Gene Summary

Gene:CCL5; C-C motif chemokine ligand 5
Aliases: SISd, eoCP, SCYA5, RANTES, TCP228, D17S136E, SIS-delta
Summary:This gene is one of several chemokine genes clustered on the q-arm of chromosome 17. Chemokines form a superfamily of secreted proteins involved in immunoregulatory and inflammatory processes. The superfamily is divided into four subfamilies based on the arrangement of the N-terminal cysteine residues of the mature peptide. This chemokine, a member of the CC subfamily, functions as a chemoattractant for blood monocytes, memory T helper cells and eosinophils. It causes the release of histamine from basophils and activates eosinophils. This cytokine is one of the major HIV-suppressive factors produced by CD8+ cells. It functions as one of the natural ligands for the chemokine receptor chemokine (C-C motif) receptor 5 (CCR5), and it suppresses in vitro replication of the R5 strains of HIV-1, which use CCR5 as a coreceptor. Alternative splicing results in multiple transcript variants that encode different isoforms. [provided by RefSeq, Jul 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-C motif chemokine 5
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (103)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Protein Array Analysis
  • Disease Progression
  • Promoter Regions
  • Selection Bias
  • Stomach Cancer
  • Thyroid Cancer
  • Gene Expression Profiling
  • Angiogenesis
  • NF-kappa B
  • Phenotype
  • Sensitivity and Specificity
  • Oligonucleotide Array Sequence Analysis
  • Case-Control Studies
  • Cell Movement
  • Tumor Escape
  • Chemokines
  • T-Lymphocytes, Cytotoxic
  • WT1
  • Transforming Growth Factor beta
  • Cell Proliferation
  • Breast Cancer
  • Temperance
  • Neoplasm Invasiveness
  • Genetic Predisposition
  • Chemokine CCL5
  • Cancer Gene Expression Regulation
  • Gene Expression
  • Messenger RNA
  • Cultured Cells
  • T-Lymphocytes
  • Chromosome 17
  • Receptors, Chemokine
  • Risk Factors
  • Statistics as Topic
  • Chemokine CCL2
  • Tetradecanoylphorbol Acetate
  • Ovarian Cancer
  • Cytokines
  • Immunohistochemistry
  • Polymorphism
  • Receptors, CCR5
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCL5 (cancer-related)

Ceccarini MR, Vannini S, Cataldi S, et al.
In Vitro Protective Effects of Lycium barbarum Berries Cultivated in Umbria (Italy) on Human Hepatocellular Carcinoma Cells.
Biomed Res Int. 2016; 2016:7529521 [PubMed] Free Access to Full Article Related Publications
Lycium barbarum is a famous plant in the traditional Chinese medicine. The plant is known to have health-promoting bioactive components. The properties of Lycium barbarum berries cultivated in Umbria (Italy) and their effect on human hepatocellular carcinoma cells (HepG2) have been investigated in this work. The obtained results demonstrated that the Lycium barbarum berries from Umbria region display high antioxidant properties evaluated by total phenolic content and ORAC method, on hydrophilic and lipophilic fractions. Moreover, on HepG2 cell line Lycium barbarum berries extract did not change cell viability analyzed by MTT and Trypan blue exclusion assay and did not induce genotoxic effect analyzed by comet assay. Furthermore, it was demonstrated, for the first time, that the berries extract showed a protective effect on DNA damage, expressed as antigenotoxic activity in vitro. Finally, Lycium barbarum berries extract was able to modulate the expression of genes involved in oxidative stress, proliferation, apoptosis, and cancer. In particular, downexpression of genes involved in tumor migration and invasion (CCL5), in increased risk of metastasis and antiapoptotic signal (DUSP1), and in carcinogenesis (GPx-3 and PTGS1), together with overexpression of tumor suppressor gene (MT3), suggested that Umbrian Lycium barbarum berries could play a protective role against hepatocellular carcinoma.

Doster A, Schwarzig U, Zygmunt M, et al.
Unfractionated Heparin Selectively Modulates the Expression of CXCL8, CCL2 and CCL5 in Endometrial Carcinoma Cells.
Anticancer Res. 2016; 36(4):1535-44 [PubMed] Related Publications
BACKGROUND/AIM: This in vitro study analyzed the impact of heparins on expression of chemokines in human endometrial adenocarcinoma cell lines.
MATERIALS AND METHODS: Cell lines were incubated with unfractionated heparin (UFH), low molecular weight heparins (LMWH) and fondparinux under hypoxic and normoxic conditions. Chemokine (C-X-C motif) ligand 8 (CXCL8), CC-chemokine ligand 2 (CCL2) and CCL5 were detected by enzyme-linked immunosorbent assays and real-time reverse transcriptase-polymerase chain reaction and cell viability by fluorometric assay.
RESULTS: Different adenocarcinoma cell lines had distinct patterns of chemokine expression. UFH attenuated the secretion of CXCL8 and CCL2, and enhanced that of CCL5. The observed effects of heparin were in addition to the anti-coagulatory properties of heparin and dependent on molecular size and charge.
CONCLUSION: UFH has selective modulating effects on the secretion of CXCL8, CCL2 and CCL5 in different endometrial adenocarcinoma cell lines. Molecular size and charge are relevant for these observed effects. By influencing the expression of these inflammatory mediators and thereby affecting the tumour microenvironment, heparins and related agents might play an essential role in the development of new therapeutic strategies.

