevention of CAC.

Cironi L, Petricevic T, Fernandes Vieira V, et al.
The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma.
Sci Rep. 2016; 6:22113 [PubMed] Free Access to Full Article Related Publications
Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation.

Åkerström T, Maharjan R, Sven Willenberg H, et al.
Activating mutations in CTNNB1 in aldosterone producing adenomas.
Sci Rep. 2016; 6:19546 [PubMed] Free Access to Full Article Related Publications
Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5-10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation.

Hu BR, Fairey AS, Madhav A, et al.
AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth.
Prostate. 2016; 76(6):597-608 [PubMed] Related Publications
BACKGROUND: Treatment of prostate cancer (PCa) may be improved by identifying biological mechanisms of tumor growth that directly impact clinical disease progression. We investigated whether genes associated with a highly tumorigenic, drug resistant, progenitor phenotype impact PCa biology and recurrence.
METHODS: Radical prostatectomy (RP) specimens (±disease recurrence, N = 276) were analyzed by qRT-PCR to quantify expression of genes associated with self-renewal, drug resistance, and tumorigenicity in prior studies. Associations between gene expression and PCa recurrence were confirmed by bootstrap internal validation and by external validation in independent cohorts (total N = 675) and in silico. siRNA knockdown and lentiviral overexpression were used to determine the effect of gene expression on PCa invasion, proliferation, and tumor growth.
RESULTS: Four candidate genes were differentially expressed in PCa recurrence. Of these, low AXIN2 expression was internally validated in the discovery cohort. Validation in external cohorts and in silico demonstrated that low AXIN2 was independently associated with more aggressive PCa, biochemical recurrence, and metastasis-free survival after RP. Functionally, siRNA-mediated depletion of AXIN2 significantly increased invasiveness, proliferation, and tumor growth. Conversely, ectopic overexpression of AXIN2 significantly reduced invasiveness, proliferation, and tumor growth.
CONCLUSIONS: Low AXIN2 expression was associated with PCa recurrence after RP in our test population as well as in external validation cohorts, and its expression levels in PCa cells significantly impacted invasiveness, proliferation, and tumor growth. Given these novel roles, further study of AXIN2 in PCa may yield promising new predictive and therapeutic strategies.

Yadav A, Gupta A, Yadav S, et al.
Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival.
Tumour Biol. 2016; 37(6):8083-95 [PubMed] Related Publications
Gallbladder cancer (GBC) is the most common malignancy of the biliary tract with adverse prognosis and poor survival. Wnt signaling plays an important role in embryonic development and regeneration of tissues in all the species. Deregulation of expression and mutations in this pathway may lead to disease state such as cancer. In this study, we assessed the association of common germline variants of Wnt pathway genes (SFRP2, SFRP4, DKK2, DKK3, WISP3, APC, β-catenin, AXIN-2, GLI-1) to evaluate their contribution in predisposition to GBC and treatment outcomes. The study included 564 GBC patients and 250 controls. Out of 564, 200 patients were followed up for treatment response and survival. Tumor response (RECIST 1.1) was recorded in 116 patients undergoing non-adjuvant chemotherapy (NACT). Survival was assessed by Kaplan-Meier curve and Cox-proportional hazard regression. Single locus analysis showed significant association of SFRP4 rs1802073G > T [p value = 0.0001], DKK2 rs17037102C > T [p value = 0.0001], DKK3 rs3206824C > T [p value = 0.012], APC rs4595552 A/T [p value = 0.021], APC rs11954856G > T [p value = 0.047], AXIN-2 rs4791171C > T [p value = 0.001], β-catenin rs4135385A > G [p value = 0.031], and GLI-1 rs222826C > G [p value = 0.001] with increased risk of GBC. Gene-gene interaction using GMDR analysis predicted APC rs11954856 and AXIN2 rs4791171 as significant in conferring GBC susceptibility. Cox-proportional hazard model showed GLI-1 rs2228226 CG/GG and AXIN-2 rs4791171 TT genotype higher hazard ratio. In recursive partitioning, AXIN-2 rs4791171 TT genotype showed higher mortality and hazard. Most of studied genetic variants influence GBC susceptibility. APC rs11954856, GLI-1 rs2228226, and AXIN-2 rs4791171 were found to be associated with poor survival in advanced GBC patients.

