Gene Summary

Gene:MSX2; msh homeobox 2
Aliases: FPP, MSH, PFM, CRS2, HOX8, PFM1
Summary:This gene encodes a member of the muscle segment homeobox gene family. The encoded protein is a transcriptional repressor whose normal activity may establish a balance between survival and apoptosis of neural crest-derived cells required for proper craniofacial morphogenesis. The encoded protein may also have a role in promoting cell growth under certain conditions and may be an important target for the RAS signaling pathways. Mutations in this gene are associated with parietal foramina 1 and craniosynostosis type 2. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:homeobox protein MSX-2
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (43)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Apoptosis
  • Twist-Related Protein 1
  • Cell Proliferation
  • Gene Expression Profiling
  • Wnt Proteins
  • Neoplasm Metastasis
  • Papilloma, Inverted
  • src-Family Kinases
  • Signal Transduction
  • Cell Differentiation
  • Tumor Suppressor Proteins
  • tartrate-resistant acid phosphatase
  • Cultured Cells
  • beta Catenin
  • Epigenetics
  • Transfection
  • Mutation
  • DNA Methylation
  • Immunohistochemistry
  • Up-Regulation
  • Breast Cancer
  • Chromosome 5
  • Transcriptional Activation
  • Transcription Factors
  • Homeobox Genes
  • Mesoderm
  • Proto-Oncogene Proteins
  • Cancer Gene Expression Regulation
  • DNA-Binding Proteins
  • Neoplasm Proteins
  • ras Proteins
  • Messenger RNA
  • Promoter Regions
  • Cell Cycle
  • Oligonucleotide Array Sequence Analysis
  • Cell Survival
  • Cell Line
  • Homeodomain Proteins
  • Nuclear Proteins
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MSX2 (cancer-related)

Mahdian-Shakib A, Dorostkar R, Tat M, et al.
Differential role of microRNAs in prognosis, diagnosis, and therapy of ovarian cancer.
Biomed Pharmacother. 2016; 84:592-600 [PubMed] Related Publications
Ovarian cancer (OC) is the most lethal of malignant gynecological cancers, and has a very poor prognosis, frequently, attributable to late diagnosis and responsiveness to chemotherapy. In spite of the technological and medical approaches over the past four decades, involving the progression of several biological markers (mRNA and proteins biomarkers), the mortality rate of OC remains a challenge due to its late diagnosis, which is expressly ascribed to low specificities and sensitivities. Consequently, there is a crucial need for novel diagnostic and prognostic markers that can advance and initiate more individualized treatment, finally increasing survival of the patients. MiRNAs are non-coding RNAs that control target genes post transcriptionally. They are included in tumorigenesis, apoptosis, proliferation, invasion, metastasis, and chemoresistance. Several studies have within the last decade demonstrated that miRNAs are dysregulated in OC and have possibilities as diagnostic and prognostic biomarkers for OC. Additionally; recent studies have also focused on miRNAs as predictors of chemotherapy sensitivities and their potential as therapeutic targets. In this review, we discuss the current data involving the accumulating evidence of the altered expression of miRNAs in OC, their role in diagnosis, prognosis, and forecast of response to therapy. Given the heterogeneity of this disease, it is likely that advances in long-term survival might be also attained by translating the recent insights of miRNAs participation in OC into new targeted therapies that will have a crucial effect on the management of ovarian cancer.

Earp M, Winham SJ, Larson N, et al.
A targeted genetic association study of epithelial ovarian cancer susceptibility.
Oncotarget. 2016; 7(7):7381-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Genome-wide association studies have identified several common susceptibility alleles for epithelial ovarian cancer (EOC). To further understand EOC susceptibility, we examined previously ungenotyped candidate variants, including uncommon variants and those residing within known susceptibility loci.
RESULTS: At nine of eleven previously published EOC susceptibility regions (2q31, 3q25, 5p15, 8q21, 8q24, 10p12, 17q12, 17q21.31, and 19p13), novel variants were identified that were more strongly associated with risk than previously reported variants. Beyond known susceptibility regions, no variants were found to be associated with EOC risk at genome-wide statistical significance (p <5x10(-8)), nor were any significant after Bonferroni correction for 17,000 variants (p< 3x10-6).
METHODS: A customized genotyping array was used to assess over 17,000 variants in coding, non-coding, regulatory, and known susceptibility regions in 4,973 EOC cases and 5,640 controls from 13 independent studies. Susceptibility for EOC overall and for select histotypes was evaluated using logistic regression adjusted for age, study site, and population substructure.
CONCLUSION: Given the novel variants identified within the 2q31, 3q25, 5p15, 8q21, 8q24, 10p12, 17q12, 17q21.31, and 19p13 regions, larger follow-up genotyping studies, using imputation where necessary, are needed for fine-mapping and confirmation of low frequency variants that fall below statistical significance.

Lee K, Tosti E, Edelmann W
Mouse models of DNA mismatch repair in cancer research.
DNA Repair (Amst). 2016; 38:140-6 [PubMed] Free Access to Full Article Related Publications
Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies.