Tang S, Xiang T, Huang S, et al.
Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.
Cancer Lett. 2016; 376(1):137-47 [PubMed] Related Publications
Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer.

Jaime-Ramirez AC, McMichael EL, Kondadasula S, et al.
NK Cell-Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin Are Enhanced by Cytokines.
Cancer Immunol Res. 2016; 4(4):323-36 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Optimally effective antitumor therapies would not only activate immune effector cells but also engage them at the tumor. Folate conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor-expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR)-overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by natural killer (NK) cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased by about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P< 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG-coated KB target cells in the presence of the NK cell-activating cytokine IL12, and these coculture supernatants induced significant T-cell chemotaxis (P< 0.001). F-IgG-coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P =0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy.

Vilgelm AE, Johnson CA, Prasad N, et al.
Connecting the Dots: Therapy-Induced Senescence and a Tumor-Suppressive Immune Microenvironment.
J Natl Cancer Inst. 2016; 108(6):djv406 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
BACKGROUND: Tumor cell senescence is a common outcome of anticancer therapy. Here we investigated how therapy-induced senescence (TIS) affects tumor-infiltrating leukocytes (TILs) and the efficacy of immunotherapy in melanoma.
METHODS: Tumor senescence was induced by AURKA or CDK4/6 inhibitors (AURKAi, CDK4/6i). Transcriptomes of six mouse tumors with differential response to AURKAi were analyzed by RNA sequencing, and TILs were characterized by flow cytometry. Chemokine RNA and protein expression were determined by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Therapeutic response was queried in immunodeficient mice, in mice with CCL5-deficient tumors, and in mice cotreated with CD137 agonist to activate TILs. CCL5 expression in reference to TIS and markers of TILs was studied in human melanoma tumors using patient-derived xenografts (n = 3 patients, n = 3 mice each), in AURKAi clinical trial samples (n = 3 patients, before/after therapy), and in The Cancer Genome Atlas (n = 278). All statistical tests were two-sided.
RESULTS: AURKAi response was associated with induction of the immune transcriptome (P = 3.5 x 10-29) while resistance inversely correlated with TIL numbers (Spearman r = -0.87, P < .001). AURKAi and CDK4/6i promoted the recruitment of TILs by inducing CCL5 secretion in melanoma cells (P ≤ .005) in an NF-κB-dependent manner. Therapeutic response to AURKAi was impaired in immunodeficient compared with immunocompetent mice (0% vs 67% tumors regressed, P = .01) and in mice bearing CCL5-deficient vs control tumors (P = .61 vs P = .02); however, AURKAi response was greatly enhanced in mice also receiving T-cell-activating immunotherapy (P < .001). In human tumors, CCL5 expression was also induced by AURKAi (P ≤ .02) and CDK4/6i (P = .01) and was associated with increased immune marker expression (P = 1.40 x 10-93).
CONCLUSIONS: Senescent melanoma cells secret CCL5, which promotes recruitment of TILs. Combining TIS with immunotherapy that enhances tumor cell killing by TILs is a promising novel approach to improve melanoma outcomes.

Tsunekawa N, Higashi N, Kogane Y, et al.
Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines.
Biochem Biophys Res Commun. 2016; 469(4):878-83 [PubMed] Related Publications
To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.

Yeh CR, Ou ZY, Xiao GQ, et al.
Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals.
Oncotarget. 2015; 6(42):44346-59 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.

Sarmadi P, Tunali G, Esendagli-Yilmaz G, et al.
CRAM-A indicates IFN-γ-associated inflammatory response in breast cancer.
Mol Immunol. 2015; 68(2 Pt C):692-8 [PubMed] Related Publications
Atypical chemokine receptors (ACKRs) function as endpoint regulators of chemokine gradients. These non-signaling receptors that are transiently expressed under inflammatory conditions have critical roles in the control or maintenance of immune responses. Alternatively, here, CCRL2 (ACKR5) expression was determined to be constitutive in breast cancer cells. Increased amount of CCRL2 was also found in breast tumor tissues with high immune infiltration. Its expression was upregulated in the presence of pro-inflammatory cytokines, IL-1β, TNF-α, IL-6, and especially IFN-γ⋅ Moreover, an alternative transcript of CCRL2 gene, CRAM-A, was specifically expressed in a transient fashion under the influence of IFN-γ. CRAM-A expression was also positively correlated with the presence of IFN-γ mRNA in patient samples. CCRL2-associated chemotactic molecules, chemerin, CCL19 and CCL5, were also detected in cancer tissues and CCL5 mRNA level was correlated with that of CRAM-A and IFN-γ. Hence, in breast cancer, CRAM-A becomes specifically upregulated under inflammatory stimuli and may serve as a potential marker of immune response.