Hamada S, Urakawa H, Kozawa E, et al.
Characteristics of cultured desmoid cells with different CTNNB1 mutation status.
Cancer Med. 2016; 5(2):352-60 [PubMed] Free Access to Full Article Related Publications
Desmoid tumors are benign mesenchymal neoplasms with a locally aggressive nature. The mutational status of β-catenin gene (CTNNB1) is presumed to affect the tumorous activity of the cells. In this study, we isolated three kinds of desmoid cell with different CTNNB1 status, and compared their characteristics. Cells were isolated from three patients with abdominal wall desmoid during surgery, all of which were resistant to meloxicam treatment. The mutational status of the CTNNB1 exon 3 was determined for both parental tumor tissues and isolated cultured cells. β-catenin expression was determined with immunohistochemistry. Responsiveness to meloxicam was investigated with MTS assay together with COX-2 immunostaining. mRNA expressions of downstream molecules of Wnt/β-catenin pathway were determined with real-time RT-PCR. Three kinds of cell isolated from desmoid tumors harboring different CTNNB1 mutation status (wild type, T41A, and S45F), all exhibited a spindle shape. These isolated cells could be cultured until the 20th passage with unchanged proliferative activity. Nuclear accumulation of β-catenin was observed in all cultured cells, particularly in those with S45F. Proliferating activity was significantly suppressed by meloxicam (25 μmol/L, P < 0.007) in all three cell cultures, of which parental desmoid was resistant to meloxicam clinically. The mRNA expressions of Axin2, c-Myc, and Cyclin D1 differently increased in the three cultured cell types as compared with those in human skin fibroblast cells (HDF). Inhibitors of Wnt/β-catenin pathway downregulated Axin2, c-Myc, and Cyclin D1 significantly. Isolated and cultured desmoid tumor cells harboring any one of the CTNNB1 mutation status had unique characteristics, and could be useful to investigate desmoid tumors with different mutation status of CTNNB1.

Lu T, Zhang C, Chai MX, et al.
MiR-374a promotes the proliferation of osteosarcoma cell proliferation by targeting Axin2.
Int J Clin Exp Pathol. 2015; 8(9):10776-83 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNA-374a (miR-374a) has been implicated in several cancers. However, its role in osteosarcoma (OS) remains unclear. Thus the aim of this study was to investigate its expression and role in progression of OS.
METHODS: Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of miR-374a in OS cell lines and tissues. To further understand its role, we restored expression of miR-374a in MG63 cell line by transfection with miR-374a mimics or inhibitors. Effects of miR-374a on cell proliferation on targets were also determined.
RESULTS: In the present study, our results showed that miR-374a was significantly up-regulated in both OS cell lines and OS tissues. Over expression of miR-374a markedly accelerated proliferation of OS cells, while its inhibition significantly suppressed cell proliferation. Moreover, Axin2 was identified to be a functional downstream target of miR-374a, and decreased expression of Axin2 could promote OS cell proliferation.
CONCLUSION: Our study suggested that miR-374a functions as an oncogene in OS, and the miR-374a/Axin2 axis might represent a potential therapeutic target for OS intervention.

Yin W, Bian Z
Hypodontia, a prospective predictive marker for tumor?
Oral Dis. 2016; 22(4):265-73 [PubMed] Related Publications
Tooth agenesis and tumor are two totally different diseases occurring at different ages. In the past 10 years, more and more evidences suggested there was a relationship between them. High prevalence of breast, colon, lung, and ovary tumor was observed in tooth agenesis patients. But it is still controversial. Therefore, to have a greater understanding of the possible association, a critical review on molecular association for genes involving tooth agenesis and tumorigenesis is necessary. In this current review, we summarized the reported cases of tooth agenesis with different kinds of tumors and the molecular relationship between these two diseases through causative genes. The results indicated tooth agenesis might be a prospective predictive marker for tumor. Through this review, we want to draw more attention on this topic and hope it will be an effective way to predict the risk of tumor.

