Gene Summary

Gene:GHRH; growth hormone releasing hormone
Aliases: GRF, INN, GHRF
Summary:This gene encodes a member of the glucagon family of proteins. The encoded preproprotein is produced in the hypothalamus and cleaved to generate the mature factor, known as somatoliberin, which acts to stimulate growth hormone release from the pituitary gland. Variant receptors for somatoliberin have been found in several types of tumors, and antagonists of these receptors can inhibit the growth of the tumors. Defects in this gene are a cause of dwarfism, while hypersecretion of the encoded protein is a cause of gigantism. Alternative splicing results in multiple transcript variants, at least one of which encodes a preproprotein that is proteolytically processed. [provided by RefSeq, Jan 2016]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GHRH (cancer-related)

Villanova T, Gesmundo I, Audrito V, et al.
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma.
Proc Natl Acad Sci U S A. 2019; 116(6):2226-2231 [PubMed] Free Access to Full Article Related Publications
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 μg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.

Yang X, Liang R, Liu C, et al.
SOX9 is a dose-dependent metastatic fate determinant in melanoma.
J Exp Clin Cancer Res. 2019; 38(1):17 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma.
METHODS: Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases.
RESULTS: High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling.
CONCLUSIONS: These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.

Miess H, Dankworth B, Gouw AM, et al.
The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma.
Oncogene. 2018; 37(40):5435-5450 [PubMed] Free Access to Full Article Related Publications
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Here we investigated metabolic dependencies in a panel of ccRCC cell lines using nutrient depletion, functional RNAi screening and inhibitor treatment. We found that ccRCC cells are highly sensitive to the depletion of glutamine or cystine, two amino acids required for glutathione (GSH) synthesis. Moreover, silencing of enzymes of the GSH biosynthesis pathway or glutathione peroxidases, which depend on GSH for the removal of cellular hydroperoxides, selectively reduced viability of ccRCC cells but did not affect the growth of non-malignant renal epithelial cells. Inhibition of GSH synthesis triggered ferroptosis, an iron-dependent form of cell death associated with enhanced lipid peroxidation. VHL is a major tumour suppressor in ccRCC and loss of VHL leads to stabilisation of hypoxia inducible factors HIF-1α and HIF-2α. Restoration of functional VHL via exogenous expression of pVHL reverted ccRCC cells to an oxidative metabolism and rendered them insensitive to the induction of ferroptosis. VHL reconstituted cells also exhibited reduced lipid storage and higher expression of genes associated with oxidiative phosphorylation and fatty acid metabolism. Importantly, inhibition of β-oxidation or mitochondrial ATP-synthesis restored ferroptosis sensitivity in VHL reconstituted cells. We also found that inhibition of GSH synthesis blocked tumour growth in a MYC-dependent mouse model of renal cancer. Together, our data suggest that reduced fatty acid metabolism due to inhibition of β-oxidation renders renal cancer cells highly dependent on the GSH/GPX pathway to prevent lipid peroxidation and ferroptotic cell death.

Tong Y, Sun J, Wong CF, et al.
MICMIC: identification of DNA methylation of distal regulatory regions with causal effects on tumorigenesis.
Genome Biol. 2018; 19(1):73 [PubMed] Free Access to Full Article Related Publications
Aberrant promoter methylation is a common mechanism for tumor suppressor inactivation in cancer. We develop a set of tools to identify genome-wide DNA methylation in distal regions with causal effect on tumorigenesis called MICMIC. Many predictions are directly validated by dCas9-based epigenetic editing to support the accuracy and efficiency of our tool. Oncogenic and lineage-specific transcription factors are shown to aberrantly shape the methylation landscape by modifying tumor-subtype core regulatory circuitry. Notably, the gene regulatory networks orchestrated by enhancer methylation across different cancer types are seen to converge on a common architecture. MICMIC is available on .

Jimenez JJ, DelCanto GM, Popovics P, et al.
A new approach to the treatment of acute myeloid leukaemia targeting the receptor for growth hormone-releasing hormone.
Br J Haematol. 2018; 181(4):476-485 [PubMed] Related Publications
Growth hormone-releasing hormone (GHRH) is secreted by the hypothalamus and acts on the pituitary gland to stimulate the release of growth hormone (GH). GHRH can also be produced by human cancers, in which it functions as an autocrine/paracrine growth factor. We have previously shown that synthetic antagonistic analogues of GHRH are able to successfully suppress the growth of 60 different human cancer cell lines representing over 20 cancers. Nevertheless, the expression of GHRH and its receptors in leukaemias has never been examined. Our study demonstrates the presence of GHRH receptor (GHRH-R) on 3 of 4 human acute myeloid leukaemia (AML) cell lines-K-562, THP-1, and KG-1a-and significant inhibition of proliferation of these three cell lines in vitro following incubation with the GHRH antagonist MIA-602. We further show that this inhibition of proliferation is associated with the upregulation of pro-apoptotic genes and inhibition of Akt signalling in leukaemic cells. Treatment with MIA-602 of mice bearing xenografts of these human AML cell lines drastically reduced tumour growth. The expression of GHRH-R was further confirmed in 9 of 9 samples from patients with AML. These findings offer a new therapeutic approach to this malignancy and suggest a possible role of GHRH-R signalling in the pathology of AML.

