FANCI

Gene Summary

Gene:FANCI; Fanconi anemia complementation group I
Aliases: KIAA1794
Location:15q26.1
Summary:The Fanconi anemia complementation group (FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (also called BRIP1), FANCL, FANCM and FANCN (also called PALB2). The previously defined group FANCH is the same as FANCA. Fanconi anemia is a genetically heterogeneous recessive disorder characterized by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and defective DNA repair. The members of the Fanconi anemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. This gene encodes the protein for complementation group I. Alternative splicing results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:Fanconi anemia group I protein
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Fanconi Anemia - Complementation Group I

Latest Publications

Zhang X, Lu X, Akhter S, et al.
FANCI is a negative regulator of Akt activation.
Cell Cycle. 2016; 15(8):1134-43 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

Savage SA, Ballew BJ, Giri N, et al.
Novel FANCI mutations in Fanconi anemia with VACTERL association.
Am J Med Genet A. 2016; 170A(2):386-91 [PubMed] Related Publications
Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized.

Castella M, Jacquemont C, Thompson EL, et al.
FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2.
PLoS Genet. 2015; 11(10):e1005563 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway.

Clark DW, Tripathi K, Dorsman JC, Palle K
FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation.
Oncotarget. 2015; 6(30):28816-32 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Fanconi anemia (FA) is a rare genome instability syndrome with progressive bone marrow failure and cancer susceptibility. FANCJ is one of 17 genes mutated in FA-patients, comprises a DNA helicase that is vital for properly maintaining genomic stability and is known to function in the FA-BRCA DNA repair pathway. While exact role(s) of FANCJ in this repair process is yet to be determined, it is known to interact with primary effector FANCD2. However, FANCJ is not required for FANCD2 activation but is important for its ability to fully respond to DNA damage. In this report, we determined that transient depletion of FANCJ adversely affects stability of FANCD2 and its co-regulator FANCI in multiple cell lines. Loss of FANCJ does not significantly alter cell cycle progression or FANCD2 transcription. However, in the absence of FANCJ, the majority of FANCD2 is degraded by both the proteasome and Caspase-3 dependent mechanism. FANCJ is capable of complexing with and stabilizing FANCD2 even in the absence of a functional helicase domain. Furthermore, our data demonstrate that FANCJ is important for FANCD2 stability and proper activation of DNA damage responses to replication blocks induced by hydroxyurea.

Bouffard F, Plourde K, Bélanger S, et al.
Analysis of a FANCE Splice Isoform in Regard to DNA Repair.
J Mol Biol. 2015; 427(19):3056-73 [PubMed] Related Publications
The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair.

Rickman KA, Lach FP, Abhyankar A, et al.
Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia.
Cell Rep. 2015; 12(1):35-41 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.

Hira A, Yoshida K, Sato K, et al.
Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia.
Am J Hum Genet. 2015; 96(6):1001-7 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Fanconi anemia (FA) is a rare genetic disorder characterized by genome instability, increased cancer susceptibility, progressive bone marrow failure (BMF), and various developmental abnormalities resulting from the defective FA pathway. FA is caused by mutations in genes that mediate repair processes of interstrand crosslinks and/or DNA adducts generated by endogenous aldehydes. The UBE2T E2 ubiquitin conjugating enzyme acts in FANCD2/FANCI monoubiquitination, a critical event in the pathway. Here we identified two unrelated FA-affected individuals, each harboring biallelic mutations in UBE2T. They both produced a defective UBE2T protein with the same missense alteration (p.Gln2Glu) that abolished FANCD2 monoubiquitination and interaction with FANCL. We suggest this FA complementation group be named FA-T.

Sato K, Ishiai M, Takata M, Kurumizaka H
Defective FANCI binding by a fanconi anemia-related FANCD2 mutant.
PLoS One. 2014; 9(12):e114752 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
FANCD2 is a product of one of the genes associated with Fanconi anemia (FA), a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex) and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL) repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2) mutant harboring the Leu234 to Arg (L234R) substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2-/- DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.

Mantere T, Haanpää M, Hanenberg H, et al.
Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer.
Clin Genet. 2015; 88(1):68-73 [PubMed] Related Publications
Mutations in downstream Fanconi anemia (FA) pathway genes, BRCA2, PALB2, BRIP1 and RAD51C, explain part of the hereditary breast cancer susceptibility, but the contribution of other FA genes has remained questionable. Due to FA's rarity, the finding of recurrent deleterious FA mutations among breast cancer families is challenging. The use of founder populations, such as the Finns, could provide some advantage in this. Here, we have resolved complementation groups and causative mutations of five FA patients, representing the first mutation confirmed FA cases in Finland. These patients belonged to complementation groups FA-A (n = 3), FA-G (n = 1) and FA-I (n = 1). The prevalence of the six FA causing mutations was then studied in breast (n = 1840) and prostate (n = 565) cancer cohorts, and in matched controls (n = 1176 females, n = 469 males). All mutations were recurrent, but no significant association with cancer susceptibility was observed for any: the prevalence of FANCI c.2957_2969del and c.3041G>A mutations was even highest in healthy males (1.7%). This strengthens the exclusive role of downstream genes in cancer predisposition. From a clinical point of view, current results provide fundamental information of the mutations to be tested first in all suspected FA cases in Finland.