Lawrenson K, Li Q, Kar S, et al.
Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer.
Nat Commun. 2015; 6:8234 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.

Karahan B, Argon A, Yıldırım M, Vardar E
Relationship between MLH-1, MSH-2, PMS-2,MSH-6 expression and clinicopathological features in colorectal cancer.
Int J Clin Exp Pathol. 2015; 8(4):4044-53 [PubMed] Free Access to Full Article Related Publications
Colorectal cancers are the third most common in both sexes and they are the second most common cause of cancer-related death. 12-15% of colorectal cancers develop through microsatellite instability (the hereditary mutation in at least one of DNA mismatch repair genes) pathway and they are 2-5% hereditary. In this study, we investigated the correlation between the clinicopathological features themselves and also the correlation between them and the immunohistochemical MLH-1, MSH-2, PMS-2, MSH-6 expressions in a total of 186 resection materials with colorectal adenocarcinoma between 2008 and 2012. All the cases were retrospectively evaluated in terms of age, sex, localization, size, accompanying polyp, multiple tumor, arising from polyp, differentiation, mucinous differentiation, pathological tumor stage, lymphovascular and perineural invasion, lymphocyte amount in the tumor microenvironment, surgical border and lymph node metastasis. We prepared multiple tissue blocks which had 4-millimeter tumor. Immunohistochemically, MLH-1, MSH-2, PMS-2, MSH-6 primary antibodies were studied. Statistically, "Kruskal-Wallis" ve "Pearson's chi-squared" tests were used. We found a positive correlation between loss of MLH-1 and PMS-2 expressions and the right-colon location, poor and mucinous differentiation and dense lymphocytic infiltration. In addition, loss of MSH-2 and MSH-6 expressions was correlated with the right-colon location, poor and mucinous differentiation. We found a meaningful relationship between immunohistochemical markers and clinicopathological features usually observed in tumors with microsatellite instability. This finding may arouse suspicion for MSI. However, the findings in our study must be supported with studies conducted in large series including molecular methods.

Chornokur G, Lin HY, Tyrer JP, et al.
Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.
PLoS One. 2015; 10(6):e0128106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.
METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.
RESULTS: The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4).
CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.

Wang T, Xu Y, Hou P
Identifying novel biomarkers of gastric cancer through integration analysis of single nucleotide polymorphisms and gene expression profile.
Int J Biol Markers. 2015; 30(3):e321-6 [PubMed] Related Publications
PURPOSE: Single nucleotide polymorphisms (SNPs) are an important cause of functional variation in proteins leading to tumorigenesis. We aimed to identify candidate biomarkers with polymorphisms in gastric cancer (GC).
METHODS: The SNP microarray profile GSE29996 including 50 GC samples and 50 normal controls, and gene expression data GSE56807 consisting of 5 GC samples and 5 controls were downloaded from the Gene Expression Omnibus database. After preprocessing of raw data, GC-associated SNPs were identified using the Cochran-Armitage trend test, and differentially expressed genes (DEGs) were screened out using the limma package in R. Significant DEGs with risk associated SNP loci were screened using the Fisher combination test. Gene ontology function and pathway enrichment analyses were performed for DEGs with risk associated SNP loci by GenCLip online tool. Transcriptional regulatory analysis was also conducted for transcription factor and target DEGs.
RESULTS: A total of 79 DEGs with risk associated SNP loci were identified from GC samples compared with normal controls. These DEGs were mainly enriched in anatomical structure development, including embryo development. Additionally, DEGs were significantly involved in the NO1 pathway, including actin, alpha 1, skeletal muscle (ACTA1). In the regulatory network, transcription factor forkhead box L1 (FOXL1) regulated 26 DEGs with risk associated SNP loci, including Iroquois homeobox 1 (IRX1) rs11134044, sex determining region Y (SRY)-box1 (SOX1) rs9549447 and msh homeobox 1 (MSX1) rs41451149.
CONCLUSIONS: IRX1, SOX1 and MSX1 with risk associated SNP loci may serve as candidate biomarkers for diagnosis and prognosis of GC.

