Gene Summary

Gene:ROBO1; roundabout, axon guidance receptor, homolog 1 (Drosophila)
Aliases: SAX3, DUTT1
Summary:Bilateral symmetric nervous systems have special midline structures that establish a partition between the two mirror image halves. Some axons project toward and across the midline in response to long-range chemoattractants emanating from the midline. The product of this gene is a member of the immunoglobulin gene superfamily and encodes an integral membrane protein that functions in axon guidance and neuronal precursor cell migration. This receptor is activated by SLIT-family proteins, resulting in a repulsive effect on glioma cell guidance in the developing brain. A related gene is located at an adjacent region on chromosome 3. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:roundabout homolog 1
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (28)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ROBO1 (cancer-related)

Wang X, Li M, Wang Z, et al.
Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells.
J Biol Chem. 2015; 290(7):3925-35 [PubMed] Article available free on PMC after 13/02/2016 Related Publications
MALAT1, a highly conserved long noncoding RNA, is deregulated in several types of cancers. However, its role in esophageal squamous cell carcinoma (ESCC) and its posttranscriptional regulation remain poorly understood. In this study we provide first evidences that a posttranscriptional regulation mechanism of MALAT1 by miR-101 and miR-217 exists in ESCC cells. This posttranscriptional silencing of MALAT1 could significantly suppress the proliferation of ESCC cells through the arrest of G2/M cell cycle, which may be due to MALAT1-mediated up-regulation of p21 and p27 expression and the inhibition of B-MYB expression. Moreover, we also found the abilities of migration and invasion of ESCC cells were inhibited after overexpression of miR-101, miR-217, or MALAT1 siRNA. This might be attributed to the deregulation of downstream genes of MALAT1, such as MIA2, HNF4G, ROBO1, CCT4, and CTHRC1. A significant negative correlation exists between miR-101 or miR-217 and MALAT1 in 42 pairs of ESCC tissue samples and adjacent normal tissues. Mice xenograft data also support the tumor suppressor role of both miRNAs in ESCCs.

Huang Z, Wen P, Kong R, et al.
USP33 mediates Slit-Robo signaling in inhibiting colorectal cancer cell migration.
Int J Cancer. 2015; 136(8):1792-802 [PubMed] Article available free on PMC after 15/04/2016 Related Publications
Originally discovered in neuronal guidance, the Slit-Robo pathway is emerging as an important player in human cancers. However, its involvement and mechanism in colorectal cancer (CRC) remains to be elucidated. Here, we report that Slit2 expression is reduced in CRC tissues compared with adjacent noncancerous tissues. Extensive promoter hypermethylation of the Slit2 gene has been observed in CRC cells, which provides a mechanistic explanation for the Slit2 downregulation in CRC. Functional studies showed that Slit2 inhibits CRC cell migration in a Robo-dependent manner. Robo-interacting ubiquitin-specific protease 33 (USP33) is required for the inhibitory function of Slit2 on CRC cell migration by deubiquitinating and stabilizing Robo1. USP33 expression is downregulated in CRC samples, and reduced USP33 mRNA levels are correlated with increased tumor grade, lymph node metastasis and poor patient survival. Taken together, our data reveal USP33 as a previously unknown tumor-suppressing gene for CRC by mediating the inhibitory function of Slit-Robo signaling on CRC cell migration. Our work suggests the potential value of USP33 as an independent prognostic marker of CRC.

Le Bras GF, Taylor C, Koumangoye RB, et al.
TGFβ loss activates ADAMTS-1-mediated EGF-dependent invasion in a model of esophageal cell invasion.
Exp Cell Res. 2015; 330(1):29-42 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
The TGFβ signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFβ signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFβ signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFβ signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFβ signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFβ target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFβ signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFβ signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion.

He H, Hao SJ, Yao L, et al.
MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.
Cancer Biol Ther. 2014; 15(10):1333-9 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

Wen P, Kong R, Liu J, et al.
USP33, a new player in lung cancer, mediates Slit-Robo signaling.
Protein Cell. 2014; 5(9):704-13 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.