Dai Z, Coker OO, Nakatsu G, et al.
Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers.
Microbiome. 2018; 6(1):70 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Alterations of gut microbiota are associated with colorectal cancer (CRC) in different populations and several bacterial species were found to contribute to the tumorigenesis. The potential use of gut microbes as markers for early diagnosis has also been reported. However, cohort specific noises may distort the structure of microbial dysbiosis in CRC and lead to inconsistent results among studies. In this regard, our study targeted at exploring changes in gut microbiota that are universal across populations at species level.
RESULTS: Based on the combined analysis of 526 metagenomic samples from Chinese, Austrian, American, and German and French cohorts, seven CRC-enriched bacteria (Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas asaccharolytica, Parvimonas micra, Prevotella intermedia, Alistipes finegoldii, and Thermanaerovibrio acidaminovorans) have been identified across populations. The seven enriched bacterial markers classified cases from controls with an area under the receiver-operating characteristics curve (AUC) of 0.80 across the different populations. Abundance correlation analysis demonstrated that CRC-enriched and CRC-depleted bacteria respectively formed their own mutualistic networks, in which the latter was disjointed in CRC. The CRC-enriched bacteria have been found to be correlated with lipopolysaccharide and energy biosynthetic pathways.
CONCLUSIONS: Our study identified potential diagnostic bacterial markers that are robust across populations, indicating their potential universal use for non-invasive CRC diagnosis. We also elucidated the ecological networks and functional capacities of CRC-associated microbiota.

Marinho CG, Mermejo LM, Salvatori R, et al.
Occurrence of neoplasms in individuals with congenital, severe GH deficiency from the Itabaianinha kindred.
Growth Horm IGF Res. 2018; 41:71-74 [PubMed] Related Publications
Growth hormone (GH) and the insulin-like growth factor I (IGF-I) have cell proliferative and differentiation properties. Whether these hormones have a role in mutagenesis is unknown. Nevertheless, severe IGF-I deficiency seems to confer protection against the development of neoplasms. Here, we report five cases of adult patients with severe and congenital isolated GH deficiency (IGHD) due to the c.57+1G>A mutation in the GHRH receptor gene, who developed tumors. Four GH-naïve subjects presented skin tumors: a 42-year-old man with a fibroepithelial polyp, a 53-year-old woman and two men (59 and 56 years old) with epidermoid skin cancers. One of these died from it after three surgeries and radiotherapy. The fifth patient was a 25-year-old woman, who had intermittently received GH replacement therapy (GHRT) from age 11 to 18, who developed an ependymoma extending from the fourth ventricle to the end of the thoracic spine. She underwent three surgical procedures, without obvious evidence of tumor recurrence during the six years follow up. These observations suggest that severe IGHD does not protect completely from development of tumors.

Lim CT, Korbonits M
Endocr Pract. 2018; 24(5):473-488 [PubMed] Related Publications
OBJECTIVE: Pituitary adenomas are the third most common central nervous system tumors and arise from the anterior pituitary within the pituitary fossa.
METHODS: Literature review and discussion.
RESULTS: The signs and symptoms of patients with pituitary adenomas vary from 'mass effects' caused by a large adenoma to features secondary to excess pituitary hormones produced by the functioning pituitary adenoma. Detailed histopathologic assessment, based on novel classifications and the latest World Health Organization guidelines, helps to categorize pituitary adenomas into different subtypes and identify features that, in some cases, help to predict their behavior. Most of the pituitary tumors occur sporadically without known genetic predisposition, but in a significant minority of cases, somatic mutations can be identified in the GNAS and USP8 genes. A small proportion of the cases have germline genetic defects or embryonic mutations leading to mosaicism. Genes with germ-line mutations predisposing to pituitary adenomas include AIP, GPR101, MEN1, CDKN1B, PRKAR1A, PRKAR2A, DICER1, NF1, and SDHx, whereas more recently, CABLES1 has also been implicated.
CONCLUSION: Understanding the pathogenesis of pituitary adenomas will allow clinicians to correlate the pathologic and genetic features with clinical data, helping decisions on the best management of these tumors.
ABBREVIATIONS: ACTH = adrenocorticotropic hormone; AIP = aryl hydrocarbon receptor-interacting protein; αSU = alpha-subunit; EGFR = epithelial growth factor receptor; ER = estrogen receptor; FSH = follicle-stimulating hormone; GH = growth hormone; GHRH = growth hormone-releasing hormone; IGF-1 = insulin-like growth factor 1; LH = luteinizing hormone; MEN1 = multiple endocrine neoplasia 1; MRI = magnetic resonance imaging; NFPA = nonfunctioning pituitary adenoma; PRL = prolactin; TSH = thyroid-stimulating hormone; USP8 = ubiquitin-specific peptidase 8; WHO = World Health Organization.