Němejcová K, Kenny SL, Laco J, et al.
Atypical Polypoid Adenomyoma of the Uterus: An Immunohistochemical and Molecular Study of 21 Cases.
Am J Surg Pathol. 2015; 39(8):1148-55 [PubMed] Related Publications
Atypical polypoid adenomyoma (APA) is an uncommon uterine lesion that commonly recurs after local excision and is occasionally associated with or precedes the development of atypical hyperplasia or endometrioid adenocarcinoma. Despite the fact that about 230 cases have been reported in the literature, only 2 studies of 6 and of 7 cases have investigated the molecular aspects; as such, molecular alterations that occur in APA remain largely unknown. We undertook a comprehensive immunohistochemical and molecular analysis of 21 cases of APA in 17 patients (including 4 recurrent/persistent lesions). The analyzed genes were PTEN and TP53 (by fluorescence in situ hybridization) and KRAS, BRAF, EGFR, and NRAS (all by polymerase chain reaction). Immunohistochemical staining was performed for PTEN, p53, mTOR, β-catenin, HNF-1β, and GLUT1 and for the mismatch-repair proteins MLH-1, MSH-2, MSH-6, and PMS-2. In most cases, there was nuclear expression of β-catenin in squamous morules and expression of HNF-1β, mTOR, and GLUT1 in the glandular component. All cases exhibited "wild-type" expression of p53. A common finding was loss of PTEN expression (6/19 cases). In 1 of these cases, loss of PTEN expression was accompanied by PTEN deletion. Mutation of the KRAS gene was found in 5/19 cases. Intact mismatch-repair protein expression was present in all cases, and TP53 abnormalities or mutations of EGFR, NRAS, or BRAF genes were not found. Given the association with atypical hyperplasia and endometrioid adenocarcinoma and the shared immunohistochemical and molecular features, we feel that, conceptually, APA is best regarded as analogous to a localized form of atypical hyperplasia.

Legal EF, Ascurra M, Custódio G, et al.
Prevalence of an inherited cancer predisposition syndrome associated with the germ line TP53 R337H mutation in Paraguay.
Cancer Epidemiol. 2015; 39(2):166-9 [PubMed] Related Publications
The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer, and the germline TP53 R337H mutation is the most common mutation reported to date. However, this mutation is associated with a lower cumulative lifetime cancer risk than other mutations in the p53 DNA-binding domain. A detailed statistical analysis of 171,500 DNA tests in Brazilian neonates found that 0.27% of the general population is positive for this mutation, and some of the estimated 200,000 Brazilian R337H carriers in southern and southeastern Brazil have already developed cancer. The present study was designed to estimate R337H prevalence in neighboring Paraguay. To address this question, 10,000 dried blood samples stored in Guthrie cards since 2008 were randomly selected from the Paraguayan municipalities located at the border with Brazil. These samples were tested for R337H mutation using the PCR-restriction fragment length polymorphism assay. This germline mutation was detected in five samples (5/10,000), indicating that the total number of R337H carriers in Paraguay may be as high as 3500. Previous studies have shown that other countries (i.e., Portugal, Spain, and Germany) presented one family with this mutation, leading us to conclude that, besides Brazil and Paraguay, other countries may have multiple families carrying this mutation, which is an inherited syndrome that is difficult to control.

Shang L, Jia SS, Jiang HM, et al.
Simvastatin downregulates expression of TGF-βRII and inhibits proliferation of A549 cells via ERK.
Tumour Biol. 2015; 36(6):4819-24 [PubMed] Related Publications
Lung cancer is the leading cause of cancer-related death worldwide. Transforming growth factor-β receptor II (TGF-βRII) plays an important role in the regulation of proliferation and progression in cancer. Statins have been documented to exhibit anticancer and cancer chemopreventive properties. However, the effects and mechanisms of simvastatin on the development of lung cancer are still unclear. In the present study, quiescent A549 cells were treated in vitro with fetal bovine serum (FBS) in the presence or absence of simvastatin. MTT, Western blot, and real-time qPCR were used to detect cell viability, activation of ERK, and expression of TGF-βRII at the protein and RNA level. Our results demonstrated that simvastatin inhibited activation of ERK, downregulated expression of TGF-βRII, and suppressed A549 cell proliferation. Furthermore, the effects of simvastatin can be reversed by farnesyl pyrophosphate (FPP). Therefore, these results suggest that simvastatin may inhibit A549 cell proliferation and downregulate TGF-βRII expression by inhibiting activation of ERK. Our findings may advance the current understanding of the effects of simvastatin on cancer progression and contribute to the study of cancer treatment.

Liu F, Ji F, Ji Y, et al.
Dissecting the mechanism of colorectal tumorigenesis based on RNA-sequencing data.
Exp Mol Pathol. 2015; 98(2):246-53 [PubMed] Related Publications
OBJECTIVE: This study aimed to identify the differentially expressed genes (DEGs), mutated genes and fusion genes in colorectal cancer.
MATERIALS AND METHODS: RNA-sequencing data (ID: SRP009386) from cancerous, paracancerous non-tumor and distant normal tissue from one Chinese patient with stage III colorectal cancer were downloaded from Sequence Read Archive. Quality control was checked using FastQC, followed by sequence alignment against the hg19 reference genome using TopHat v1.3.3. The expression levels were quantified using Cufflinks, followed by DEGs screening using NOISeq. Enrichment analysis was performed using DAVID. Transcription factors were screened using TRANSFA. Mutated loci were identified using SAMTools and VCFTools. Gene fusion events were detected by TopHat-fusion.
RESULTS: In total 2440, 1887 and 834 DEGs were respectively detected in cancerous vs. normal tissue, cancerous vs. paracancerous tissue and paracancerous vs. normal tissue. The up-regulated genes from cancerous and paracancerous tissue compared with normal tissue were enriched in "extracellular matrix receptor interaction" and "focal adhesion pathway" as well as some biological processes except for "negative regulation of programmed cell death" uniquely presenting in cancer. Dysregulated transcription factors including SOX4, BCL6, CEBPB and MSX2 were enriched in the unique biological process. Trp53 was identified with one mutated locus 7577142 (C → T) on chromosome 17. BCL6 also experienced missense mutation. Additionally, COL1A1-PPP2R2C and EXPH5-COL1A2 were observed fusion genes in cancer tissue.
CONCLUSIONS: The unique biological process in cancer tissue may be the cause for colorectal carcinogenesis. The screened transcription factors, mutated genes and fusion genes may contribute to the progression of colorectal cancer.