Jain K, Mohapatra T, Das P, et al.
Sequential occurrence of preneoplastic lesions and accumulation of loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer.
Ann Surg. 2014; 260(6):1073-80 [PubMed] Related Publications
BACKGROUND: Causal association of gallbladder stones with gallbladder cancer (GBC) is not yet well established.
OBJECTIVE: To study the frequency of occurrence of preneoplastic histological lesions and loss of heterozygosity (LOH) of tumor suppressor genes in patients with gallstones.
METHODS: All consecutive patients with gallstones undergoing cholecystectomy from 2007-2011 were included prospectively. Histological examination of the gallbladder specimens was done for preneoplastic lesions. LOH at 8 loci, that is 3p12, 3p14.2, 5q21, 9p21, 9q, 13q, 17p13, and 18q for tumor suppressor genes (DUTT1, FHIT, APC, p16, FCMD, RB1, p53, and DCC genes) that are associated with GBC was tested from microdissected preneoplastic lesions using microsatellite markers. These LOH were also tested in 30 GBC specimens.
RESULTS: Of the 350 gallbladder specimens from gallstone patients, hyperplasia was found in 32%, metaplasia in 47.8%, dysplasia in 15.7%, and carcinoma in situ in 0.6%. Hyperplasia, metaplasia, and dysplasia alone were found in 11.7%, 24.6%, and 1.4% of patients, respectively. A combination of hyperplasia and dysplasia, metaplasia and dysplasia, and hyperplasia, metaplasia, and dysplasia was found in 3.4%, 6.3%, and 4.3% of patients, respectively. LOH was present in 2.1% to 47.8% of all the preneoplastic lesions at different loci. Fractional allelic loss was significantly higher in those with dysplasia compared with other preneoplastic lesions (0.31 vs 0.22; P = 0.042). No preneoplastic lesion or LOH was found in normal gallbladders.
CONCLUSIONS: Patients with gallstones had a high frequency of preneoplastic lesions and accumulation of LOH at various tumor suppressor genes, suggesting a possible causal association of gallstones with GBC.

Parray A, Siddique HR, Kuriger JK, et al.
ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models.
Int J Cancer. 2014; 135(11):2493-506 [PubMed] Related Publications
High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans.

Nones K, Waddell N, Song S, et al.
Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling.
Int J Cancer. 2014; 135(5):1110-8 [PubMed] Related Publications
The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.

Choi YJ, Yoo NJ, Lee SH
Down-regulation of ROBO2 expression in prostate cancers.
Pathol Oncol Res. 2014; 20(3):517-9 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Several lines of evidence exist that axon guidance genes are involved in cancer pathogenesis. Axon guidance genes ROBO1 and ROBO2 are candidate tumor suppressor genes (TSG). The aim of our study was to address whether ROBO1 and ROBO2 expressions are altered in prostate cancers (PCA). In this study, we analyzed ROBO1 and ROBO2 expressions in 107 PCAs. In the immunohistochemistry, loss of ROBO2 expression was identified in 66 % of PCAs and was significantly higher than that in normal cells (p < 0.001). By contrast, there was no significant difference of ROBO1 expression between normal and PCAs. Our results indicate that axon guidance protein ROBO2 is frequently lost in PCA and that ROBO2 might be involved in PCA pathogenesis as a candidate TSG.

Je EM, Gwak M, Oh H, et al.
Frameshift mutations of axon guidance genes ROBO1 and ROBO2 in gastric and colorectal cancers with microsatellite instability.
Pathology. 2013; 45(7):645-50 [PubMed] Related Publications
AIMS: Several lines of evidence indicate that axon guidance genes are involved not only in neural development but also in cancer development. ROBO1 and ROBO2, crucial regulators of axon guidance, are considered potential tumour suppressor genes. The aim of this study was to explore whether ROBO1 and ROBO2 genes are somatically mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC).
METHODS: In a public database, we observed that both ROBO1 and ROBO2 had mononucleotide repeats in their coding exons that could be mutation targets in cancers with microsatellite instability (MSI). We analysed mutations of these repeats in 77 GC and 88 CRC either with high MSI (MSI-H) or low MSI/microsatellite stability (MSI-L/MSS) by single-strand conformation polymorphism (SSCP) and DNA sequencing. We analysed ROBO1 and ROBO2 expressions in GC and CRC by immunohistochemistry as well.
RESULTS: Overall, we found five ROBO1 and five ROBO2 frameshift mutations in the repeats. They were detected exclusively in the cancers with MSI-H (10/70, 14.2%), but not in MSI-L/MSS (0/95, 0%) (p=0.018). In the immunohistochemistry, loss of ROBO2 expression was identified in 22 (29%) and 17 (19%) of GC and CRC, respectively, while increased expression of ROBO2 was found in 15 (20%) and 22 (25%) of GC and CRC, respectively. There were co-occurrences of mutation and loss of expression in both ROBO1 (4/5, 80% mutated cases, p<0.001) and ROBO2 (5/5, 100% mutated cases, p<0.05) genes.
CONCLUSION: This is the first report of ROBO1 and ROBO2 frameshift mutations in GC and CRC. Frameshift mutations of ROBO1 and ROBO2 genes and alteration of ROBO2 expression in GC and CRC suggest that both genes might play roles in the pathogenesis of GC and CRC.