Barbarov Y, Timaner M, Alishekevitz D, et al.
Host JDP2 expression in the bone marrow contributes to metastatic spread.
Oncotarget. 2015; 6(35):37737-49 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
The c-Jun Dimerization Protein 2, JDP2, is a basic leucine zipper protein member of the activator protein-1 (AP-1) family of transcription factors. JDP2 typically suppresses gene transcription through multiple mechanisms and plays a dual role in multiple cellular processes, including cell differentiation and proliferation which is dependent on AP-1 function. Whereas the role of JDP2 expression within cancer cells has been studied, its role in stromal cells at the tumor microenvironment is largely unknown. Here we show that mice lacking JDP2 (JDP2-/-) display a reduced rate of metastasis in Lewis lung carcinoma (LLC) and polyoma middle T-antigen (PyMT) breast carcinoma mouse models. The replacement of wild-type bone marrow derived cells (BMDCs) with JDP2-deficient BMDCs recapitulates the metastatic phenotype of JDP2-/- tumor-bearing mice. In vitro, conditioned medium of wild-type BMDCs significantly potentiates the migration and invasion capacity of LLC cells as compared to that of JDP2-/- BMDCs. Furthermore, wild-type BMDCs secrete CCL5, a chemokine known to contribute to metastasis, to a greater extent than JDP2-/- BMDCs. The supplementation of CCL5 in JDP2-/- BMDC conditioned medium was sufficient to potentiate the invasion capacity of LLC. Overall, this study suggests that JDP2-expressing BMDCs within the tumor microenvironment contribute to metastatic spread.

Luo J, Lee SO, Cui Y, et al.
Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2α/androgen receptor signals.
Oncotarget. 2015; 6(29):27555-65 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Several infiltrating cells in the tumor microenvironment could influence the cancer progression via secreting various cytokines. Here, we found the CCL5 secreted from BM-MSCs suppressed androgen receptor (AR) signals via enhancing the expression of hypoxia inducible factor 2α (HIF2α) in prostate cancer (PCa) cells. Mechanism dissection revealed that the increased HIF2α might alter the AR-HSP90 interaction to suppress the AR transactivation, and inhibition of HIF2α reversed the BM-MSCs-increased PCa stem cell population and PCa cells invasion. Importantly, CCL5 could suppress the prolyl hydroxylases (PHDs) expression, which might then lead to suppress VHL-mediated HIF2α ubiquitination. Together, these results demonstrated that the CCL5 signals from infiltrating BM-MSC cells to HIF2α signals within PCa cells might play a key role to increase PCa stem cell population and PCa metastasis via altering the AR signals. Targeting this newly identified CCL5/HIF2α/AR axis signal axis may allow us to develop a novel way to suppress PCa metastasis.

Liu J, Li F, Ping Y, et al.
Local production of the chemokines CCL5 and CXCL10 attracts CD8+ T lymphocytes into esophageal squamous cell carcinoma.
Oncotarget. 2015; 6(28):24978-89 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Esophageal squamous cell carcinoma (ESCC) is a very common malignant tumor with poor prognosis in China. Chemokines secreted by tumors are pivotal for the accumulation of CD8(+) T lymphocytes within malignant lesions in several types of cancers, but the exact mechanism underlying CD8(+) T lymphocyte homing is still unknown in ESCC. In this study, we revealed that, compared with marginal tissues, the expression of both chemokine (C-C motif) ligand 5 (CCL5) and (C-X-C motif) ligand 10 (CXCL10) was upregulated in ESCC tissues. CCL5 expression was positively associated with the overall survival of patients. Meanwhile, RT-PCR data showed that the expression of CCL5 and CXCL10 was positively correlated with the local expressions of the CD8(+) T lymphocyte markers (CD8 and Granzyme B) in tumor tissues. Correspondingly, CD8(+) T lymphocytes were more frequently CCR5- and CXCR3-positive in tumor than in peripheral blood. Transwell analysis showed both CCL5 and CXCL10 were important for the chemotactic movement of CD8(+) T lymphocytes. Our data indicate that CCL5 and CXCL10 serve as the key chemokines to recruit CD8(+) T lymphocytes into ESCC tissue and may play a role in patient survival.

Yu KD, Wang X, Yang C, et al.
Host genotype and tumor phenotype of chemokine decoy receptors integrally affect breast cancer relapse.
Oncotarget. 2015; 6(28):26519-27 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
PURPOSE: Chemokines may play vital roles in breast cancer progression and metastasis. The primary members of chemokine decoy receptors (CDR), DARC and D6, are expressed in breast tumors and lymphatic/hematogenous vessels. CDRs sequestrate the pro-malignant chemokines. We hypothesized that breast cancer patients carrying different levels of CDR expression in tumor and/or in host might have differing clinical outcomes.
METHODS: This prospective observational study measured both expression and germline genotype of DARC and D6 in 463 primary breast cancer patients enrolled between 2004 and 2006. The endpoint was breast cancer relapse-free survival (RFS).
RESULTS: There was a significant association between the co-expression of CDR (immunohistochemical expression of both DARC and D6) with RFS (hazard ratio [HR] of 0.32, 95% confidence interval [CI] 0.19 to 0.54). Furthermore, the co-genotype of two non-synonymous polymorphisms (with two major alleles of DARC-rs12075 and D6-rs2228468 versus the others) significantly related to relapse. Mechanistically, the variant-alleles of these two polymorphisms significantly decreased by 20-30% of CCL2/CCL5 (CDR ligands) levels relative to their major counterparts. Multivariate analysis highlighted that the co-expression and co-genotype of CDR were independent predictors of RFS, with HR of 0.46 (95% CI 0.27 to 0.80) and 0.56 (95% CI 0.37 to 0.85), respectively. The addition of host CDR genetic information to tumor-based factors (including co-expression of CDR) improved the relapse prediction ability (P = 0.02 of AUC comparison).
CONCLUSION: The host genotype and tumor phenotype of CDR integrally affect breast cancer relapse. Host-related factors should be considered for individualized prediction of prognosis.