Gurzu S, Kadar Z, Sugimura H, et al.
Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity.
APMIS. 2015; 123(3):223-33 [PubMed] Related Publications
Increasing number of early-onset gastric carcinomas (GCs) and controversial results regarding the differences among young and older patients with this type of cancer are the reasons why correlation of clinicopathological factors with molecular markers is necessary. The aim of our study was to compare the demographic, clinical and immunohistochemical (IHC) aspects in Romanian patients with GC diagnosed below and above 45 years old. In 191 samples provided from patients with GC, the clinicopathological parameters were correlated with a panel of 15 antibodies: E-cadherin, HER-2, VEGF, CD31, CD105, COX-2, maspin, bax, bcl-2, p53, Ki67, MLH-1, MSH-2, mena protein and vimentin. Compared to the conventional cases, GCs diagnosed below 45 years old were more frequently located at the gastroesophageal junction and presented a higher percentage of lymph node metastases. The diffuse type E-cadherin/mena/p53/Ki67/bax-negative cases that displayed nuclear maspin positivity were also more frequently in younger patients. The intestinal type early-onset GCs were the most angiogenic ones, the apoptotic rate being lower than in the intestinal type GCs of the aged. Compared to the conventional cases, in the early-onset GCs the nuclear maspin-mediated antiproliferative activity is more intense in diffuse type while the mena-dependent tumor cell proliferation is more characteristic for intestinal type GCs.

Lee AW, Tyrer JP, Doherty JA, et al.
Evaluating the ovarian cancer gonadotropin hypothesis: a candidate gene study.
Gynecol Oncol. 2015; 136(3):542-8 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of how variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted.
METHODS: Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations.
RESULTS: We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive).
CONCLUSIONS: Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available.

Oh HR, An CH, Yoo NJ, Lee SH
Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity--a short report.
Cell Oncol (Dordr). 2014; 37(6):455-61 [PubMed] Related Publications
BACKGROUND: Metabolic reprogramming is an emerging topic in cancer research. However, genetic alterations in genes encoding enzymes involved in amino acid metabolism are largely unknown. The aim of this study was to explore whether genes known to be involved in amino acid metabolism are mutated in gastric cancer (GC) and/or colorectal cancer (CRC).
METHODS: Through a public database search, we found that a number of genes known to be involved in amino acid metabolism, i.e., AGXT, ALDH2, APIP, MTR, DNMT1, ASH1L, ASPA, CAD, DDC, GCDH, DLD, LAP3, MCEE and MUT, harbor mononucleotide repeats that may serve as mutation targets in cancers exhibiting microsatellite instability (MSI). We assessed these genes for the presence of the mutations in 79 GCs and 124 CRCs using single-strand conformation polymorphism (SSCP) and direct sequencing analyses.
RESULTS: Using SSCP in conjunction with DNA sequencing we detected frameshift mutations in AGXT (17 cases), ALDH2 (3 cases), APIP (4 cases), MTR (5 cases), DNMT1 (1 case), ASH1L (1 case), ASPA (2 cases), CAD (2 cases), DDC (1 case), GCDH (3 cases), DLD (1 case), LAP3 (1 case), MCEE (5 cases) and MUT (1 case). These mutations were exclusively detected in MSI-high (MSI-H), and not in MSI-low or MSI-stable (MSI-L/MSS) cases. In addition, we analyzed 16 CRCs for the presence of intra-tumor heterogeneity (ITH) and found that two CRCs harbored regional ITH for GCDH frameshift mutations.
CONCLUSIONS: Our data indicate that genes known to be involved in amino acid metabolism recurrently acquire somatic mutations in MSH-H GCs and MSH-H CRCs and that, in addition, mutation ITH does occur in at least some of these tumors. Together, these data suggest that metabolic reprogramming may play a role in the etiology of MSI-H GCs and CRCs. Our data also suggest that ultra-regional mutation analysis is required for a more comprehensive evaluation of the mutation status in these tumors.