Luis-Ravelo D, Antón I, Zandueta C, et al.
A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer.
Oncogene. 2014; 33(43):5090-9 [PubMed] Related Publications
Bone metastasis of lung adenocarcinoma (AC) is a frequent complication of advanced disease. The purpose of this study was to identify key mediators conferring robust prometastatic activity with clinical significance. We isolated highly metastatic subpopulations (HMS) using a previously described in vivo model of lung AC bone metastasis. We performed transcriptomic profiling of HMS and stringent bioinformatics filtering. Functional validation was assessed by overexpression and lentiviral silencing of single, double and triple combination in vivo and in vitro. We identified HDAC4, PITX1 and ROBO1 that decreased bone metastatic ability after their simultaneous abrogation. These effects were solely linked to defects in osseous colonization. The molecular mechanisms related to bone colonization were mediated by non-cell autonomous effects that include the following: (1) a marked decrease in osteoclastogenic activity in vitro and in vivo, an effect associated with reduced pro-osteoclastogenic cytokines IL-11 and PTHrP expression levels, as well as decreased in vitro expression of stromal rankl in conditions mimicking tumor-stromal interactions; (2) an abrogated response to TGF-β signaling by decreased phosphorylation and levels of Smad2/3 in tumor cells and (3) an impaired metalloproteolytic activity in vitro. Interestingly, coexpression of HDAC4 and PITX1 conferred high prometastatic activity in vivo. Further, levels of both genes correlated with patients at higher risk of metastasis in a clinical lung AC data set and with a poorer clinical outcome. These findings provide functional and clinical evidence that this metastatic subset is an important determinant of osseous colonization. These data suggest novel therapeutic targets to effectively block lung AC bone metastasis.

Mano Y, Aishima S, Fukuhara T, et al.
Decreased roundabout 1 expression promotes development of intrahepatic cholangiocarcinoma.
Hum Pathol. 2013; 44(11):2419-26 [PubMed] Related Publications
Roundabout 1 (Robo1) is a transmembrane receptor of the immunoglobulin family. Slit2 is one of its ligands. The function of Slit2/Robo1 signaling in the development of intrahepatic cholangiocarcinoma (ICC) remains to be elucidated. We examined the immunohistochemical expression of Robo1 and Slit2 and their clinicopathologic implications in 132 cases of ICC. Also, small interfering RNA of Robo1 was transfected into a high-expression ICC cell line, and a Robo1 vector was transfected into a low-Robo1 expression ICC cell line. The effect of Robo1 suppression and overexpression in cell proliferation and migration of cultured ICC cells with Slit2 stimulation was investigated. Immunohistochemical study of ICC in the low-Robo1 expression group showed larger tumors (P = .015), a higher Ki-67 labeling index (P = .021), and low expression of Slit2 (P = .0005). The low-Slit2 expression group frequently showed perineural invasion (P = .036) and lymph node metastases (P = .013). Low Robo1 expression was associated with a poor prognosis (P = .0207). Robo1 suppression in Huh28 cells tended to promote cell proliferation and migration, whereas Robo1 overexpression in RBE cells significantly suppressed cell proliferation and migration. Low Robo1 expression was associated with cell proliferation and migration in ICC and was one of the adverse prognostic factors in patients with these tumors.