Jagadish N, Parashar D, Gupta N, et al.
A-kinase anchor protein 4 (AKAP4) a promising therapeutic target of colorectal cancer.
J Exp Clin Cancer Res. 2015; 34:142 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) ranks third among the estimated cancer cases and cancer related mortalities in the Western world. Early detection and efficient therapy of CRC remains a major health challenge. Therefore, there is a need to identify novel tumor markers for early diagnosis and treatment of CRC.
METHODS: A-kinase anchor protein 4 (AKAP4) gene and protein expression was monitored by quantitative polymerase chain reaction (qPCR), reverse transcription (RT)-PCR and Western blotting in normal colon tissue lysate, normal colon epithelial cells and in colon cancer cell lines viz., Caco-2, COLO205, COLO320DM, HCT-15, HCT116, HT-29, SW480, and SW620. The effect of AKAP4 on cellular growth, migration and invasion abilities was studied using gene silencing approach. The role of AKAP4 in various pathways involved in cell cycle, apoptosis, senescence was investigated in in vitro and in human xenograft mouse model.
RESULTS: Our studies showed that AKAP4 gene and protein expression was expressed in all colon cancer cells while no expression was detectable in normal colon cells. Ablation of AKAP4 led to reduced cellular growth, migration, invasion and increased apoptosis and senescence of CRC cells in in vitro assays and tumor growth in human xenograft mouse. Human colon xenograft studies showed a significant decrease in the levels of cyclins B1, D and E and cyclin dependent kinases such as CDK1, CDK2, CDK4 and CDK6. Interestingly, an up-regulation in the levels of p16 and p21 was also observed. Besides, an increase in the levels of pro-apoptotic molecules AIF, APAF1, BAD, BID, BAK, BAX, PARP1, NOXA, PUMA and cyt-C and Caspase 3, 7, 8 and 9 was also found in cancer cells as well as in xenograft tissue sections. However, anti-apoptotic molecules BCL2, Bcl-xL, cIAP2, XIAP, Axin2 and Survivin were down regulated in these samples. Our data also revealed elevated expression of epithelial marker E-cadherin and down regulation of EMT markers N-cadherin, P-cadherin, SLUG, α-SMA, SNAIL, TWIST and Vimentin. Further ablation of AKAP4 resulted in the down regulation of invasion molecules matrix metalloproteinase MMP2, MMP3 and MMP9.
CONCLUSION: AKAP4 appears to be a novel CRC-associated antigen with a potential for developing as a new clinical therapeutic target.

Razzaque MS, Atfi A
TGIF function in oncogenic Wnt signaling.
Biochim Biophys Acta. 2016; 1865(2):101-4 [PubMed] Related Publications
Transforming growth-interacting factor (TGIF) has been implicated in the pathogenesis of many types of human cancer, but the underlying mechanisms remained mostly enigmatic. Our recent study has revealed that TGIF functions as a mediator of oncogenic Wnt/β-catenin signaling. We found that TGIF can interact with and sequesters Axin1 and Axin2 into the nucleus, thereby culminating in disassembly of the β-catenin-destruction complex and attendant accumulation of β-catenin in the nucleus, where it activates expression of Wnt target genes, including TGIF itself. We have provided proof-of-concept evidences that high levels of TGIF expression correlate with poor prognosis in patients with triple negative breast cancer (TNBC), and that TGIF empowers Wnt-driven mammary tumorigenesis in vivo. Here, we will briefly summarize how TGIF influences Wnt signaling to promote tumorigenesis.

Aristizabal-Pachon AF, Carvalho TI, Carrara HH, et al.
AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility.
Asian Pac J Cancer Prev. 2015; 16(16):7277-84 [PubMed] Related Publications
BACKGROUND: The Wnt/β-catenin signaling pathway is an important regulator of cellular functions such as proliferation, survival and cell adhesion. Wnt/β-catenin signaling is associated with tumor initiation and progression; β-catenin mutations explain only 30% of aberrant signaling found in breast cancer, indicating that other components and/or regulation of the Wnt/β-catenin pathway may be involved.
OBJECTIVE: We evaluated AXIN2 rs2240308 and rs151279728 polymorphisms, and expression profiles of β-catenin destruction complex genes in breast cancer patients.
MATERIALS AND METHODS: We collected peripheral blood samples from 102 breast cancer and 102 healthy subjects. The identification of the genetic variation was performed using PCR-RFLPs and DNA sequencing. RT-qPCR was used to determine expression profiles.
RESULTS: We found significant association of AXIN2 rs151279728 and rs2240308 polymorphisms with breast cancer risk. Significant increase was observed in AXIN2 level expression in breast cancer patients. Further analyses showed APC, β-catenin, CK1α, GSK3β and PP2A gene expression to be associated to clinic-pathological characteristics.
CONCLUSIONS: The present study demonstrated, for the first time, that AXIN2 genetic defects and disturbance of β-catenin destruction complex expression may be found in breast cancer patients, providing additional support for roles of Wnt/β-catenin pathway dysfunction in breast cancer tumorigenesis. However, the functional consequences of the genetic alterations remain to be determined.