Wang H, Zhang X, Vidaurre I, et al.
Inhibition of experimental small-cell and non-small-cell lung cancers by novel antagonists of growth hormone-releasing hormone.
Int J Cancer. 2018; 142(11):2394-2404 [PubMed] Related Publications
We investigated the effects of novel antagonists of growth hormone releasing hormone (GHRH)-MIA602 and MIA690-on three human small cell lung cancer (SCLC) lines (H446, DMS53 and H69) and two non-SCLC (NSCLC) lines (HCC827 and H460). In vitro exposure of cancer cells to these GHRH antagonists significantly inhibited cell viability, increased cell apoptosis, decrease cellular levels of cAMP and reduced cell migration. In vivo, the antagonists strongly inhibited tumor growth in xenografted nude mice models. Subcutaneous administration of MIA602 at the dose of 5 μg/day for 4-8 weeks reduced the growth of HCC827, H460 and H446 tumors by 69.9%, 68.3% and 53.4%, respectively, while MIA690 caused a reduction of 76.8%, 58.3% and 54.9%, respectively. Western blot and qRT-PCR analyses demonstrated a downregulation of expression of the pituitary-type GHRH-R and its splice-variant, cyclinD1/2, cyclin-dependent kinase4/6, p21-activated kinase-1, phosphorylation of activator of transcription 3 and cAMP response element binding protein; and an upregulation of expression of E-cadherin, β-catenin and P27

Lawler K, Papouli E, Naceur-Lombardelli C, et al.
Gene expression modules in primary breast cancers as risk factors for organotropic patterns of first metastatic spread: a case control study.
Breast Cancer Res. 2017; 19(1):113 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastases from primary breast cancers can involve single or multiple organs at metastatic disease diagnosis. Molecular risk factors for particular patterns of metastastic spread in a clinical population are limited.
METHODS: A case-control design including 1357 primary breast cancers was used to study three distinct clinical patterns of metastasis, which occur within the first six months of metastatic disease: bone and visceral metasynchronous spread, bone-only, and visceral-only metastasis. Whole-genome expression profiles were obtained using whole genome (WG)-DASL assays from formalin-fixed paraffin-embedded (FFPE) samples. A systematic protocol was developed for handling FFPE samples together with stringent data quality controls to identify robust expression profiling data. A panel of published and novel gene sets were tested for association with these specific patterns of metastatic spread and odds ratios (ORs) were calculated.
RESULTS: Metasynchronous metastasis to bone and viscera was found in all intrinsic breast cancer subtypes, while immunohistochemically (IHC)-defined receptor status and specific IntClust subgroups were risk factors for visceral-only or bone-only first metastases. Among gene modules, those related to proliferation increased the risk of metasynchronous metastasis (OR (95% CI) = 2.3 (1.1-4.8)) and visceral-only first metastasis (OR (95% CI) = 2.5 (1.2-5.1)) but not bone-only metastasis (OR (95% CI) = 0.97 (0.56-1.7)). A 21-gene module (BV) was identified in estrogen-receptor-positive breast cancers with metasynchronous metastasis to bone and viscera (area under the curve = 0.77), and its expression increased the risk of bone and visceral metasynchronous spread in this population. BV was further orthogonally validated with NanoString nCounter in primary breast cancers, and was reproducible in their matched lymph nodes metastases and an external cohort.
CONCLUSION: This case-control study of WG-DASL global expression profiles from FFPE tumour samples, after careful quality control and RNA selection, revealed that gene modules in the primary tumour have differing risks for clinical patterns of metasynchronous first metastases. Moreover, a novel gene module was identified as a putative risk factor for metasynchronous bone and visceral first metastatic spread, with potential implications for disease monitoring and treatment planning.