Heikinheimo K, Kurppa KJ, Laiho A, et al.
Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.
J Dent Res. 2015; 94(1):101-11 [PubMed] Related Publications
The aim of the study was to characterize the molecular relationship between ameloblastoma and keratocystic odontogenic tumor (KCOT) by means of a genome-wide expression analysis. Total RNA from 27 fresh tumor samples of 15 solid/multicystic intraosseous ameloblastomas and 12 sporadic KCOTs was hybridized on Affymetrix whole genome arrays. Hierarchical clustering separated ameloblastomas and KCOTs into 2 distinct groups. The gene set enrichment analysis based on 303 dental genes showed a similar separation of ameloblastomas and KCOTs. Early dental epithelial markers PITX2, MSX2, DLX2, RUNX1, and ISL1 were differentially overexpressed in ameloblastoma, indicating its dental identity. Also, PTHLH, a hormone involved in tooth eruption and invasive growth, was one of the most differentially upregulated genes in ameloblastoma. The most differentially overexpressed genes in KCOT were squamous epithelial differentiation markers SPRR1A, KRTDAP, and KRT4, as well as DSG1, a component of desmosomal cell-cell junctions. Additonally, the epithelial stem cell marker SOX2 was significantly upregulated in KCOT when compared with ameloblastoma. Taken together, the gene expression profile of ameloblastoma reflects differentiation from dental lamina toward the cap/bell stage of tooth development, as indicated by dental epithelium-specific transcription factors. In contrast, gene expression of KCOT indicates differentiation toward keratinocytes.

Chang E, Liu H, Unterschemmann K, et al.
18F-FAZA PET imaging response tracks the reoxygenation of tumors in mice upon treatment with the mitochondrial complex I inhibitor BAY 87-2243.
Clin Cancer Res. 2015; 21(2):335-46 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We describe a noninvasive PET imaging method that monitors early therapeutic efficacy of BAY 87-2243, a novel small-molecule inhibitor of mitochondrial complex I as a function of hypoxia-inducible factor-1α (HIF1α) activity.
EXPERIMENTAL DESIGN: Four PET tracers [(18)F-FDG, (18)F-Fpp(RGD)2, (18)F-FLT, and (18)F-FAZA] were assessed for uptake into tumor xenografts of drug-responsive (H460, PC3) or drug-resistant (786-0) carcinoma cells. Mice were treated with BAY 87-2243 or vehicle. At each point, RNA from treated and vehicle H460 tumor xenografts (n = 3 each) was isolated and analyzed for target genes.
RESULTS: Significant changes in uptake of (18)F-FAZA, (18)F-FLT, and (18)F-Fpp(RGD)2 (P < 0.01) occurred with BAY 87-2243 treatment with (18)F-FAZA being the most prominent. (18)F-FDG uptake was unaffected. (18)F-FAZA tumor uptake declined by 55% to 70% (1.21% ± 0.10%ID/g to 0.35 ± 0.1%ID/g; n = 6, vehicle vs. treatment) in both H460 (P < 0.001) and PC3 (P < 0.05) xenografts 1 to 3 days after drug administration. (18)F-FAZA uptake in 786-0 xenografts was unaffected. Decline occurred before significant differences in tumor volume, thus suggesting (18)F-FAZA decrease reflected early changes in tumor metabolism. BAY 87-2243 reduced expression of hypoxia-regulated genes CA IX, ANGPTL4, and EGLN-3 by 99%, 93%, and 83%, respectively (P < 0.001 for all), which corresponds with reduced (18)F-FAZA uptake upon drug treatment. Heterogeneous expression of genes associated with glucose metabolism, vessel density, and proliferation was observed.
CONCLUSIONS: Our studies suggest suitability of (18)F-FAZA-PET as an early pharmacodynamic monitor on the efficacy of anticancer agents that target the mitochondrial complex I and intratumor oxygen levels (e.g., BAY 87-2243).

Köbel M, Madore J, Ramus SJ, et al.
Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study.
Br J Cancer. 2014; 111(12):2297-307 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa.
METHODS: Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival.
RESULTS: FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20-0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10-3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25-0.94).
CONCLUSIONS: FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1-positive CCC. The clinical efficacy of FOLR1-targeted interventions should therefore be evaluated according to histology, stage and time following diagnosis.

Haddadeen C, Lai C, Cho SY, Healy E
Variants of the melanocortin-1 receptor: do they matter clinically?
Exp Dermatol. 2015; 24(1):5-9 [PubMed] Related Publications
The melanocortin 1 receptor (MC1R) gene encodes for a seven-pass transmembrane receptor primarily expressed on melanocytes and melanoma cells. Single nucleotide polymorphisms (SNPs, also termed variants) in MC1R frequently cause red hair, fair skin and are associated with melanoma and keratinocyte-derived skin cancer development. Activation of wild-type (WT) MC1R in skin assists cutaneous photoprotection whereas reduced MC1R signalling, seen with MC1R variants, impairs ultraviolet radiation (UVR)-protective responses. As ancestral humans migrated out of Africa, the evolutionary advantage of MC1R variants may have related to improved cutaneous vitamin D synthesis and higher birthweight reported with certain MC1R variants. Reduced photoprotection secondary to MC1R dysfunction involves pigmentary and non-pigmentary mechanisms (reduced DNA repair, effects on cell proliferation and possibly immunological parameters), leading to clonal expansion of mutated cells within skin and subsequent carcinogenesis. Recent investigations suggest an association between MC1R genotype and vitiligo, with preliminary evidence that a MC1R agonist, [Nle4-D-Phe7]-alpha-MSH, in combination with UVB, assists repigmentation. Future development of compounds to correct defective MC1R responses secondary to MC1R variants could result in photoprotective benefits for fair-skinned individuals and reduce their skin cancer risk.