Siebzehnrubl FA, Silver DJ, Tugertimur B, et al.
The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance.
EMBO Mol Med. 2013; 5(8):1196-212 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Glioblastoma remains one of the most lethal types of cancer, and is the most common brain tumour in adults. In particular, tumour recurrence after surgical resection and radiation invariably occurs regardless of aggressive chemotherapy. Here, we provide evidence that the transcription factor ZEB1 (zinc finger E-box binding homeobox 1) exerts simultaneous influence over invasion, chemoresistance and tumourigenesis in glioblastoma. ZEB1 is preferentially expressed in invasive glioblastoma cells, where the ZEB1-miR-200 feedback loop interconnects these processes through the downstream effectors ROBO1, c-MYB and MGMT. Moreover, ZEB1 expression in glioblastoma patients is predictive of shorter survival and poor Temozolomide response. Our findings indicate that this regulator of epithelial-mesenchymal transition orchestrates key features of cancer stem cells in malignant glioma and identify ROBO1, OLIG2, CD133 and MGMT as novel targets of the ZEB1 pathway. Thus, ZEB1 is an important candidate molecule for glioblastoma recurrence, a marker of invasive tumour cells and a potential therapeutic target, along with its downstream effectors.

Lin HY, Amankwah EK, Tseng TS, et al.
SNP-SNP interaction network in angiogenesis genes associated with prostate cancer aggressiveness.
PLoS One. 2013; 8(4):e59688 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Angiogenesis has been shown to be associated with prostate cancer development. The majority of prostate cancer studies focused on individual single nucleotide polymorphisms (SNPs) while SNP-SNP interactions are suggested having a great impact on unveiling the underlying mechanism of complex disease. Using 1,151 prostate cancer patients in the Cancer Genetic Markers of Susceptibility (CGEMS) dataset, 2,651 SNPs in the angiogenesis genes associated with prostate cancer aggressiveness were evaluated. SNP-SNP interactions were primarily assessed using the two-stage Random Forests plus Multivariate Adaptive Regression Splines (TRM) approach in the CGEMS group, and were then re-evaluated in the Moffitt group with 1,040 patients. For the identified gene pairs, cross-evaluation was applied to evaluate SNP interactions in both study groups. Five SNP-SNP interactions in three gene pairs (MMP16+ ROBO1, MMP16+ CSF1, and MMP16+ EGFR) were identified to be associated with aggressive prostate cancer in both groups. Three pairs of SNPs (rs1477908+ rs1387665, rs1467251+ rs7625555, and rs1824717+ rs7625555) were in MMP16 and ROBO1, one pair (rs2176771+ rs333970) in MMP16 and CSF1, and one pair (rs1401862+ rs6964705) in MMP16 and EGFR. The results suggest that MMP16 may play an important role in prostate cancer aggressiveness. By integrating our novel findings and available biomedical literature, a hypothetical gene interaction network was proposed. This network demonstrates that our identified SNP-SNP interactions are biologically relevant and shows that EGFR may be the hub for the interactions. The findings provide valuable information to identify genotype combinations at risk of developing aggressive prostate cancer and improve understanding on the genetic etiology of angiogenesis associated with prostate cancer aggressiveness.

Grossmann AH, Yoo JH, Clancy J, et al.
The small GTPase ARF6 stimulates β-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis.
Sci Signal. 2013; 6(265):ra14 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
β-Catenin has a dual function in cells: fortifying cadherin-based adhesion at the plasma membrane and activating transcription in the nucleus. We found that in melanoma cells, WNT5A stimulated the disruption of N-cadherin and β-catenin complexes by activating the guanosine triphosphatase adenosine diphosphate ribosylation factor 6 (ARF6). Binding of WNT5A to the Frizzled 4-LRP6 (low-density lipoprotein receptor-related protein 6) receptor complex activated ARF6, which liberated β-catenin from N-cadherin, thus increasing the pool of free β-catenin, enhancing β-catenin-mediated transcription, and stimulating invasion. In contrast to WNT5A, the guidance cue SLIT2 and its receptor ROBO1 inhibited ARF6 activation and, accordingly, stabilized the interaction of N-cadherin with β-catenin and reduced transcription and invasion. Thus, ARF6 integrated competing signals in melanoma cells, thereby enabling plasticity in the response to external cues. Moreover, small-molecule inhibition of ARF6 stabilized adherens junctions, blocked β-catenin signaling and invasiveness of melanoma cells in culture, and reduced spontaneous pulmonary metastasis in mice, suggesting that targeting ARF6 may provide a means of inhibiting WNT/β-catenin signaling in cancer.