Pópulo H, Nunes B, Sampaio C, et al.
Inhibitory Effects of Antagonists of Growth Hormone-Releasing Hormone (GHRH) in Thyroid Cancer.
Horm Cancer. 2017; 8(5-6):314-324 [PubMed] Related Publications
Growth hormone-releasing hormone (GHRH) is a peptide hormone secreted by the hypothalamus that regulates the synthesis and secretion of growth hormone (GH) in the pituitary. The extra-hypothalamic GHRH and its cognate receptors (GHRHR and splice variants) play a mitogenic role by stimulating cell proliferation and preventing apoptotic cell death. It is well established that GHRH antagonists inhibit the growth, tumorigenicity, and metastasis of various human malignancies. In this work, we studied the effect of two new GHRH antagonists, MIA602 and MIA690, on thyroid cancer. We studied the effect of MIA602 and MIA690 on thyroid cancer in vitro, using human thyroid cancer cell lines, and in vivo, using chicken embryo chorioallantoic membrane (CAM) assays. We found that mRNA for GHRH and GHRH receptor is expressed in thyroid cell lines and in samples of thyroid tumors. Immunohistochemistry confirmed the expression of GHRHR protein in specimens of thyroid tumor. We observed that GHRH antagonists inhibited the growth and increased apoptosis of thyroid cancer cells. In vivo, the antagonists inhibited growth and angiogenesis of engrafted thyroid tumors. Our results suggest that GHRH expression may play a role in growth of thyroid cancer and that GHRH antagonists can be a therapeutic option for thyroid cancer patients.

Ferrari L, Scuvera G, Tucci A, et al.
Identification of an atypical microdeletion generating the RNF135-SUZ12 chimeric gene and causing a position effect in an NF1 patient with overgrowth.
Hum Genet. 2017; 136(10):1329-1339 [PubMed] Related Publications
Neurofibromatosis type I (NF1) microdeletion syndrome, which is present in 4-11% of NF1 patients, is associated with a severe phenotype as it is caused by the deletion of NF1 and other genes in the 17q11.2 region. The variable expressivity of the disease makes it challenging to establish genotype-phenotype correlations, which also affects prognosis and counselling. We here describe a 3-year-old NF1 patient with an atypical deletion and a complex phenotype. The patient showed overgrowth, café au lait spots, inguinal freckling, and neurological abnormalities. The extent of the deletion was determined by means of array comparative genomic hybridisation, and its breakpoints were isolated by means of long-range polymerase chain reaction. Sequence analysis of the deletion junction fragment revealed the occurrence of an Alu-mediated recombination that led to the generation of a chimeric gene consisting of three exons of RNF135 and eleven exons of SUZ12. Interestingly, the deletion shares a common RNF135-centred region with another deletion described in a non-NF1 patient with overgrowth. In comparison with the normal RNF135 allele, the chimeric transcript was 350-fold over-expressed in peripheral blood, and the ADAP2 gene located upstream of RNF135 was also up-regulated. In line with this, the deletion causes the loss of a chromatin TD boundary, which entails the aberrant adoption of distal cis-acting regulatory elements. These findings suggest that RNF135 haploinsufficiency is related to overgrowth in patients with NF1 microdeletion syndrome and, for the first time, strongly indicate a position effect that warrants further genotype-phenotype correlation studies to investigate the possible existence of previously unknown pathogenic mechanisms.

Plenker D, Riedel M, Brägelmann J, et al.
Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors.
Sci Transl Med. 2017; 9(394) [PubMed] Free Access to Full Article Related Publications
Oncogenic fusion events have been identified in a broad range of tumors. Among them,

Dubuis S, Baenke F, Scherbichler N, et al.
Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics.
Metab Eng. 2017; 43(Pt B):173-186 [PubMed] Related Publications
We present an analysis of intracellular metabolism by non-targeted, high-throughput metabolomics profiling of 18 breast cell lines. We profiled >900 putatively annotated metabolite ions for >100 samples collected under both normoxic and hypoxic conditions and revealed extensive heterogeneity across all metabolic pathways and cell lines. Cell line-specific metabolome profiles dominated over patterns associated with malignancy or with the clinical nomenclature of breast cancer cells. Such characteristic metabolome profiles were reproducible across different laboratories and experiments and exhibited mild to robust changes with change in experimental conditions. To extract a functional overview of cell line heterogeneity, we devised an unsupervised metabotyping procedure that for each pathway automatically recognized metabolic types from metabolome data and assigned cell lines. Our procedure provided a condensed yet global representation of cell line metabolism, revealing the fine structure of metabolic heterogeneity across all tested pathways and cell lines. In follow-up experiments on selected pathways, we confirmed that different metabolic types correlated to differences in the underlying fluxes and difference sensitivity to gene knockdown or pharmacological inhibition. Thus, the identified metabotypes recapitulated functional differences at the pathway level. Metabotyping provides a powerful compression of multi-dimensional data that preserves functional information and serves as a resource for reconciling or understanding heterogeneous metabolic phenotypes or response to inhibition of metabolic pathways.