Kelemen LE, Terry KL, Goodman MT, et al.
Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk.
Mol Nutr Food Res. 2014; 58(10):2023-35 [PubMed] Free Access to Full Article Related Publications
SCOPE: We reevaluated previously reported associations between variants in pathways of one-carbon (1-C) (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake.
METHODS AND RESULTS: Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls, and among 2281 cases and 3444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for dihydropyrimidine dehydrogenase (DPYD) variants rs11587873 (OR = 0.92; p = 6 × 10⁻⁵) and rs828054 (OR = 1.06; p = 1 × 10⁻⁴). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT, and TYMS, also interacted significantly with folate in a multivariant analysis (corrected p = 9.9 × 10⁻⁶) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in 1-C transfer, previously reported with OC, suggested lower risk at higher folate (p(interaction) = 0.03-0.006).
CONCLUSION: Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-by-folate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC.

Abdel-Malek ZA, Swope VB, Starner RJ, et al.
Melanocortins and the melanocortin 1 receptor, moving translationally towards melanoma prevention.
Arch Biochem Biophys. 2014; 563:4-12 [PubMed] Related Publications
Beginning in the last decade of the twentieth century, the fields of pigment cell research and melanoma have witnessed major breakthroughs in the understanding of the role of melanocortins in human pigmentation and the DNA damage response of human melanocytes to solar ultraviolet radiation (UV). This began with the cloning of the melanocortin 1 receptor (MC1R) gene from human melanocytes and the demonstration that the encoded receptor is functional. Subsequently, population studies found that the MC1R gene is highly polymorphic, and that some of its variants are associated with red hair phenotype, fair skin and poor tanning ability. Using human melanocytes cultured from donors with different MC1R genotypes revealed that the alleles associated with red hair color encode for a non-functional receptor. Epidemiological studies linked the MC1R red hair color variants to increased melanoma risk. Investigating the impact of different MC1R variants on the response of human melanocytes to UV led to the important discovery that the MC1R signaling activates antioxidant, DNA repair and survival pathways, in addition to stimulation of eumelanin synthesis. These effects of MC1R were absent in melanocytes expressing 2 MC1R red hair color variants that result in loss of function of the receptor. The importance of the MC1R in reducing UV-induced genotoxicity in melanocytes led us to design small peptide analogs of the physiological MC1R agonist α-melanocortin (α-melanocyte stimulating hormone; α-MSH) for the goal of utilizing them for melanoma chemoprevention.

Suwannalert P, Kariya R, Suzu I, Okada S
The effects of Salacia reticulata on anti-cellular oxidants and melanogenesis inhibition in alpha-MSH-stimulated and UV irradiated B16 melanoma cells.
Nat Prod Commun. 2014; 9(4):551-4 [PubMed] Related Publications
The purposes of this study were to investigate the inhibitory effects of Salacia reticulata Tul. root extract on cellular oxidants and melanogenesis in B16 melanoma cells. Cells treated with non-toxic doses of S. reticulata root extract were investigated for their effects on melanogenesis, cellular tyrosinase activity and cellular oxidant scavenging activity. The results indicated that S. reticulata extract inhibited melanin synthesis and tyrosinase activity in alpha-MSH-induced or UV-irradiated B16 melanoma cells in a dose dependent manner. Additionally, the extract also exhibited anti-cellular oxidants in UV-induced radical melanoma cells. Altogether, these results suggested that S. reticulata root extract has roles in suppression of melanogenesis and oxidant inhibition. S. reticulata root extract may be a potential source for the development of pharmaceutical products for treatment of skin hyperpigmentation disorders.

Hoang B, Ernsting MJ, Murakami M, et al.
Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer.
Int J Pharm. 2014; 471(1-2):224-33 [PubMed] Free Access to Full Article Related Publications
Docetaxel (DTX) remains the only effective drug for prolonging survival and improving quality of life of metastatic castration resistant prostate cancer (mCRPC) patients. Despite some clinical successes with DTX-based therapies, advent of cumulative toxicity and development of drug resistance limit its long-term clinical application. The integration of nanotechnology for drug delivery can be exploited to overcome the major intrinsic limitations of DTX therapy for mCRPC. We evaluated whether reformulation of DTX by facile conjugation to carboxymethylcellulose nanoparticles (Cellax) can improve the efficacy and safety of the drug in s.c. and bone metastatic models of CRPC. A single dose of the nanoparticles completely regressed s.c. PC3 tumor xenografts in mice. In addition, Cellax elicited fewer side effects compared to native DTX. Importantly, Cellax did not increase the expression of drug resistance molecules in androgen-independent PC3 prostate cancer cells in comparison with DTX. Lastly, in a bone metastatic model of CRPC, Cellax treatment afforded a 2- to 3-fold improvement in survival and enhancements in quality-of-life of the animals over DTX and saline controls. These results demonstrate the potential of Cellax in improving the treatment of mCRPC.