Fatima S, Shi X, Lin Z, et al.
5-Hydroxytryptamine promotes hepatocellular carcinoma proliferation by influencing β-catenin.
Mol Oncol. 2016; 10(2):195-212 [PubMed] Related Publications
5-Hydroxytryptamine (5-HT), a neurotransmitter and vasoactive factor, has been reported to promote proliferation of serum-deprived hepatocellular carcinoma (HCC) cells but the detailed intracellular mechanism is unknown. As Wnt/β-catenin signalling is highly dysregulated in a majority of HCC, this study explored the regulation of Wnt/β-catenin signalling by 5-HT. The expression of various 5-HT receptors was studied by quantitative real-time polymerase chain reaction (qPCR) in HCC cell lines as well as in 33 pairs of HCC tumours and corresponding adjacent non-tumour tissues. Receptors 5-HT1D (21/33, 63.6%), 5-HT2B (12/33, 36.4%) and 5-HT7 (15/33, 45.4%) were overexpressed whereas receptors 5-HT2A (17/33, 51.5%) and 5-HT5 (30/33, 90.1%) were reduced in HCC tumour tissues. In vitro data suggests 5-HT increased total β-catenin, active β-catenin and decreased phosphorylated β-catenin protein levels in serum deprived HuH-7 and HepG2 cells compared to control cells under serum free medium without 5-HT. Activation of Wnt/β-catenin signalling was evidenced by increased expression of β-catenin downstream target genes, Axin2, cyclin D1, dickoppf-1 (DKK1) and glutamine synthetase (GS) by qPCR in serum-deprived HCC cell lines treated with 5-HT. Additionally, biochemical analysis revealed 5-HT disrupted Axin1/β-catenin interaction, a critical step in β-catenin phosphorylation. Increased Wnt/β-catenin activity was attenuated by antagonist of receptor 5-HT7 (SB-258719) in HCC cell lines and patient-derived primary tumour tissues in the presence of 5-HT. SB-258719 also reduced tumour growth in vivo. This study provides evidence of Wnt/β-catenin signalling activation by 5-HT and may represent a potential therapeutic target for hepatocarcinogenesis.

Fang L, Cai J, Chen B, et al.
Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling.
Nat Commun. 2015; 6:8640 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling. miR-582-3p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, DKK3 and SFRP1. Consequently, miR-582-3p promotes CSC traits of NSCLC cells in vitro and tumorigenesis and tumour recurrence in vivo. Antagonizing miR-582-3p potently inhibits tumour initiation and progression in xenografted animal models. These findings suggest that miR-582-3p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for NSCLC.

Ma Q, Yang Y, Feng D, et al.
MAGI3 negatively regulates Wnt/β-catenin signaling and suppresses malignant phenotypes of glioma cells.
Oncotarget. 2015; 6(34):35851-65 [PubMed] Free Access to Full Article Related Publications
Gliomas are the most common primary brain malignancies and are associated with a poor prognosis. Here, we showed that the PDZ domain-containing protein membrane-associated guanylate kinase inverted 3 (MAGI3) was downregulated at the both mRNA and protein levels in human glioma samples. MAGI3 inhibited proliferation, migration, and cell cycle progression of glioma cells in its overexpression and knockdown studies. By using GST pull-down and co-immunoprecipitation assays, we found that MAGI3 bound to β-catenin through its PDZ domains and the PDZ-binding motif of β-catenin. MAGI3 overexpression inhibited β-catenin transcriptional activity via its interaction with β-catenin. Consistently, MAGI3 overexpression in glioma cells C6 suppressed expression of β-catenin target genes including Cyclin D1 and Axin2, whereas MAGI3 knockdown in glioma cells U373 and LN229 enhanced their expression. MAGI3 overexpression decreased growth of C6 subcutaneous tumors in mice, and inhibited expression of β-catenin target genes in xenograft tumors. Furthermore, analysis based on the Gene Expression Omnibus (GEO) glioma dataset showed association of MAGI3 expression with overall survival and tumor grade. Finally, we demonstrated negative correlation between MAGI3 expression and activity of Wnt/β-catenin signaling through GSEA of three public glioma datasets and immunohistochemical staining of clinical glioma samples. Taken together, these results identify MAGI3 as a novel tumor suppressor and provide insight into the pathogenesis of glioma.

Wu G, Liu A, Zhu J, et al.
MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.
Oncotarget. 2015; 6(30):28882-94 [PubMed] Free Access to Full Article Related Publications
Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.

Lyros O, Rafiee P, Nie L, et al.
Wnt/β-Catenin Signaling Activation beyond Robust Nuclear β-Catenin Accumulation in Nondysplastic Barrett's Esophagus: Regulation via Dickkopf-1.
Neoplasia. 2015; 17(7):598-611 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Wnt/β-catenin signaling activation has been reported only during the late steps of Barrett's esophagus (BE) neoplastic progression, but not in BE metaplasia, based on the absence of nuclear β-catenin. However, β-catenin transcriptional activity has been recorded in absence of robust nuclear accumulation. Thus, we aimed to investigate the Wnt/β-catenin signaling in nondysplastic BE.
METHODS: Esophageal tissues from healthy and BE patients without dysplasia were analyzed for Wnt target gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Esophageal squamous (EPC1-& EPC2-hTERT), BE metaplastic (CP-A), and adenocarcinoma (OE33) cell lines were characterized for Wnt activation by qRT-PCR, Western blot, and luciferase assay. Wnt activity regulation was examined by using recombinant Wnt3a and Dickkopf-1 (Dkk1) as well as Dkk1 short interfering RNA.
RESULTS: Wnt target genes (AXIN2, c-MYC, Cyclin D1, Dkk1) and Wnt3a were significantly upregulated in nondysplastic BE compared with squamous mucosa. Elevated levels of dephosphorylated β-catenin were detected in nondysplastic BE. Nuclear active β-catenin and TOPflash activity were increased in CP-A and OE33 cells compared with squamous cells. Wnt3a-mediated β-catenin signaling activation was abolished by Dkk1 in CP-A cells. TOPFlash activity was elevated following Dkk1 silencing in CP-A but not in OE33 cells. Dysplastic and esophageal adenocarcinoma tissues demonstrated further Dkk1 and AXIN2 overexpression.
CONCLUSIONS: Despite the absence of robust nuclear accumulation, β-catenin is transcriptionally active in nondysplastic BE. Dkk1 overexpression regulates β-catenin signaling in BE metaplastic but not in adenocarcinoma cells, suggesting that early perturbation of Dkk1-mediated signaling suppression may contribute to BE malignant transformation.