Wu HM, Huang HY, Schally AV, et al.
Growth hormone-releasing hormone antagonist inhibits the invasiveness of human endometrial cancer cells by down-regulating twist and N-cadherin expression.
Oncotarget. 2017; 8(3):4410-4421 [PubMed] Free Access to Full Article Related Publications
More than 25% of patients diagnosed with endometrial carcinoma have invasive primary cancer accompanied by metastases. Growth hormone-releasing hormone (GHRH) plays an important role in reproduction. Here, we examined the effect of a GHRH antagonist on the motility of endometrial cancer cells and the mechanisms of action of the antagonist in endometrial cancer. Western blotting and immunohistochemistry (IHC) were used to determine the expression of the GHRH receptor protein. The activity of Twist and N-cadherin was determined by Western blotting. Cell motility was assessed by an invasion and migration assay. GHRH receptor siRNA was applied to knockdown the GHRH receptor in endometrial cancer cells. The GHRH antagonist inhibited cell motility in a dose-dependent manner. The GHRH antagonist inhibited cell motility and suppressed the expression of Twist and N-cadherin, and the suppression was abolished by GHRH receptor siRNA pretreatment. Moreover, the inhibition of Twist and N-cadherin with Twist siRNA and N-cadherin siRNA, respectively, suppressed cell motility. Our study indicates that the GHRH antagonist inhibited the cell motility of endometrial cancer cells through the GHRH receptor via the suppression of Twist and N-cadherin. Our findings represent a new concept in the mechanism of GHRH antagonist-suppressed cell motility in endometrial cancer cells and suggest the possibility of exploring GHRH antagonists as potential therapeutics for the treatment of human endometrial cancer.

Chu WK, Law KS, Chan SO, et al.
Antagonists of growth hormone-releasing hormone receptor induce apoptosis specifically in retinoblastoma cells.
Proc Natl Acad Sci U S A. 2016; 113(50):14396-14401 [PubMed] Free Access to Full Article Related Publications
Retinoblastoma (RB) is the most common intraocular cancer in children worldwide. Current treatments mainly involve combinations of chemotherapies, cryotherapies, and laser-based therapies. Severe or late-stage disease may require enucleation or lead to fatality. Recently, RB has been shown to arise from cone precursor cells, which have high MDM2 levels to suppress p53-mediated apoptosis. This finding leads to the hypothesis that restoring apoptosis mechanisms in RBs could specifically kill the cancer cells without affecting other retinal cells. We have previously reported involvement of an extrapituitary signaling pathway of the growth hormone-releasing hormone (GHRH) in the retina. Here we show that the GHRH receptor (GHRH-R) is highly expressed in RB cells but not in other retinal cells. We induced specific apoptosis with two different GHRH-R antagonists, MIA-602 and MIA-690. Importantly, these GHRH-R antagonists do not trigger apoptosis in other retinal cells such as retinal pigmented epithelial cells. We delineated the gene expression profiles regulated by GHRH-R antagonists and found that cell proliferation genes and apoptotic genes are down- and up-regulated, respectively. Our results reveal the involvement of GHRH-R in survival and proliferation of RB and demonstrate that GHRH-R antagonists can specifically kill the RB cells.

Vacas E, Muñoz-Moreno L, Valenzuela PL, et al.
Growth hormone-releasing hormone induced transactivation of epidermal growth factor receptor in human triple-negative breast cancer cells.
Peptides. 2016; 86:153-161 [PubMed] Related Publications
Triple-negative breast cancer (TNBC) is a subset of breast cancers which is negative for expression of estrogen and progesterone receptors and human epidermal growth factor receptor-2 (HER2). Chemotherapy is currently the only form of treatment for women with TNBC. Growth hormone-releasing hormone (GHRH) and epidermal growth factor (EGF) are autocrine/paracrine growth factors in breast cancer and a substantial proportion of TNBC expresses receptors for GHRH and EGF. The aim of this study was to evaluate the interrelationship between both these signaling pathways in MDA-MB-468 human TNBC cells. We evaluated by Western blot assays the effect of GHRH on transactivation of EGF receptor (EGFR) as well as the elements implicated. We assessed the effect of GHRH on migration capability of MDA-MB-468 cells as well as the involvement of EGFR in this process by means of wound-healing assays. Our findings demonstrate that in MDA-MB-468 cells the stimulatory activity of GHRH on tyrosine phosphorylation of EGFR is exerted by two different molecular mechanisms: i) through GHRH receptors, GHRH stimulates a ligand-independent activation of EGFR involving at least cAMP/PKA and Src family signaling pathways; ii) GHRH also stimulates a ligand-dependent activation of EGFR implicating an extracellular pathway with an important role for metalloproteinases. The cross-talk between EGFR and GHRHR may be impeded by combining drugs acting upon GHRH receptors and EGFR family members. This combination of GHRH receptors antagonists with inhibitors of EGFR signalling could enhance the efficacy of both types of agents as well as reduce their doses increasing therapeutic benefits in management of human breast cancer.