Kanamori M, Sano A, Yasuda T, et al.
Array-based comparative genomic hybridization for genomic-wide screening of DNA copy number alterations in aggressive bone tumors.
J Exp Clin Cancer Res. 2012; 31:100 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: The genetic pathways of aggressive changes of bone tumors are still poorly understood. It is very important to analyze DNA copy number alterations (DCNAs), to identify the molecular events in the step of progression to the aggressive change of bone tissue.
METHODS: Genome-wide array-based comparative genomic hybridization (array CGH) was used to investigate DCNAs of 14 samples from 13 aggressive bone tumors, such as giant cell tumors (GCTs) and osteosarcoma (OS), etc.
RESULTS: Primary aggressive bone tumors had copy number gains of 17.8±12.7% in the genome, and losses of 17.3±11.4% in 287 target clones (threshold for each DCNA: ≦085, 1.15≦). Genetic unstable cases, which were defined by the total DCNAs aberration ≧30%, were identified in 9 of 13 patients (3 of 7 GCTs and all malignant tumors). High-level amplification of TGFβ2, CCND3, WI-6509, SHGC-5557, TCL1A, CREBBP, HIC1, THRA, AFM217YD10, LAMA3, RUNX1 and D22S543, were commonly observed in aggressive bone tumors. On the other hand, NRAS, D2S447, RAF1, ROBO1, MYB, MOS, FGFR2, HRAS, D13S319, D13S327, D18S552, YES1 and DCC, were commonly low. We compared genetic instability between a primary OS and its metastatic site in Case #13. Metastatic lesion showed increased 9 DCNAs of remarkable change (m/p ratio ≧1.3 folds), compared to a primary lesion. D1S214, D1S1635, EXT1, AFM137XA11, 8 M16/SP6, CCND2, IGH, 282 M15/SP6, HIC1 and LAMA3, were overexpressed. We gave attention to HIC1 (17p13.3), which was common high amplification in this series.
CONCLUSION: Our results may provide several entry points for the identification of candidate genes associated with aggressive change of bone tumors. Especially, the locus 17p11-13 including HIC1 close to p53 was common high amplification in this series and review of the literature.

Long J, Luo G, Liu C, et al.
Development of a unique mouse model for pancreatic cancer lymphatic metastasis.
Int J Oncol. 2012; 41(5):1662-8 [PubMed] Related Publications
Lymphatic metastasis of pancreatic cancer is a predictor of poor prognosis. However, the molecular mechanisms are largely unknown, thus, making the development of appropriate cell lines and experimental models critically important for future investigations. The purpose of the present study was to establish a 'pancreatic cancer cell and mouse model with high lymphatic metastasis potential' for in-depth study of the underlying mechanisms. The BxPC-3-LN subline, derived from the BxPC-3 human pancreatic cancer cell line, was established through serial passages in nude mice via footpad injections. The subline was able to develop notable lymphatic metastases in 100% of the recipient mice 8 weeks after tumor cell implantation. Compared with the parental BxPC-3 cells, BxPC-3-LN cells were more aggressive, displaying invasive ultrastructure, increased migration and invasion ability, and chemoresistance. Metastasis-related gene alteration including upregulation of MMP14, MMP24, MIF and ADRM1, and downregulation of TGFB2 and ROBO1 were also observed in BxPC-3-LN cells by cDNA microarrays. Thus, the newly selected BxPC-3-LN subline can serve as a unique model for further study of lymphatic metastasis of pancreatic cancer.

Yang L, Li Q, Wang Q, et al.
Silencing of miRNA-218 promotes migration and invasion of breast cancer via Slit2-Robo1 pathway.
Biomed Pharmacother. 2012; 66(7):535-40 [PubMed] Related Publications
MiRNAs play an important role in regulating tumor migration and invasion, and abnormal expression of miRNAs occurs in various kinds of human cancers. In this essay, it is reported that the level of miRNA-218 decreases in metastatic breast cancer cells, moreover, miRNA-218 suppresses breast cancer cells migration and invasion through binding Robo1 (one of Slit receptors) to its 3'UTR. MiRNA-218 restoration suppresses Robo1 expression and inhibits breast cancer cells invasion and migration. What the results describe is that the function of Robo1 regulated by miRNA-218 may provide a new strategy for inhibiting migration and invasion of breast cancer cells.