Zhang Q, Qin J, Zhong L, et al.
CCL5-Mediated Th2 Immune Polarization Promotes Metastasis in Luminal Breast Cancer.
Cancer Res. 2015; 75(20):4312-21 [PubMed] Related Publications
The tumor-promoting chemokine CCL5 has been implicated in malignant transformation of breast epithelial cells, with studies to date focusing mainly on basal-type breast cancers. In this study, we investigated the consequences of CCL5 deletion in the MMTV-PyMT transgenic mouse model of luminal breast cancer. In this model, primary tumor burden and pulmonary metastases were reduced significantly in CCL5-deficient subjects, an effect found to be associated with a deficit of Th2 (IL4⁺CD4⁺ T) cells. Mechanistic investigations revealed that CCL5 activates CCR3, a highly expressed chemokine receptor on CD4⁺ T cells, and also boosts Gfi1 expression to promote the differentiation of Th2 cells, which enhance the prometastatic activity of tumor-associated myeloid cells. Clinically, polarization toward this immunosuppressive Th2 phenotype was also evident in patients with advanced luminal breast cancer. Thus, our findings showed that CCL5/CCR3 signaling promotes metastasis by inducing Th2 polarization of CD4⁺ T cells, with implications for prognosis and immunotherapy of luminal breast cancer.

Kim HJ, Park J, Lee SK, et al.
Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer.
J Pathol. 2015; 237(4):520-31 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Non-small cell lung cancer (NSCLC) frequently metastasizes to bone, which is associated with significant morbidity and a dismal prognosis. RUNX3 functions as a tumour suppressor in lung cancer and loss of expression occurs more frequently in invasive lung adenocarcinoma than in pre-invasive lesions. Here, we show that RUNX3 and RUNX3-regulated chemokines are linked to NSCLC-mediated bone resorption. Notably, the receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio, an index of osteoclastogenic stimulation, was significantly increased in human osteoblastic cells treated with conditioned media derived from RUNX3-knockdown NSCLC cells. We aimed to identify RUNX3-regulated factors that modify the osteoblastic RANKL/OPG ratio and found that RUNX3 knockdown led to CCL5 up-regulation and down-regulation of CCL19 and CXCL11 in NSCLC cells. Tumour size was noticeably increased and more severe osteolytic lesions were induced in the calvaria and tibiae of mice that received RUNX3-knockdown cells. In response to RUNX3 knockdown, serum and tissue levels of CCL5 increased, whereas CCL19 and CXCL11 decreased. Furthermore, CCL5 increased the proliferation, migration, and invasion of lung cancer cells in a dose-dependent manner; however, CCL19 and CXCL11 did not show any significant effects. The RANKL/OPG ratio in osteoblastic cells was increased by CCL5 but reduced by CCL19 and CXCL11. CCL5 promoted osteoclast differentiation, but CCL19 and CXCL11 reduced osteoclastogenesis in RANKL-treated bone marrow macrophages. These findings suggest that RUNX3 and related chemokines are useful markers for the prediction and/or treatment of NSCLC-induced bone destruction.

Frankenberger C, Rabe D, Bainer R, et al.
Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages.
Cancer Res. 2015; 75(19):4063-73 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Triple-negative breast cancer (TNBC) patients have the highest risk of recurrence and metastasis. Because they cannot be treated with targeted therapies, and many do not respond to chemotherapy, they represent a clinically underserved group. TNBC is characterized by reduced expression of metastasis suppressors such as Raf kinase inhibitory protein (RKIP), which inhibits tumor invasiveness. Mechanisms by which metastasis suppressors alter tumor cells are well characterized; however, their ability to regulate the tumor microenvironment and the importance of such regulation to metastasis suppression are incompletely understood. Here, we use species-specific RNA sequencing to show that RKIP expression in tumors markedly reduces the number and metastatic potential of infiltrating tumor-associated macrophages (TAM). TAMs isolated from nonmetastatic RKIP(+) tumors, relative to metastatic RKIP(-) tumors, exhibit a reduced ability to drive tumor cell invasion and decreased secretion of prometastatic factors, including PRGN, and shed TNFR2. RKIP regulates TAM recruitment by blocking HMGA2, resulting in reduced expression of numerous macrophage chemotactic factors, including CCL5. CCL5 overexpression in RKIP(+) tumors restores recruitment of prometastatic TAMs and intravasation, whereas treatment with the CCL5 receptor antagonist Maraviroc reduces TAM infiltration. These results highlight the importance of RKIP as a regulator of TAM recruitment through chemokines such as CCL5. The clinical significance of these interactions is underscored by our demonstration that a signature comprised of RKIP signaling and prometastatic TAM factors strikingly separates TNBC patients based on survival outcome. Collectively, our findings identify TAMs as a previously unsuspected mechanism by which the metastasis-suppressor RKIP regulates tumor invasiveness, and further suggest that TNBC patients with decreased RKIP activity and increased TAM infiltration may respond to macrophage-based therapeutics.

Martin del Campo SE, Levine KM, Mundy-Bosse BL, et al.
The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells.
J Immunol. 2015; 195(5):1995-2005 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells.