Lee JH, Lee JH, Lee SH, et al.
TPL2 Is an Oncogenic Driver in Keratocanthoma and Squamous Cell Carcinoma.
Cancer Res. 2016; 76(22):6712-6722 [PubMed] Related Publications
Squamous cell carcinoma (SCC) and keratoacanthoma (KA; SCC/KA) research has been hampered mainly by our lack of understanding the underlying genetic and epigenetic alterations associated with SCC/KA development, as well as the lack of animal models that faithfully recapitulate histopathologic features of human SCC/KA. Here, we show that TPL2 overexpression induced both cell transformation in immortalized human keratinocytes and SCC and KA-like cutaneous SCC (cSCC) development in mice. Mechanistically, activation of TPL2 downstream signaling pathways such as MEK/ERK MAPK, mTOR, NF-κB, and p38 MAPK leads to TPL2-mediated cell transformation in immortalized human keratinocytes and tumorigenesis in mice. Most importantly, TPL2 overexpression is required for iTPL2 TG-driven SCC and KA-like cSCC tumor maintenance, validating TPL2 as a possible drug target for the treatment of SCC/KA. Finally, we verified that TPL2 is overexpressed in human cutaneous metastatic SCC and KA clinical specimens compared with normal skin. Taken together, our results establish TPL2 as an oncogenic driver in SCC/KA development. Cancer Res; 76(22); 6712-22. ©2016 AACR.

Iacovazzo D, Korbonits M
Gigantism: X-linked acrogigantism and GPR101 mutations.
Growth Horm IGF Res. 2016 Oct - Dec; 30-31:64-69 [PubMed] Related Publications
X-linked acrogigantism (XLAG) is a recently identified condition of early-onset GH excess resulting from the germline or somatic duplication of the GPR101 gene on chromosome Xq26.3. Thirty patients have been formally reported so far. The disease affects mostly females, occurs usually sporadically, and is characterised by early onset and marked overgrowth. Most patients present with concomitant hyperprolactinaemia. Histopathology shows pituitary hyperplasia or pituitary adenoma with or without associated hyperplasia. XLAG-related pituitary adenomas present peculiar histopathological features that should contribute to raise the suspicion of this rare condition. Treatment is frequently challenging and multi-modal. While females present with germline mutations, the sporadic male patients reported so far were somatic mosaics with variable levels of mosaicism, although no differences in the clinical phenotype were observed between patients with germline or somatic duplication. The GPR101 gene encodes an orphan G protein-coupled receptor normally expressed in the central nervous system, and at particularly high levels in the hypothalamus. While the physiological function and the endogenous ligand of GPR101 are unknown, the high expression of GPR101 in the arcuate nucleus and the occurrence of increased circulating GHRH levels in some patients with XLAG, suggest that increased hypothalamic GHRH secretion could play a role in the pathogenesis of this condition. In this review, we summarise the published evidence on XLAG and GPR101 and discuss the results of recent studies that have investigated the potential role of GPR101 variants in the pathogenesis of pituitary adenomas.

Torres CM, Biran A, Burney MJ, et al.
The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity.
Science. 2016; 353(6307) [PubMed] Free Access to Full Article Related Publications
Tumors comprise functionally diverse subpopulations of cells with distinct proliferative potential. Here, we show that dynamic epigenetic states defined by the linker histone H1.0 determine which cells within a tumor can sustain the long-term cancer growth. Numerous cancer types exhibit high inter- and intratumor heterogeneity of H1.0, with H1.0 levels correlating with tumor differentiation status, patient survival, and, at the single-cell level, cancer stem cell markers. Silencing of H1.0 promotes maintenance of self-renewing cells by inducing derepression of megabase-sized gene domains harboring downstream effectors of oncogenic pathways. Self-renewing epigenetic states are not stable, and reexpression of H1.0 in subsets of tumor cells establishes transcriptional programs that restrict cancer cells' long-term proliferative potential and drive their differentiation. Our results uncover epigenetic determinants of tumor-maintaining cells.

Vaidyanathan A, Sawers L, Gannon AL, et al.
ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells.
Br J Cancer. 2016; 115(4):431-41 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood.
METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays.
RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes.
CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.