Ruiz I, Martín-Arruti M, Lopez-Lopez E, Garcia-Orad A
Lack of association between deficient mismatch repair expression and outcome in endometrial carcinomas of the endometrioid type.
Gynecol Oncol. 2014; 134(1):20-3 [PubMed] Related Publications
OBJECTIVE: Endometrial carcinomas of the endometrioid type (EEC) are associated with a good prognosis. However, about 20% of them recur and new prognostic markers are needed. Microsatellite instability (MSI), associated with mismatch repair (MMR) deficiency, is a frequent alteration in EECs that has been associated with prognosis. However, its prognostic impact on EECs remains unclear. The aim of the present study was to clarify the relationship between MMR deficiency and outcome in a large cohort of well classified EECs.
METHODS: A total of 212 EEC samples were analyzed by immunohistochemistry for the MMR genes MLH-1, MSH-2, MSH-6 and PMS-2. Kaplan-Meier survival analysis and log-rank tests were performed to study the prognostic significance of dMMR taking into account clinical and pathological parameters.
RESULTS: We observed no association between MMR deficiency and OS or PFS in our 212 EEC patients (p-value=0.6565 and 0.4380, respectively). When we performed the analysis in different FIGO-stage groups, we did not find association between MMR and OS or PFS in stages I, I/II or III/IV. When we analyzed the specific group of patients with lymphatic invasion separately, MMR expression was not associated with OS or PFS either.
CONCLUSIONS: MMR deficiency does not seem to be a good prognostic marker in endometrioid type endometrial carcinomas.

Abbas M, Kramer MW, Spieker T, et al.
Primary mucinous adenocarcinoma of the renal pelvis with carcinoma in situ in the ureter.
J Egypt Natl Canc Inst. 2014; 26(1):51-4 [PubMed] Related Publications
Primary epithelial tumor of the renal pelvis is rare and only 100 cases are reported in the literature [1]. Histological examination of the tumor showed glands, cysts, and papillae lined by pseudostratified columnar epithelium with hyperchromatic nuclei. Scattered signet ring-type cells were also seen floating in large pools of extracellular mucin. Sections from the ureter showed a component of adenocarcinoma in situ. No invasive tumor was identified in ureteric tissue. One case was reported with carcinoma in situ of the ureter (2). Immunohistochemically: The tumor showed positivity for CK7, CK20, CK8/18, GATA-3, MSH-2, MSH-6, MLH-1, Ber-EP4, and S-100-P with focal positivity for CDX-2, weak positivity for PMS-2 and negativity in TTF-1 and Her-2. Molecular pathological analysis revealed microsatellite stability and without mutation in K-ras-gene. Thus, a diagnosis of mucinous adenocarcinoma of the renal pelvis with in situ adenocarcinoma of the ureter was made.

Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS
Malignant melanoma and melanocortin 1 receptor.
Biochemistry (Mosc). 2013; 78(11):1228-37 [PubMed] Free Access to Full Article Related Publications
The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.

Charbonneau B, Block MS, Bamlet WR, et al.
Risk of ovarian cancer and the NF-κB pathway: genetic association with IL1A and TNFSF10.
Cancer Res. 2014; 74(3):852-61 [PubMed] Free Access to Full Article Related Publications
A missense single-nucleotide polymorphism (SNP) in the immune modulatory gene IL1A has been associated with ovarian cancer risk (rs17561). Although the exact mechanism through which this SNP alters risk of ovarian cancer is not clearly understood, rs17561 has also been associated with risk of endometriosis, an epidemiologic risk factor for ovarian cancer. Interleukin-1α (IL1A) is both regulated by and able to activate NF-κB, a transcription factor family that induces transcription of many proinflammatory genes and may be an important mediator in carcinogenesis. We therefore tagged SNPs in more than 200 genes in the NF-κB pathway for a total of 2,282 SNPs (including rs17561) for genotype analysis of 15,604 cases of ovarian cancer in patients of European descent, including 6,179 of high-grade serous (HGS), 2,100 endometrioid, 1,591 mucinous, 1,034 clear cell, and 1,016 low-grade serous, including 23,235 control cases spanning 40 studies in the Ovarian Cancer Association Consortium. In this large population, we confirmed the association between rs17561 and clear cell ovarian cancer [OR, 0.84; 95% confidence interval (CI), 0.76-0.93; P = 0.00075], which remained intact even after excluding participants in the prior study (OR, 0.85; 95% CI, 0.75-0.95; P = 0.006). Considering a multiple-testing-corrected significance threshold of P < 2.5 × 10(-5), only one other variant, the TNFSF10 SNP rs6785617, was associated significantly with a risk of ovarian cancer (low malignant potential tumors OR, 0.85; 95% CI, 0.79-0.91; P = 0.00002). Our results extend the evidence that borderline tumors may have a distinct genetic etiology. Further investigation of how these SNPs might modify ovarian cancer associations with other inflammation-related risk factors is warranted.