Polito D, Cukras S, Wang X, et al.
The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway.
J Biol Chem. 2014; 289(10):7003-10 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.

Boisvert RA, Rego MA, Azzinaro PA, et al.
Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal.
PLoS One. 2013; 8(11):e81387 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Fanconi anemia (FA) is a rare recessive disease, characterized by congenital defects, bone marrow failure, and increased cancer susceptibility. FA is caused by biallelic mutation of any one of sixteen genes. The protein products of these genes function cooperatively in the FA-BRCA pathway to repair DNA interstrand crosslinks (ICLs). A central step in the activation of this pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Monoubiquitinated FANCD2 and FANCI localize to discrete chromatin regions where they function in ICL repair. Despite their critical role in ICL repair, very little is known about the structure, function, and regulation of the FANCD2 and FANCI proteins, or how they are targeted to the nucleus and chromatin. In this study, we describe the functional characterization of an amino-terminal FANCD2 nuclear localization signal (NLS). We demonstrate that the amino terminal 58 amino acids of FANCD2 can promote the nuclear expression of GFP and is necessary for the nuclear localization of FANCD2. Importantly, mutation of this FANCD2 NLS reveals that intact FANCD2 is required for the nuclear localization of a subset of FANCI. In addition, the NLS is necessary for the efficient monoubiquitination of FANCD2 and FANCI and, consequently, for their localization to chromatin. As a result, FANCD2 NLS mutants fail to rescue the ICL sensitivity of FA-D2 patient cells. Our studies yield important insight into the domain structure of the poorly characterized FANCD2 protein, and reveal a previously unknown mechanism for the coordinate nuclear import of a subset of FANCD2 and FANCI, a key early step in the cellular ICL response.

Jun DW, Hwang M, Kim HJ, et al.
Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.
PLoS One. 2013; 8(10):e75905 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs), one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC), activates the Fanconi anemia (FA)/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+)/K(+)-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+) ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

Haitjema A, Brandt BW, Ameziane N, et al.
A protein prioritization approach tailored for the FA/BRCA pathway.
PLoS One. 2013; 8(4):e62017 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Fanconi anemia (FA) is a heterogeneous recessive disorder associated with a markedly elevated risk to develop cancer. To date sixteen FA genes have been identified, three of which predispose heterozygous mutation carriers to breast cancer. The FA proteins work together in a genome maintenance pathway, the so-called FA/BRCA pathway which is important during the S phase of the cell cycle. Since not all FA patients can be linked to (one of) the sixteen known complementation groups, new FA genes remain to be identified. In addition the complex FA network remains to be further unravelled. One of the FA genes, FANCI, has been identified via a combination of bioinformatic techniques exploiting FA protein properties and genetic linkage. The aim of this study was to develop a prioritization approach for proteins of the entire human proteome that potentially interact with the FA/BRCA pathway or are novel candidate FA genes. To this end, we combined the original bioinformatics approach based on the properties of the first thirteen FA proteins identified with publicly available tools for protein-protein interactions, literature mining (Nermal) and a protein function prediction tool (FuncNet). Importantly, the three newest FA proteins FANCO/RAD51C, FANCP/SLX4, and XRCC2 displayed scores in the range of the already known FA proteins. Likewise, a prime candidate FA gene based on next generation sequencing and having a very low score was subsequently disproven by functional studies for the FA phenotype. Furthermore, the approach strongly enriches for GO terms such as DNA repair, response to DNA damage stimulus, and cell cycle-regulated genes. Additionally, overlaying the top 150 with a haploinsufficiency probability score, renders the approach more tailored for identifying breast cancer related genes. This approach may be useful for prioritization of putative novel FA or breast cancer genes from next generation sequencing efforts.

Chandrasekharappa SC, Lach FP, Kimble DC, et al.
Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia.
Blood. 2013; 121(22):e138-48 [PubMed] Article available free on PMC after 20/04/2017 Related Publications
Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University. DNA sequencing was complemented with custom array comparative genomic hybridization (aCGH) and RNA sequencing (RNA-seq) analysis. aCGH identified deletions/duplications in 4 different FA genes. RNA-seq analysis revealed lack of allele specific expression associated with a deletion and splicing defects caused by missense, synonymous, and deep-in-intron variants. The combination of TruSeq-targeted capture, aCGH, and RNA-seq enabled us to identify the complementation group and biallelic germline mutations in all 27 families: FANCA (7), FANCB (3), FANCC (3), FANCD1 (1), FANCD2 (3), FANCF (2), FANCG (2), FANCI (1), FANCJ (2), and FANCL (3). FANCC mutations are often the cause of FA in patients of Ashkenazi Jewish (AJ) ancestry, and we identified 2 novel FANCC mutations in 2 patients of AJ ancestry. We describe here a strategy for efficient molecular diagnosis of FA.

van de Vrugt HJ, Koomen M, Bakker S, et al.
Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg.
DNA Repair (Amst). 2011; 10(12):1252-61 [PubMed] Related Publications
Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FANCI, Cancer Genetics Web: http://www.cancer-genetics.org/FANCI.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999