Phoon YP, Cheung AK, Cheung FM, et al.
IKBB tumor suppressive role in nasopharyngeal carcinoma via NF-κB-mediated signalling.
Int J Cancer. 2016; 138(1):160-70 [PubMed] Related Publications
Tumor suppressor genes (TSGs) play a prominent role in cancer and are important in the development of nasopharyngeal carcinoma (NPC), which is endemic in Southern China as well as Southeast Asia. Apart from TSGs, aberrant signalling pathways are also commonly associated with tumor progression. Unsurprisingly, the NF-κB pathway is frequently associated with angiogenesis and promoting tumor growth and development. Functional complementation studies using microcell-mediated chromosome transfer helped to identify IKBB as a putative TSG in NPC. IKBB, an inhibitor of NF-κB, has recently been shown to be inversely associated with tumor growth and metastasis via inactivation of the NF-κB pathway, but its suppressive role is still only poorly understood. This study takes the lead in revealing the suppressive role of IKBB in NPC. IKBB is silenced in the majority of NPC tumor tissues in all stages. Its suppressive role is substantiated by perturbation in tumor formation, cell migration and angiogenesis. Interestingly, IKBB not only affects the 'seed', but also influences the 'soil' by downregulating the transcriptional level of proangiogenic factors Rantes, Upar, IL6, and IL8. For the first time, our data establish the importance of a novel tumor suppressive IKBB gene in abrogating angiogenesis in NPC via the NF-κB signalling pathway, which is likely mediated by crosstalk with the Akt/Gsk3β signalling pathway.

Ramzan M, Sturm N, Decaens T, et al.
Liver-infiltrating CD8(+) lymphocytes as prognostic factor for tumour recurrence in hepatitis C virus-related hepatocellular carcinoma.
Liver Int. 2016; 36(3):434-44 [PubMed] Related Publications
BACKGROUND: Chronic liver inflammation and immune/inflammatory response promote hepatocellular carcinoma. The aim of this study was to characterize the immune status of HCV-related cirrhosis in patients with hepatocellular carcinoma (HCV-HCC) as compared to HCV patients without hepatocellular carcinoma.
METHOD: Immune markers (CD3, CD4, CD8, CD20, CD56, TCRγδ, FoxP3) and gene expression profiles (CD8α, CD8β, FoxP3, IL-6, IFN-γ, perforin, RANTES) were analysed in a test cohort by immunohistochemistry and quantitative RT-PCR analysis on serial non-tumorous and tumorous tissues.
RESULTS: Immune micro-environment was more inflammatory in HCV-HCC than HCV cirrhotic livers. The number of CD3(+) , CD4(+) , CD8(+) and CD20(+) liver-infiltrating lymphocytes was significantly higher, whereas the number of CD56(+) cells was significantly lower in HCV-HCC compared to HCV cirrhotic parenchyma. These differences were restricted to fibrous septa for CD4(+) and CD20(+) cells and to nodular parenchyma for CD8(+) cells. Gene expressions of CD8α, FoxP3 and RANTES were also significantly higher in HCV-HCC than in HCV cirrhosis. Interestingly, in a large cohort of 63 HCV-HCC patients. The number of CD8(+) cells ≥100/field was associated with significant higher tumour recurrence (P = 0.003) and lower overall survival (P = 0.05) at 5 years.
CONCLUSION: High densities of liver-infiltrating lymphocytes in HCV-HCC cirrhotic parenchyma prevail inflammatory conditions and could contribute to tumorigenesis and tumour recurrence. These results could contribute towards better clinical evaluation of patients susceptible for HCC recurrence after curative surgery.

Fertig EJ, Lee E, Pandey NB, Popel AS
Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes.
Sci Rep. 2015; 5:12133 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Breast cancer is a heterogeneous disease, having multiple subtypes with different malignant phenotypes. The triple-negative breast cancer, or basal breast cancer, is highly aggressive, metastatic, and difficult to treat. Previously, we identified that key molecules (IL6, CSF2, CCL5, VEGFA, and VEGFC) secreted by tumor cells and stromal cells in basal breast cancer can promote metastasis. It remains to assess whether these molecules function similarly in other subtypes of breast cancer. Here, we characterize the relative gene expression of the five secreted molecules and their associated receptors (GP130, GMRA, GMRB, CCR5, VEGFR2, NRP1, VEGFR3, NRP2) in the basal, HER2 (human epidermal growth factor receptor 2) positive, luminal A, and luminal B subtypes using high throughput data from tumor samples in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). IL6 and CCL5 gene expression are basal breast cancer specific, whereas high gene expression of GP130 was observed in luminal A/B. VEGFA/C and CSF2 mRNA are overexpressed in HER2 positive breast cancer, with VEGFA and CSF2 also overexpressed in basal breast cancer. Further study of the specific protein function of these factors within their associated cancer subtypes may yield personalized biomarkers and treatment modalities.