Mitra S, Mazumder-Indra D, Mondal RK, et al.
Inactivation of SLIT2-ROBO1/2 pathway in premalignant lesions of uterine cervix: clinical and prognostic significances.
PLoS One. 2012; 7(6):e38342 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The SLIT2-ROBO1/2 pathways control diverse biological processes, including growth regulation. To understand the role of SLIT2 and ROBO1/2 in cervical carcinogenesis, firstly their RNA expression profiles were screened in 21 primary uterine cervical carcinoma (CACX) samples and two CACX cell lines. Highly reduced expressions of these genes were evident. Concomitant alterations [deletion/methylation] of the genes were then analyzed in 23 cervical intraepithelial neoplasia (CIN) and 110 CACX samples. In CIN, SLIT2 was deleted in 22% samples compared to 9% for ROBO1 and none for ROBO2, whereas comparable methylation was observed for both SLIT2 (30%) and ROBO1 (22%) followed by ROBO2 (9%). In CACX, alteration of the genes were in the following order: Deletion:ROBO1 (48%) > SLIT2 (35%) > ROBO2 (33%), Methylation:SLIT2 (34%) > ROBO1 (29%) > ROBO2 (26%). Overall alterations of SLIT2 and/or ROBO1 (44%) and SLIT2 and/or ROBO2 (39%) were high in CIN followed by significant increase in stage I/II tumors, suggesting deregulation of these interactions in premalignant lesions and early invasive tumors. Immunohistochemical analysis of SLIT2 and ROBO1/2 in CACX also showed reduced expression concordant with molecular alterations. Alteration of all these genes predicted poor patient outcome. Multiparous (≥ 5) women with altered SLIT2 and ROBO1 along with advanced tumor stage (III/IV) and early sexual debut (<19 years) had worst prognosis. Our data suggests the importance of abrogation of SLIT2-ROBO1 and SLIT2-ROBO2 interactions in the initiation and progression of CACX and also for early diagnosis and prognosis of the disease.

Humtsoe JO, Koya E, Pham E, et al.
Transcriptional profiling identifies upregulated genes following induction of epithelial-mesenchymal transition in squamous carcinoma cells.
Exp Cell Res. 2012; 318(4):379-90 [PubMed] Related Publications
During the progression of head and neck squamous cell carcinoma (HNSCC), the induction of an epithelial-mesenchymal transition (EMT) program may play a critical role in the dissemination of cells from the primary tumor to distant metastatic foci. The process of EMT involves the activation of several important genes and pathways to help maintain survival and growth and evolve into highly invasive and metastatic variants. In this study, expression microarray analysis identified a set of 145 upregulated genes in EMT-like HNSCC cells. Some of the strongly upregulated transcripts include genes that are reportedly involved in invasion and metastasis, such as DOCK10, LOX, ROBO1 and SRGN. Importantly, the Tbx3 gene, a member of the T-box transcription factor, was strongly upregulated in SCC cells displaying an EMT-like phenotype compared to cells with an epitheloid, non-EMT behavior. Tbx3 was also found to be strongly upregulated at the protein and gene expression level in an experimental model of snail-induced EMT cells. In addition, siRNA-induced Tbx3 depletion modestly suppressed cell invasion while enhancing Tbx3-mediated resistance to anoikis. Our findings provide evidence that Tbx3 overexpression promotes SCC cell survival displaying an EMT phenotype. This set of newly identified genes that are modulated during EMT-like conversion may be important diagnostic biomarkers during the process of HNSCC progression.

Dickinson RE, Fegan KS, Ren X, et al.
Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells.
PLoS One. 2011; 6(11):e27792 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE) to facilitate its repair and that this regulatory pathway was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to normal OSE (P<0.05) and in poorly differentiated SKOV-3 cells compared to the more differentiated PEO-14 cells (P<0.05). Cortisol reduced the expression of certain SLITs and ROBOs in normal OSE and PEO-14 cells (P<0.05). Furthermore blocking SLIT/ROBO activity reduced apoptosis in both PEO-14 and SKOV-3 tumour cells (P<0.05). Interestingly SLIT/ROBO expression could be increased by reducing the expression of the glucocorticoid receptor using siRNA (P<0.05). Overall our findings indicate that in the post-ovulatory phase one role of cortisol may be to temporarily inhibit SLIT/ROBO expression to facilitate regeneration of the OSE. Therefore this pathway may be a target to develop strategies to manipulate the SLIT/ROBO system in ovarian cancer.