Son J, Kim M, Jou I, et al.
IFN-γ inhibits basal and α-MSH-induced melanogenesis.
Pigment Cell Melanoma Res. 2014; 27(2):201-8 [PubMed] Related Publications
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN-γ on melanogenesis were investigated. IFN-γ inhibits basal and α-MSH-induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN-γ. IFN-γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN-γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN-γ inhibits both basal and α-MSH-induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN-γ in α-MSH-induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN-γ plays a role in controlling inflammation- or UV-induced pigmentary changes.

Kelemen LE, Köbel M, Chan A, et al.
Differentially methylated loci distinguish ovarian carcinoma histological types: evaluation of a DNA methylation assay in FFPE tissue.
Biomed Res Int. 2013; 2013:815894 [PubMed] Free Access to Full Article Related Publications
Epigenomic markers can identify tumor subtypes, but few platforms can accommodate formalin-fixed paraffin-embedded (FFPE) tumor tissue. We tested different amounts of bisulfite-converted (bs) DNA from six FFPE ovarian carcinomas (OC) of serous, endometrioid, and clear cell histologies and two HapMap constitutional genomes to evaluate the performance of the GoldenGate methylation assay. Methylation status at each 1,505 CpG site was expressed as β-values. Comparing 400 ng versus 250 ng bsDNA, reproducibility of the assay ranged from Spearman r(2) = 0.41 to 0.90, indicating that β-values obtained with a lower DNA amount did not always correlate well with the higher amount. Average methylation for the six samples was higher using 250 ng (β-value = 0.45, SD = 0.29) than with 400 ng (β-value = 0.36, SD = 0.32). Reproducibility between duplicate HapMap samples (r(2) = 0.76 to 0.92) was also variable. Using 400 ng input bsDNA, THBS2 and ERG were differentially methylated across all histologic types and between endometrioid and clear cell types at <0.1% false discovery rate. Methylation did not always correlate with gene expression (r(2) = -0.70 to 0.15). We found that lower bsDNA overestimates methylation, and, using higher bsDNA amounts, we confirmed a previous report of higher methylation of THBS2 in clear cell OC, which could provide new insight into biological pathways that distinguish OC histological types.

Cao J, Wan L, Hacker E, et al.
MC1R is a potent regulator of PTEN after UV exposure in melanocytes.
Mol Cell. 2013; 51(4):409-22 [PubMed] Free Access to Full Article Related Publications
The individuals carrying melanocortin-1 receptor (MC1R) variants, especially those associated with red hair color, fair skin, and poor tanning ability (RHC trait), are more prone to melanoma; however, the underlying mechanism is poorly defined. Here, we report that UVB exposure triggers phosphatase and tensin homolog (PTEN) interaction with wild-type (WT), but not RHC-associated MC1R variants, which protects PTEN from WWP2-mediated degradation, leading to AKT inactivation. Strikingly, the biological consequences of the failure of MC1R variants to suppress PI3K/AKT signaling are highly context dependent. In primary melanocytes, hyperactivation of PI3K/AKT signaling leads to premature senescence; in the presence of BRAF(V600E), MC1R deficiency-induced elevated PI3K/AKT signaling drives oncogenic transformation. These studies establish the MC1R-PTEN axis as a central regulator for melanocytes' response to UVB exposure and reveal the molecular basis underlying the association between MC1R variants and melanomagenesis.

Ozkara S, Sari B, Yesil A, et al.
Evaluation of colorectal adenocarcinomas at single-institution with respect to microsatellite instability.
Chirurgia (Bucur). 2013 Jul-Aug; 108(4):473-7 [PubMed] Related Publications
BACKGROUND AND AIM: Hereditary non-poliposis colorectal cancers exhibit a high rate of microsatellite instability. Comparative studies involving stage and other prognostic parameters demonstrate a better prognosis in the presence of microsatellite instability versus colon cancers without microsatellite instability.
METHODS: Our study included 608 cases diagnosed with colorectal adenocarcinoma by our laboratory between 2004-2010. The cases were re-evaluated with respect to criteria defined for MSI, taking into consideration age, anatomic localization, and histopathological criteria. Immunohistochemical study was performed in appropriate blocks for using MLH-1, MSH-2, MSH-6, and PMS-2.
RESULTS: The specimens were re-evaluated according to the histological criteria defined for microsatellite instability. Anti-MLH-1, anti-MSH-2, anti-MSH-6, and anti-PMS-2 antibodies were applied to the paraffin blocks of 27 cases which presented morphological criteria suggestive of DNA repair mutation and had a high Mspath score. Immunohistochemical study with MLH-1, MSH-2, MSH-6, and PMS-2 for the analysis of mismatch repair was refined using the cases with higher Mspath scores.
CONCLUSIONS: In this study, we reviewed the clinical and histopathological features of 608 cases with colorectal adenocarcinoma diagnosed in our laboratory between 2004-2010 and assessed pathological features in terms of microsatellite instability. The results were discussed in view of the literature.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MSX2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999