Wang G, Wei Z, Jia H, et al.
Knockdown of SOX18 inhibits the proliferation, migration and invasion of hepatocellular carcinoma cells.
Oncol Rep. 2015; 34(3):1121-8 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. Recent studies have demonstrated that SOX18 is highly expressed in various types of cancer. In the present study, we found that SOX18 mRNA was overexpressed in HCC compared with non-tumorous tissues. We aimed to explore the effects of SOX18 siRNA on the proliferation, invasion and migration of two HCC cell lines, MHCC97H and HepG2, which overexpress SOX18. We found that SOX18 siRNA significantly inhibited the proliferation and induced cell cycle arrest at the G0/G1 phase. Results of the Transwell assay showed that the migration and invasion of the HCC cells were markedly impaired in the SOX18-knockdown cells. Gene set enrichment analysis (GSEA) showed that KEGG focal adhesion and chemokine signaling pathways were correlated with SOX18 expression. Furthermore, the mRNA and protein levels of RhoA, PDGFB, IGF1R, CCL2, CCL3 and CCL5 were decreased in the SOX18-knockdown cells. Importantly, we demonstrated that upregulation of SOX18 was associated with a poor outcome in HCC patients. These results indicate that SOX18 may serve as a prognostic factor and a promising therapeutic strategy for HCC.

Cai X, Luo J, Yang X, et al.
In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion.
Oncotarget. 2015; 6(26):22905-17 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity.

Choi SA, Lee JY, Kwon SE, et al.
Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells.
PLoS One. 2015; 10(6):e0129292 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk.

Taube JM, Young GD, McMiller TL, et al.
Differential Expression of Immune-Regulatory Genes Associated with PD-L1 Display in Melanoma: Implications for PD-1 Pathway Blockade.
Clin Cancer Res. 2015; 21(17):3969-76 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
PURPOSE: Blocking the immunosuppressive PD-1/PD-L1 pathway has antitumor activity in multiple cancer types, and PD-L1 expression on tumor cells and infiltrating myeloid cells correlates with the likelihood of response. We previously found that IFNG (interferon-gamma) was overexpressed by tumor-infiltrating lymphocytes in PD-L1(+) versus PD-L1(-) melanomas, creating adaptive immune resistance by promoting PD-L1 display. This study was undertaken to identify additional factors in the PD-L1(+) melanoma microenvironment coordinately contributing to immunosuppression.
EXPERIMENTAL DESIGN: Archived, formalin-fixed paraffin-embedded melanoma specimens were assessed for PD-L1 protein expression at the tumor cell surface with IHC. Whole-genome expression analysis, quantitative (q)RT-PCR, IHC, and functional in vitro validation studies were used to assess factors differentially expressed in PD-L1(+) versus PD-L1(-) melanomas.
RESULTS: Functional annotation clustering based on whole-genome expression profiling revealed pathways upregulated in PD-L1(+) melanomas, involving immune cell activation, inflammation, and antigen processing and presentation. Analysis by qRT-PCR demonstrated overexpression of functionally related genes in PD-L1(+) melanomas, involved in CD8(+) T-cell activation (CD8A, IFNG, PRF1, and CCL5), antigen presentation (CD163, TLR3, CXCL1, and LYZ), and immunosuppression [PDCD1 (PD-1), CD274 (PD-L1), and LAG3, IL10]. Functional studies demonstrated that some factors, including IL10 and IL32-gamma, induced PD-L1 expression on monocytes but not tumor cells.
CONCLUSIONS: These studies elucidate the complexity of immune checkpoint regulation in the tumor microenvironment, identifying multiple factors likely contributing to coordinated immunosuppression. These factors may provide tumor escape mechanisms from anti-PD-1/PD-L1 therapy, and should be considered for cotargeting in combinatorial immunomodulation treatment strategies.

Rudisch A, Dewhurst MR, Horga LG, et al.
High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts.
PLoS One. 2015; 10(4):e0124283 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the "cytokine fingerprints" identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay.

Svensson S, Abrahamsson A, Rodriguez GV, et al.
CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer.
Clin Cancer Res. 2015; 21(16):3794-805 [PubMed] Related Publications
PURPOSE: Novel therapeutic targets of estrogen receptor (ER)-positive breast cancers are urgently needed because current antiestrogen therapy causes severe adverse effects, nearly 50% of patients are intrinsically resistant, and the majority of recurrences have maintained ER expression. We investigated the role of estrogen-dependent chemokine expression and subsequent cancer growth in human tissues and experimental breast cancer models.
EXPERIMENTAL DESIGN: For in vivo sampling of human chemokines, microdialysis was used in breast cancers of women or normal human breast tissue before and after tamoxifen therapy. Estrogen exposure and targeted therapies were assessed in immune competent PyMT murine breast cancer, orthotopic human breast cancers in nude mice, cell culture of cancer cells, and freshly isolated human macrophages. Cancer cell dissemination was investigated using zebrafish.
RESULTS: ER(+) cancers in women produced high levels of extracellular CCL2 and CCL5 in vivo, which was associated with infiltration of tumor-associated macrophages. In experimental breast cancer, estradiol enhanced macrophage influx and angiogenesis through increased release of CCL2, CCL5, and vascular endothelial growth factor. These effects were inhibited by anti-CCL2 or anti-CCL5 therapy, which resulted in potent inhibition of cancer growth. In addition, estradiol induced a protumorigenic activation of the macrophages. In a zebrafish model, macrophages increased cancer cell dissemination via CCL2 and CCL5 in the presence of estradiol, which was inhibited with anti-CCL2 and anti-CCL5 treatment.
CONCLUSIONS: Our findings shed new light on the mechanisms underlying the progression of ER(+) breast cancer and indicate the potential of novel therapies targeting CCL2 and CCL5 pathways.