Enjuanes A, Fernàndez V, Hernández L, et al.
Identification of methylated genes associated with aggressive clinicopathological features in mantle cell lymphoma.
PLoS One. 2011; 6(5):e19736 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance.
METHODOLOGY/PRINCIPAL FINDINGS: To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n = 38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n = 25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9, HOXA9, AHR, NR2F2, and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients.
CONCLUSIONS: We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours.

Alajez NM, Lenarduzzi M, Ito E, et al.
MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway.
Cancer Res. 2011; 71(6):2381-91 [PubMed] Related Publications
Nasopharayngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia and Africa. Here we report frequent downregulation of the microRNA miR-218 in primary NPC tissues and cell lines where it plays a critical role in NPC progression. Suppression of miR-218 was associated with epigenetic silencing of SLIT2 and SLIT3, ligands of ROBO receptors that have been previously implicated in tumor angiogenesis. Exogenous expression of miR-218 caused significant toxicity in NPC cells in vitro and delayed tumor growth in vivo. We used an integrated trimodality approach to identify targets of miR-218 in NPC, cervical, and breast cell lines. Direct interaction between miR-218 and the 3'-untranslated regions (UTR) of mRNAs encoding ROBO1, survivin (BIRC5), and connexin43 (GJA1) was validated in a luciferase-based transcription reporter assay. Mechanistic investigations revealed a negative feedback loop wherein miR-218 regulates NPC cell migration via the SLIT-ROBO pathway. Pleotropic effects of miR-218 on NPC survival and migration were rescued by enforced expression of miR-218-resistant, engineered isoforms of survivin and ROBO1, respectively. In clinical specimens of NPC (n=71), ROBO1 overexpression was significantly associated with worse overall (P=0.04, HR=2.4) and nodal relapse-free survival (P=0.008, HR=6.0). Our findings define an integrative tumor suppressor function for miR-218 in NPC and further suggest that restoring miR-218 expression in NPC might be useful for its clinical management.

Eng L, Ibrahim-zada I, Jarjanazi H, et al.
Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines.
BMC Med Genomics. 2011; 4:18 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60 panel to identify SNPs associated with paclitaxel sensitivity. Using the panel's GI50 response data available from Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel's SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us understand how our identified genes may alter the cellular response to paclitaxel.
RESULTS: 43 SNPs were found significantly associated (FDR<0.005) with paclitaxel response, with 10 belonging to protein-coding genes (CFTR, ROBO1, PTPRD, BTBD12, DCT, SNTG1, SGCD, LPHN2, GRIK1, ZNF607). SNPs in GRIK1, DCT, SGCD and CFTR were predicted to be intronic enhancers, altering gene expression, while SNPs in ZNF607 and BTBD12 cause conservative missense mutations. mRNA expression analysis supported these findings as GRIK1, DCT, SNTG1, SGCD and CFTR showed significantly (p<0.05) increased expression among sensitive cell lines. Haplotypes found in GRIK1, SGCD, ROBO1, LPHN2, and PTPRD were more strongly associated with response than their individual SNPs.
CONCLUSIONS: Our study has taken advantage of available genotypic data and its integration with drug response data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA expression, the remainder would not have been detected solely based on expression data. The identified haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk determination associated with drug response. These genetic variants represent promising biomarkers for predicting paclitaxel response and may play a significant role in the cellular response to paclitaxel.

Zhou WJ, Geng ZH, Chi S, et al.
Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis.
Cell Res. 2011; 21(4):609-26 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The Slit family of guidance cues binds to Roundabout (Robo) receptors and modulates cell migration. We report here that ectopic expression of Slit2 and Robo1 or recombinant Slit2 treatment of Robo1-expressing colorectal epithelial carcinoma cells recruited an ubiquitin ligase Hakai for E-cadherin (E-cad) ubiquitination and lysosomal degradation, epithelial-mesenchymal transition (EMT), and tumor growth and liver metastasis, which were rescued by knockdown of Hakai. In contrast, knockdown of endogenous Robo1 or specific blockade of Slit2 binding to Robo1 prevented E-cad degradation and reversed EMT, resulting in diminished tumor growth and liver metastasis. Ectopic expression of Robo1 also triggered a malignant transformation in Slit2-positive human embryonic kidney 293 cells. Importantly, the expression of Slit2 and Robo1 was significantly associated with an increased metastatic risk and poorer overall survival in colorectal carcinoma patients. We conclude that engagement of Robo1 by Slit2 induces malignant transformation through Hakai-mediated E-cad ubiquitination and lysosomal degradation during colorectal epithelial cell carcinogenesis.