Yanaka Y, Muramatsu T, Uetake H, et al.
miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer.
Carcinogenesis. 2015; 36(11):1363-71 [PubMed] Related Publications
The epithelial-mesenchymal transition (EMT) contributes to cancer progression, as well as the development of normal organs, wound healing and organ fibrosis. We established a cell-based reporter system for identifying EMT-inducing microRNAs (miRNAs) with a gastric cancer (GC) cell line, MKN1, transfected with a reporter construct containing a promoter sequence of VIM in the 5' upstream region of the TurboRFP reporter gene. Function-based screening using this reporter system was performed with a 328-miRNA library, and resulted in the identification miR-544a as an EMT-inducing miRNA. Although miR-544a is already known to be involved in the regulation of CDH1, the mechanism by which EMT occurs remains poorly understood. Herein, we demonstrated that overexpression of miR-544a induces VIM, SNAI1 and ZEB1 expression, and reduces CDH1 expression, resulting in an EMT phenotype. In addition, we found that CDH1 and AXIN2, which are related to the degradation and the translocation of β-catenin, are direct targets of miR-544a. Subsequently, the reduction of CDH1 and AXIN2 by miR-544a induced the nuclear import of β-catenin, suggesting that miR-544a may activate the WNT signaling pathway through the stabilization of β-catenin in nucleus. Our findings raise the possibility that inhibition of miR-544a may be a therapeutic target of metastatic GC.

Wang Y, Xin H, Han Z, et al.
MicroRNA-374a promotes esophageal cancer cell proliferation via Axin2 suppression.
Oncol Rep. 2015; 34(4):1988-94 [PubMed] Related Publications
MicroRNA-374a (miR-374a) is involved in the progress of various types of cancer, and may indicate a poor prognosis. However, its role in esophageal cancer remains to be determined. In the present study, the role of miR-374a in esophageal cancers and cancer cell growth was examined using miR-374a overexpression and underexpression models. The results showed that miR-374a was markedly increased in esophageal cancer cell lines and tumor samples from patients with esophageal cancer. In esophageal cancer Eca109 cells, the ectopic overexpression of miR-374a promoted cell growth. Additionally, cell growth was reduced by miR‑374a inhibition. The mechanisms underlying the promotive role were examined and it was found that miR-374a significantly decreased the expression and transcription activity of axis inhibition protein 2 (Axin2). Axin2, a tumor suppressor, exhibited a marked inhibitory effect on Eca109 cell growth. The results identified a new role of miR-374a in esophageal cancer involving Axin2 suppression.

Ma L, Wang X, Jia T, et al.
Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells.
Oncotarget. 2015; 6(28):25390-401 [PubMed] Free Access to Full Article Related Publications
Deregulated WNT/β-catenin signaling contributes to the development of a subgroup of hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide. Within this pathway, the tankyrase enzymes (TNKS1 and TNKS2) degrade AXIN and thereby enhance β-catenin activity. We evaluate TNKS enzymes as potential therapeutic targets in HCC, and the anti-tumor efficacy of tankyrase inhibitors (XAV939, and its novel nitro-substituted derivative WXL-8) in HCC cells. Using semi-quantitative RT-PCR, we found significantly elevated levels of TNKS1/2 mRNA in tumor liver tissues compared to adjacent non-tumor livers, at protein levels only TNKS1 is increased. In HepG2, Huh7cells, siRNA-mediated knockdown suppression of endogenous TNKS1 and TNKS2 reduced cell proliferation, together with decreased nuclear β-catenin levels. XAV939 and WXL-8 inhibited cell proliferation and colony formation in HepG2, Huh7, and Hep40 cells (p < 0.05), with stabilization of AXIN1 and AXIN2, and decreased β-catenin protein levels. XAV939 and WXL-8 also attenuated rhWNT3A-induced TOPflash luciferase reporter activity in HCC cells, indicating reduced β-catenin transcriptional activity, consistent with decreased nuclear β-catenin levels. In vivo, intra-tumor injections of XAV939 or WXL-8 significantly inhibited the growth of subcutaneous HepG2 xenografts (P < 0.05). We suggest that tankyrase inhibition is a potential therapeutic approach for treating a subgroup HCC with aberrant WNT/β-catenin signaling pathway.