Poswar Fde O, Farias LC, Fraga CA, et al.
Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma.
J Endod. 2015; 41(6):877-83 [PubMed] Related Publications
INTRODUCTION: Bioinformatics has emerged as an important tool to analyze the large amount of data generated by research in different diseases. In this study, gene expression for radicular cysts (RCs) and periapical granulomas (PGs) was characterized based on a leader gene approach.
METHODS: A validated bioinformatics algorithm was applied to identify leader genes for RCs and PGs. Genes related to RCs and PGs were first identified in PubMed, GenBank, GeneAtlas, and GeneCards databases. The Web-available STRING software (The European Molecular Biology Laboratory [EMBL], Heidelberg, Baden-Württemberg, Germany) was used in order to build the interaction map among the identified genes by a significance score named weighted number of links. Based on the weighted number of links, genes were clustered using k-means. The genes in the highest cluster were considered leader genes. Multilayer perceptron neural network analysis was used as a complementary supplement for gene classification.
RESULTS: For RCs, the suggested leader genes were TP53 and EP300, whereas PGs were associated with IL2RG, CCL2, CCL4, CCL5, CCR1, CCR3, and CCR5 genes.
CONCLUSIONS: Our data revealed different gene expression for RCs and PGs, suggesting that not only the inflammatory nature but also other biological processes might differentiate RCs and PGs.

Sottnik JL, Dai J, Zhang H, et al.
Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases.
Cancer Res. 2015; 75(11):2151-8 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
Cross-talk between tumor cells and their microenvironment is critical for malignant progression. Cross-talk mediators, including soluble factors and direct cell contact, have been identified, but roles for the interaction of physical forces between tumor cells and the bone microenvironment have not been described. Here, we report preclinical evidence that tumor-generated pressure acts to modify the bone microenvironment to promote the growth of prostate cancer bone metastases. Tumors growing in mouse tibiae increased intraosseous pressure. Application of pressure to osteocytes, the main mechanotransducing cells in bone, induced prostate cancer growth and invasion. Mechanistic investigations revealed that this process was mediated in part by upregulation of CCL5 and matrix metalloproteinases in osteocytes. Our results defined the critical contribution of physical forces to tumor cell growth in the tumor microenvironment, and they identified osteocytes as a critical mediator in the bone metastatic niche.

Zhang S, Lee DS, Morrissey R, et al.
Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model.
Cancer Lett. 2015; 359(2):345-51 [PubMed] Related Publications
H. pylori infection causes gastritis, peptic ulcers and gastric cancer. Eradicating H. pylori prevents ulcers, but to what extent this prevents cancer remains unknown, especially if given after intestinal metaplasia has developed. H. pylori infected wild-type (WT) mice do not develop cancer, but mice lacking the tumor suppressor p27 do so, thus providing an experimental model of H. pylori-induced cancer. We infected p27-deficient mice with H. pylori strain SS1 at 6-8 weeks of age. Persistently H. pylori-infected WT C57BL/6 mice served as controls. Mice in the eradication arms received antimicrobial therapy (omeprazole, metronidazole and clarithromycin) either "early" (at 15 weeks post infection, WPI) or "late" at 45 WPI. At 70 WPI, mice were euthanized for H. pylori determination, histopathology and cytokine/chemokine expression. Persistently infected mice developed premalignant lesions including high-grade dysplasia, whereas those given antibiotics did not. Histologic activity scores in the eradication groups were similar to each other, and were significantly decreased compared with controls for inflammation, epithelial defects, hyperplasia, metaplasia, atrophy and dysplasia. IP-10 and MIG levels in groups that received antibiotics were significantly lower than controls. There were no significant differences in expression of IFN-γ, TNF-α, IL-1β, RANTES, MCP-1, MIP-1α or MIP-1β among the three groups. Thus, H. pylori eradication given either early or late after infection significantly attenuated gastric inflammation, gastric atrophy, hyperplasia, and dysplasia in the p27-deficient mice model of H. pylori-induced gastric cancer, irrespective of the timing of antibiotic administration. This was associated with reduced expression of IP-10 and MIG.