Kim H, Choi MS, Inn KS, Kim BJ
Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner.
Sci Rep. 2016; 6:28896 [PubMed] Free Access to Full Article Related Publications
A peptide vaccine designed to induce T-cell immunity to telomerase, GV1001, has been shown to modulate cellular signaling pathways and confer a direct anti-cancer effect through the interaction with heat shock protein (HSP) 90 and 70. Here, we have found that GV1001 can modulate transactivation protein-mediated human immunodeficiency virus (HIV)-1 transactivation in an HSP90-dependent manner. GV1001 treatment resulted in significant suppression of HIV-1 replication and rescue of infected cells from death by HIV-1. Transactivation of HIV-long terminal repeat (LTR) was inhibited by GV1001, indicating that GV1001 suppressed the transcription from proviral HIV DNA. The anti-HIV-1 activity of GV1001 was completely abrogated by an HSP90-neutralizing antibody, indicating that the antiviral activity depends on HSP90. Further mechanistic studies revealed that GV1001 suppresses basal NF-κB activation, which is required for HIV-1 LTR transactivation in an HSP90-dependent manner. Inhibition of LTR transactivation by GV1001 suggests its potential to suppress HIV-1 reactivation from latency. Indeed, PMA-mediated reactivation of HIV-1 from latent infected cells was suppressed by GV1001. The results suggest the potential therapeutic use of GV1001, a peptide proven to be safe for human use, as an anti-HIV-1 agent to suppress the reactivation from latently infected cells.

Barrow-McGee R, Kishi N, Joffre C, et al.
Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes.
Nat Commun. 2016; 7:11942 [PubMed] Free Access to Full Article Related Publications
Receptor tyrosine kinases (RTKs) and integrins cooperate to stimulate cell migration and tumour metastasis. Here we report that an integrin influences signalling of an RTK, c-Met, from inside the cell, to promote anchorage-independent cell survival. Thus, c-Met and β1-integrin co-internalize and become progressively recruited on LC3B-positive 'autophagy-related endomembranes' (ARE). In cells growing in suspension, β1-integrin promotes sustained c-Met-dependent ERK1/2 phosphorylation on ARE. This signalling is dependent on ATG5 and Beclin1 but not on ATG13, suggesting ARE belong to a non-canonical autophagy pathway. This β1-integrin-dependent c-Met-sustained signalling on ARE supports anchorage-independent cell survival and growth, tumorigenesis, invasion and lung colonization in vivo. RTK-integrin cooperation has been assumed to occur at the plasma membrane requiring integrin 'inside-out' or 'outside-in' signalling. Our results report a novel mode of integrin-RTK cooperation, which we term 'inside-in signalling'. Targeting integrin signalling in addition to adhesion may have relevance for cancer therapy.

Muniz J, Kidwell KM, Henry NL
Associations between metabolic syndrome, breast cancer recurrence, and the 21-gene recurrence score assay.
Breast Cancer Res Treat. 2016; 157(3):597-603 [PubMed] Free Access to Full Article Related Publications
The 21-gene recurrence score (RS) assay is prognostic in estrogen receptor-positive (HR+), HER2-negative, node-negative breast cancer (BC). The interaction between RS and host factors including metabolic syndrome (MS) is unclear. MS conditions such as obesity have been associated with worse BC prognosis. The aim of this study was to identify associations between presence of MS conditions and RS group or breast cancer recurrence. Demographic, pathologic, and treatment data, MS criteria, and menopausal status were abstracted from medical records of women with stage I-II, HR+, HER2-negative BC evaluated with the RS assay at a single institution since 2005. MS was defined as presence of ≥3 of the following within 2 years of diagnosis: body mass index ≥27.7 kg/m(2); hypertension; impaired fasting glucose; HDL <50 mg/dL; hypertriglyceridemia. Of 533 eligible women, 22 % had MS. MS was more common in post- vs premenopausal women (30 vs 9 %; P < 0.0001). There was no significant association between RS group and overall MS status or any individual criterion, controlling for stage, and no association after stratification by menopausal status. Postmenopausal status was associated with higher RS group (P = 0.039), independent of stage. With 4.2-year median follow-up, no association between disease recurrence and MS was identified. Although MS has been associated with worse BC outcomes, we were unable to identify associations between RS group and MS criteria. Identification of prognostic factors other than RS that underlie this higher risk will be important for optimizing breast cancer treatment decision-making in patients with MS.

Yue Z, Li HT, Yang Y, et al.
Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information.
Oncotarget. 2016; 7(24):36092-36100 [PubMed] Free Access to Full Article Related Publications
Breast cancer (BC) is one of the most common malignancies that could threaten female health. As the molecular mechanism of BC has not yet been completely discovered, identification of related genes of this disease is an important area of research that could provide new insights into gene function as well as potential treatment targets. Here we used subnetwork extraction algorithms to identify novel BC related genes based on the known BC genes (seed genes), gene co-expression profiles and protein-protein interaction network. We computationally predicted seven key genes (EPHX2, GHRH, PPYR1, ALPP, KNG1, GSK3A and TRIT1) as putative genes of BC. Further analysis shows that six of these have been reported as breast cancer associated genes, and one (PPYR1) as cancer associated gene. Lastly, we developed an expression signature using these seven key genes which significantly stratified 1660 BC patients according to relapse free survival (hazard ratio [HR], 0.55; 95% confidence interval [CI], 0.46-0.65; Logrank p = 5.5e-13). The 7-genes signature could be established as a useful predictor of disease prognosis in BC patients. Overall, the identified seven genes might be useful prognostic and predictive molecular markers to predict the clinical outcome of BC patients.