Zhang JJ, Wang CY, Hua L, et al.
miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2.
Int J Clin Exp Pathol. 2015; 8(5):5168-74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A large number of studies demonstrated that microRNAs play important roles in the progression and development of human cancers. However, the expression level of miR-107 and its biological function in hepatocellular carcinoma (HCC) remains unclear.
METHOD: Quantitative real-time PCR (qRT-PCR) was used to evaluate the expression level of miR-107 in HCC tissues and cell lines. Then, we explored the function of miR-107 to determine its potential roles on HCC cell proliferation in vitro. Luciferase reporter assay was used to confirm the target gene of miR-107, and the results were validated in cell lines.
RESULTS: miR-107 was significantly up-regulated in HCC tissues and cell lines. The enforced expression of miR-107 was able to promote cell proliferation in HepG2 cells. At the molecular level, our results suggested that expression of Axin2 was negatively regulated by miR-107.
CONCLUSION: Our observations suggested that miR-107 could promote HCC cells proliferation via targeting Axin2 and might represent a potential therapeutic target for HCC.

Holcombe RF, Martinez M, Planutis K, Planutiene M
Effects of a grape-supplemented diet on proliferation and Wnt signaling in the colonic mucosa are greatest for those over age 50 and with high arginine consumption.
Nutr J. 2015; 14:62 [PubMed] Free Access to Full Article Related Publications
A diet rich in fruits and vegetables, and a grape-derived compound, resveratrol, have been linked to a reduced incidence of colon cancer. In vitro and in vivo, resveratrol suppresses Wnt signaling, a pathway constitutively activated in over 85 % of colon cancers.Thirty participants were placed on a low resveratrol diet and subsequently allocated to one of three groups ingesting 1/3-to-1 lb (0.15-0.45 kg) of grapes per day for 2 weeks. Dietary information was collected via 24-h recall. Colon biopsies for biomarker analysis were obtained pre- and post-grape and evaluated for the expression of Wnt pathway target genes and for markers of proliferation by RT-PCR and immunohistochemistry.Participants lost an average of 2 · 6 lb (1.2 kg, p = 0 · 0018) during the period of grape ingestion. The expression of CyclinD1 (p < 0 · 01), AXIN2, CD133 (p = 0 · 02) and Ki67 (p = 0 · 002) were all reduced after grape ingestion. Individuals over 50 years of age and those with high dietary arginine consumption had increased basal expression of CyclinD1, AXIN2, cMYC and CD133 (p value range 0 · 04 to <0 · 001) that, following grape ingestion, were reduced to levels seen in younger participants.The reduction in Wnt signaling and mucosal proliferation seen following short-term ingestion of 1/3-1 lb (0.15-0.45 kg) of grapes per day may reduce the risk of mutational events that can facilitate colon carcinogenesis. The potential benefit is most marked for high-risk older individuals and individuals whose diet is high in arginine intake. Dietary grape supplementation may play a role in colon cancer prevention for high-risk individuals.

Guan GF, Zhang DJ, Zheng Y, et al.
Abnormal Wnt signaling and overexpression of ABCG2 contributes to drug efflux properties of side population cells in nasopharyngeal carcinoma.
Mol Med Rep. 2015; 12(3):4352-7 [PubMed] Related Publications
The presence of cancer stem cells (CSCs) has major implications in the choice of cancer treatment strategy and is responsible for tumor relapse. CSCs have been isolated and characterized in several types of cancer; however, studies concerning the CSCs from nasopharyngeal carcinoma (NPC) are limited. Thus, the present study was designed to isolate and characterize the cancer stem-like side population (SP) cells from NPC samples. The fluorescence-activated cell sorting (FACS)-based Hoechst 33342 dye exclusion technique identified that 3.9% of cells from NPC samples were cancer stem-like SP cells. Upon treatment with verapamil (ABC transporter inhibitor), the percentage of SP cells was significantly reduced to 0.7%, which confirms that the ABC transporter protein exhibits a significant role in drug exclusion. Fluorescence microscopy analysis revealed that the FACS purified SP cells showed increased expression of ABCG2 (ATP transporter protein), Oct-4 and CD44 (stem cell surface protein). Furthermore, these SP cells exhibited increased mRNA expression of ABCG2 and anti-apoptotic factor Bmi-1, which contribute to multi-drug resistance and increased cell survival rate. Notably, the Wnt/β-catenin signaling pathways are altered in SP cells. In addition, using reverse transcription‑quantitative polymerase chain reaction analysis it was observed that the cells exhibited increased expression of DKK1 and AXIN2. In conclusion, data from the present study clearly demonstrated that the presence of cancer stem-like SP cells from NPC may be responsible for chemotherapeutic drug resistance, tumor recurrence and invasion.