Piltonen TT, Chen JC, Khatun M, et al.
Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro.
Hum Reprod. 2015; 30(5):1203-15 [PubMed] Article available free on PMC after 01/06/2017 Related Publications
STUDY QUESTION: Do endometrial stromal fibroblasts (eSF) in women with polycystic ovary syndrome (PCOS) (eSFpcos) exhibit altered estrogen and/or progesterone (P4) responses, which may explain some of the adverse reproductive outcomes and endometrial pathologies in these women?
SUMMARY ANSWER: In vitro, eSF from women with PCOS exhibit an aberrant decidualization response and concomitant changes in pro-inflammatory cytokine, chemokine and matrix metalloproteinase (MMP) release and immune cell chemoattraction. In vivo these aberrations may result in suboptimal implantation and predisposition to endometrial cancer.
WHAT IS KNOWN ALREADY: The endometrium in women with PCOS has several abnormalities including progesterone (P4) resistance at the gene expression level, likely contributing to subfertility, pregnancy complications and increased endometrial cancer risk in PCOS women.
STUDY DESIGN, SIZE, DURATION: Prospective, university-based, case-control, in vitro study.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Cultures of eSFPCOS (n = 12, Rotterdam and NIH criteria) and eSFControl (Ctrl) (n = 6, regular cycle length, no signs of hyperandrogenism) were treated with vehicle, estradiol (E2, 10 nM) or E2P4 (10 nM/1 μM) for 14 days. Progesterone receptor (PGR) mRNA was assessed with quantitative real-time PCR (qRT-PCR) and eSF decidualization was confirmed by insulin-like growth factor-binding protein-1 (IGFBP-1) transcript and protein expression. Fractalkine (CX3CL1), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL) 6, 8 and 11, macrophage chemoattractant protein (MCP) 1 and 3, CCL5 (RANTES) and MMPs (MMP1, 2, 3, 7, 9, 10 and 12) were measured in conditioned media by Luminex multiplex assays, and chemotactic activity of the conditioned media was tested in a migration assay using CD14+ monocyte and CD4+ T-cell migration assay. Effects of IL-6 (0.02, 0.2, 2 or 20 ng/ml) or IL-8 (0.04, 0.4, 4, or 40 ng/ml) or combination (0.2 ng/ml IL-6 and 4.0 ng/ml IL-8) on 14-d decidualization were also tested. ANOVA with pre-planned contrasts was used for statistical analysis.
MAIN RESULTS AND THE ROLE OF CHANCE: Hormonal challenge with E2P4 to induce decidualization revealed two distinct subsets of eSFPCOS. Eight eSFPCOS (dPCOS) and all eSFCtrl (dCtrl) cultures showed a normal decidualization response to E2P4 as determined by morphology and IGFBP-1 secretion. However, 4 eSFPCOS cultures showed blunted decidualization (ndPCOS) in morphological assessment and low IGFBP-1 levels even though all three groups exhibited normal estrogen-mediated increase in PGR expression. Interestingly dPCOS had decreased IL-6 and GM-SCF secretion compared with dCtrl, whereas the ndPCOS cultures showed increased IL-6 and 8, MCP1, RANTES and GM-CSF secretion at base-line and/or in response to E2 or E2P4 compared with dCtrl and/or dPCOS. Furthermore, even though PGR expression was similar in all three groups, P4 inhibition of MMP secretion was attenuated in ndPCOS resulting in higher MMP2 and 3 levels. The conditioned media from ndPCOS had increased chemoattractic activity compared with dCtrl and dPCOS media. Exogenously added IL-6 and/or 8 did not inhibit decidualization in eSFCtrl indicating that high levels of these cytokines in ndPCOS samples were not likely a cause for the aberrant decidualization.
LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study with a small sample size, utilizing stromal cell cultures from proliferative and secretory phase endometrium. The effect of PCOS on endometrial epithelium, another major histoarchitectural cell compartment of the endometrium, was not evaluated and should be considered in future studies. Furthermore, results obtained should also be confirmed in a larger data set and with mid/late secretory phase in vivo samples and models.
WIDER IMPLICATIONS OF THE FINDINGS: The alterations seen in ndPCOS may contribute to endometrial dysfunction, subfertility and pregnancy complications in PCOS women. The results emphasize the importance of understanding immune responses related to the implantation process and normal endometrial homeostasis in women with PCOS.
STUDY FUNDING/COMPETING INTERESTS: Sigrid Juselius Foundation, Academy of Finland, Finnish Medical Foundation, Orion-Farmos Research Foundation (to T.T.P.), the NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) U54HD 055764-07 Specialized Cooperative Centers Program in Reproduction and Infertility Research (to L.C.G.), the NICHD the Ruth L. Kirschstein National Research Service Awards grant 1F32HD074423-03 (to J.C.C.). The authors have no competing interests.

Knoop K, Schwenk N, Schmohl K, et al.
Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene.
J Nucl Med. 2015; 56(4):600-6 [PubMed] Related Publications
UNLABELLED: The tumor-homing property of mesenchymal stem cells (MSCs) allows targeted delivery of therapeutic genes into the tumor microenvironment. The application of sodium iodide symporter (NIS) as a theranostic gene allows noninvasive imaging of MSC biodistribution and transgene expression before therapeutic radioiodine application. We have previously shown that linking therapeutic transgene expression to induction of the chemokine CCL5/RANTES allows a more focused expression within primary tumors, as the adoptively transferred MSC develop carcinoma-associated fibroblast-like characteristics. Although RANTES/CCL5-NIS targeting has shown efficacy in the treatment of primary tumors, it was not clear if it would also be effective in controlling the growth of metastatic disease.
METHODS: To expand the potential range of tumor targets, we investigated the biodistribution and tumor recruitment of MSCs transfected with NIS under control of the RANTES/CCL5 promoter (RANTES-NIS-MSC) in a colon cancer liver metastasis mouse model established by intrasplenic injection of the human colon cancer cell line LS174t. RANTES-NIS-MSCs were injected intravenously, followed by (123)I scintigraphy, (124)I PET imaging, and (131)I therapy.
RESULTS: Results show robust MSC recruitment with RANTES/CCL5-promoter activation within the stroma of liver metastases as evidenced by tumor-selective iodide accumulation, immunohistochemistry, and real-time polymerase chain reaction. Therapeutic application of (131)I in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved overall survival.
CONCLUSION: This novel gene therapy approach opens the prospect of NIS-mediated radionuclide therapy of metastatic cancer after MSC-mediated gene delivery.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCL5, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999