Luque RM, Ibáñez-Costa A, Sánchez-Tejada L, et al.
The Molecular Registry of Pituitary Adenomas (REMAH): A bet of Spanish Endocrinology for the future of individualized medicine and translational research.
Endocrinol Nutr. 2016 Jun-Jul; 63(6):274-84 [PubMed] Related Publications
Pituitary adenomas are uncommon, difficult to diagnose tumors whose heterogeneity and low incidence complicate large-scale studies. The Molecular Registry of Pituitary Adenomas (REMAH) was promoted by the Andalusian Society of Endocrinology and Nutrition (SAEN) in 2008 as a cooperative clinical-basic multicenter strategy aimed at improving diagnosis and treatment of pituitary adenomas by combining clinical, pathological, and molecular information. In 2010, the Spanish Society of Endocrinology and Nutrition (SEEN) extended this project to national level and established 6 nodes with common protocols and methods for sample and clinical data collection, molecular analysis, and data recording in a common registry ( The registry combines clinical data with molecular phenotyping of the resected pituitary adenoma using quantitative real-time PCR of expression of 26 genes: Pituitary hormones (GH-PRL-LH-FSH-PRL-ACTH-CGA), receptors (somatostatin, dopamine, GHRH, GnRH, CRH, arginine-vasopressin, ghrelin), other markers (Ki67, PTTG1), and control genes. Until 2015, molecular information has been collected from 704 adenomas, out of 1179 patients registered. This strategy allows for comparative and relational analysis between the molecular profile of the different types of adenoma and the clinical phenotype of patients, which may provide a better understanding of the condition and potentially help in treatment selection. The REMAH is therefore a unique multicenter, interdisciplinary network founded on a shared database that provides a far-reaching translational approach for management of pituitary adenomas, and paves the way for the conduct of combined clinical-basic innovative studies on large patient samples.

Passaro D, Quang CT, Ghysdael J
Microenvironmental cues for T-cell acute lymphoblastic leukemia development.
Immunol Rev. 2016; 271(1):156-72 [PubMed] Related Publications
Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia.

Ubezio B, Blanco RA, Geudens I, et al.
Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion.
Elife. 2016; 5 [PubMed] Free Access to Full Article Related Publications
Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning.

Brown PJ, Gascoyne DM, Lyne L, et al.
N-terminally truncated FOXP1 protein expression and alternate internal FOXP1 promoter usage in normal and malignant B cells.
Haematologica. 2016; 101(7):861-71 [PubMed] Free Access to Full Article Related Publications
Strong FOXP1 protein expression is a poor risk factor in diffuse large B-cell lymphoma and has been linked to an activated B-cell-like subtype, which preferentially expresses short FOXP1 (FOXP1S) proteins. However, both short isoform generation and function are incompletely understood. Here we prove by mass spectrometry and N-terminal antibody staining that FOXP1S proteins in activated B-cell-like diffuse large B-cell lymphoma are N-terminally truncated. Furthermore, a rare strongly FOXP1-expressing population of normal germinal center B cells lacking the N-terminus of the regular long protein (FOXP1L) was identified. Exon-targeted silencing and transcript analyses identified three alternate 5' non-coding exons [FOXP1-Ex6b(s), FOXP1-Ex7b and FOXP1-Ex7c], downstream of at least two predicted promoters, giving rise to FOXP1S proteins. These were differentially controlled by B-cell activation and methylation, conserved in murine lymphoma cells, and significantly correlated with FOXP1S protein expression in primary diffuse large B-cell lymphoma samples. Alternatively spliced isoforms lacking exon 9 (e.g. isoform 3) did not encode FOXP1S, and an alternate long human FOXP1 protein (FOXP1AL) likely generated from a FOXP1-Ex6b(L) transcript was detected. The ratio of FOXP1L:FOXP1S isoforms correlated with differential expression of plasmacytic differentiation markers in U-2932 subpopulations, and altering this ratio was sufficient to modulate CD19 expression in diffuse large B-cell lymphoma cell lines. Thus, the activity of multiple alternate FOXP1 promoters to produce multiple protein isoforms is likely to regulate B-cell maturation.

Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, et al.
Integrin signalling regulates YAP and TAZ to control skin homeostasis.
Development. 2016; 143(10):1674-87 [PubMed] Free Access to Full Article Related Publications
The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GHRH, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999