Mazzoni SM, Petty EM, Stoffel EM, Fearon ER
An AXIN2 Mutant Allele Associated With Predisposition to Colorectal Neoplasia Has Context-Dependent Effects on AXIN2 Protein Function.
Neoplasia. 2015; 17(5):463-72 [PubMed] Free Access to Full Article Related Publications
Heterozygous, germline nonsense mutations in AXIN2 have been reported in two families with oligodontia and colorectal cancer (CRC) predisposition, including an AXIN2 1989G>A mutation. Somatic AXIN2 mutations predicted to generate truncated AXIN2 (trAXIN2) proteins have been reported in some CRCs. Our studies of cells from an AXIN2 1989G>A mutation carrier showed that the mutant transcripts are not significantly susceptible to nonsense-mediated decay and, thus, could encode a trAXIN2 protein. In transient transfection assays, trAXIN2 was more abundant than wild-type AXIN2 protein, and in contrast to AXIN2, glycogen synthase kinase 3β inhibition did not increase trAXIN2 levels. Like AXIN2, the trAXIN2 protein interacts with β-catenin destruction complex proteins. When ectopically overexpressed, trAXIN2 inhibits β-catenin/T-cell factor-dependent reporter gene activity and SW480 CRC cell colony formation. These findings suggest the trAXIN2 protein may retain some wild-type functions when highly expressed. However, when stably expressed in rat intestinal IEC-6 cells, the trAXIN2 protein did not match AXIN2's activity in inhibiting Wnt-mediated induction of Wnt-regulated target genes, and SW480 cells with stable expression of trAXIN2 but not AXIN2 could be generated. Our data suggest the AXIN2 1989G>A mutation may not have solely a loss-of-function role in CRC. Rather, its contribution may depend on context, with potential loss-of-function when AXIN2 levels are low, such as in the absence of Wnt pathway activation. However, given its apparent increased stability in some settings, the trAXIN2 protein might have gain-of-function in cells with substantially elevated AXIN2 expression, such as Wnt pathway-defective CRC cells.

Cheng Y, Phoon YP, Jin X, et al.
Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment.
Oncotarget. 2015; 6(16):14428-39 [PubMed] Free Access to Full Article Related Publications
Wnt/β-catenin signaling is responsible for the generation of cancer stem cells (CSCs) in many human tumors, including nasopharyngeal carcinoma (NPC). Recent studies demonstrate that Wnt or PORCN inhibitor, Wnt-C59, inhibits tumor growth in MMTV-WNT1 transgenic mice. The effect of Wnt-C59 in human tumors is not clear. In this study, the NPC cell lines investigated manifest heterogeneous responses to Wnt-C59 treatment. Wnt-C59 decreased tumor growth of SUNE1 cells in mice immediately following the administration of Wnt-C59. Mice injected with HNE1 cells did not develop visible tumors after the treatment of Wnt-C59, while control mice developed 100% tumors. Wnt-C59 inhibited stemness properties of NPC cells in a dosage-dependent manner by arresting sphere formation in both HNE1 and SUNE1 cells. Thus, Wnt-C59 has the potential to eradicate CSCs in human tumors. Active β-catenin and Axin2 proteins were strongly expressed in stromal cells surrounding growing tumors, confirming the importance of Wnt signaling activities in the microenvironment being driving forces for cell growth. These novel findings confirm the ability of Wnt-C59 to suppress Wnt-driven undifferentiated cell growth in NPC. Both anti-Wnt signaling and anti-CSC approaches are feasible strategies in cancer therapy.

Gong J, Jiang Y, Hao N, et al.
Quantitative assessment of the association between AXIN2 rs2240308 polymorphism and cancer risk.
Sci Rep. 2015; 5:10111 [PubMed] Free Access to Full Article Related Publications
Axin2 is involved in the regulation of Wnt/β-catenin pathway and implicated in cancer development and progression. The association between AXIN2 rs2240308 polymorphism and cancer risk has been examined in several case-control studies, but the conclusions were conflicting. Here we performed a meta-analysis to evaluate the role of rs2240308 in cancer risk. A total of 8 studies were included in this meta-analysis (1559 cancer cases and 1503 controls). The pooled odds ratios (OR) and the 95% confidence intervals (CIs) were assessed to evaluate the association of the AXIN2 rs2240308 polymorphism with a susceptibility to cancer. A significantly decreased overall cancer risk was observed in the homozygous (TT vs. CC), heterozygous (CT vs. CC), dominant (CT+TT vs. CC) and allelic (T vs. C) models (P < 0.005), rather than that in the recessive (TT vs. CT+CC) model (P = 0.092). AXIN2 polymorphism rs2240308 was also associated with decreased cancer risk under all five models in lung cancer. However, AXIN2 rs2240308 polymorphism was not associated with cancer risk under any above model in Turkish population and under homozygous, heterozygous, recessive models in Japanese population. These findings indicate that AXIN2 rs2240308 polymorphism significantly and race-specifically correlates with decreased cancer risk.

Atkinson JM, Rank KB, Zeng Y, et al.
Activating the Wnt/β-Catenin Pathway for the Treatment of Melanoma--Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3.
PLoS One. 2015; 10(4):e0125028 [PubMed] Free Access to Full Article Related Publications
It has previously been observed that a loss of β-catenin expression occurs with melanoma progression and that nuclear β-catenin levels are inversely proportional to cellular proliferation, suggesting that activation of the Wnt/β-catenin pathway may provide benefit for melanoma patients. In order to further probe this concept we tested LY2090314, a potent and selective small-molecule inhibitor with activity against GSK3α and GSK3β isoforms. In a panel of melanoma cell lines, nM concentrations of LY2090314 stimulated TCF/LEF TOPFlash reporter activity, stabilized β-catenin and elevated the expression of Axin2, a Wnt responsive gene and marker of pathway activation. Cytotoxicity assays revealed that melanoma cell lines are very sensitive to LY2090314 in vitro (IC50 ~10 nM after 72hr of treatment) in contrast to other solid tumor cell lines (IC50 >10 uM) as evidenced by caspase activation and PARP cleavage. Cell lines harboring mutant B-RAF or N-RAS were equally sensitive to LY2090314 as were those with acquired resistance to the BRAF inhibitor Vemurafenib. shRNA studies demonstrated that β-catenin stabilization is required for apoptosis following treatment with the GSK3 inhibitor since the sensitivity of melanoma cell lines to LY290314 could be overcome by β-catenin knockdown. We further demonstrate that in vivo, LY2090314 elevates Axin2 gene expression after a single dose and produces tumor growth delay in A375 melanoma xenografts with repeat dosing. The activity of LY2090314 in preclinical models suggests that the role of Wnt activators for the treatment of melanoma should be further explored.

Xia Y, Wu S
Tissue inhibitor of metalloproteinase 2 inhibits activation of the β-catenin signaling in melanoma cells.
Cell Cycle. 2015; 14(11):1666-74 [PubMed] Free Access to Full Article Related Publications
The tissue inhibitor of metalloproteinase (TIMP) family, including TIMP-2, regulates the activity of multifunctional metalloproteinases in pathogenesis of melanoma. The Wnt/β-catenin pathway is constitutively activated and plays a critical role in melanoma progression. However, the relationship between TIMP-2 expression and β-catenin activity is still unclear. We hypothesize that TIMP-2 over expression inhibits the activation of the Wnt/β-catenin pathway in melanoma cells. Protein expression, distribution, and transcriptional activity of β-catenin were assayed in established stable melanoma cell lines: parental A2058 expressing, A2058 T2-1 over-expressing (T2-1), and A2058 T2R-7 under-expressing (T2R-7) TIMP-2. Compared to T2-1 cells at the basal level, T2R-7 showed significantly lower amount protein and weaker immunofluorescence staining of β-catenin. This regulation is through posttranslational level via ubiquitination. Functionally, proliferation and cell growth were lower in T2R-7 compared to A2058 and T2-1. Lithium treatment was used to mimics activation of the Wnt/β-catenin pathway. In T2R-7 cells under-expressing TIMP2, lithium significantly increased total β-catenin, nuclear β-catenin, and its downstream protein phosphor-c-Myc (S62). Nuclear β-catenin staining was enhanced in T2R-7. Beta-catenin transcriptional activity and cell proliferation were also increased significantly. Axins inhibit β-catenin pathway via GSK-3 β. We further found the ratio of p-GSK-3 β (S9) to β-catenin and protein levels of Axins were significantly lower, whereas downstream Wnt 11 was high in T2R-7 treated with lithium. Collectively, the high level of TIMP-2 protein inhibits the activation of the Wnt/β-catenin pathway, thus suppressing proliferation. Insights in the molecular mechanisms of TIMP-2 may provide promising opportunities for anti-proliferative therapeutic intervention.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. AXIN2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999