Lin YY, Yang CH, Sheu GT, et al.
A novel exon 15-deleted, splicing variant of Slit2 shows potential for growth inhibition in addition to invasion inhibition in lung cancer.
Cancer. 2011; 117(15):3404-15 [PubMed] Related Publications
BACKGROUND: The axon guidance cue molecule Slit2 has been shown to suppress cancer cell invasion. However, the role of Slit2 in growth inhibition is still controversial. The authors identified a novel exon 15 (AKEQYFIP)-deleted slit2, located at the end of the second leucine-rich repeat (LRR2). Because LRR2 interacts with Robo1 receptor to inhibit invasion, they hypothesized that exon 15 plays an important role in modulating Slit2 function.
METHODS: Slit2 expression was assessed via microarray analysis in 27 lung adenocarcinomas. Exon 15-deleted slit2 (slit2-ΔE15) and exon 15-containing slit2 (slit2-WT) were cloned and expressed in the CL1-5 lung cancer cell line. The effect of exon 15 on Slit2-mediated cell growth was evaluated by a xenografted model and in vitro cell growth assays. The effect of exon 15 on Slit2-mediated invasion was analyzed with a modified Boyden chamber in vitro.
RESULTS: Tumor growth from CL1-5/Slit2-WT cells was comparable to that from CL1-5 cells bearing empty vector. However, tumor size from CL1-5/Slit2-ΔE15 cells was much smaller than that from Slit2-WT cells or vector control cells in the xenografted model. In vitro analyses demonstrated that Slit2-WT inhibits invasion of CL1-5 cells. In addition to inhibiting invasion, Slit2-ΔE15 greatly suppresses cell growth.
CONCLUSIONS: The data demonstrated that exon 15 modulates Slit2 function in growth inhibition of lung cancer cells. Because slit2-ΔE15 splice variant is present in low invasive cancer cells and nontumor lung tissues, loss of this splice variant is an important event in tumor progression and invasion.

Tie J, Pan Y, Zhao L, et al.
MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor.
PLoS Genet. 2010; 6(3):e1000879 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.

Tseng RC, Lee SH, Hsu HS, et al.
SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis.
Cancer Res. 2010; 70(2):543-51 [PubMed] Related Publications
Chromosome 4p15.3 is frequently deleted in late-stage lung cancer. We investigated the significance of the SLIT2 gene located in this region to lung cancer progression. SLIT2 encodes an extracellular glycoprotein that can suppress breast cancer by regulating beta-catenin. In this study, we examined alterations in the structure or expression of SLIT2, its receptor ROBO1, and beta-catenin, along with the AKT/glycogen synthase kinase 3beta (GSK3beta)/beta-transducin repeat-containing protein (betaTrCP) pathway in lung cancer cell lines and patients. Low SLIT2 expression correlated with an upward trend of pathological stage and poorer survival in lung cancer patients. Importantly, SLIT2, betaTrCP, and beta-catenin expression levels predicted postoperative recurrence of lung cancer in patients. Stimulating SLIT2 expression by various methods increased the level of E-cadherin caused by attenuation of its transcriptional repressor SNAI1. Conversely, knocking down SLIT2 expression increased cell migration and reduced cell adhesion through coordinated deregulation of beta-catenin and E-cadherin/SNAI1 in the AKT/GSK3beta/betaTrCP pathway. Our findings indicate that SLIT2 suppresses lung cancer progression, defining it as a novel "theranostic" factor with potential as a therapeutic target and prognostic predictor in lung cancer. Cancer Res; 70(2); 543-51.

Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y, Wu JY
Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration.
Proc Natl Acad Sci U S A. 2009; 106(34):14530-5 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Slit regulates migration of not only neurons, but also nonneuronal cells, such as leukocytes and cancer cells. Slit effect on cancer cell migration has not been well-characterized. In this study, we used several different assays to examine Slit effect on breast cancer cell migration in vitro. We show that ubiquitin-specific protease 33 (USP33)/VDU1, originally identified as a von Hippel-Lindau tumor suppressor (VHL) protein-interacting deubiquitinating enzyme, binds to the Robo1 receptor, and that USP33 is required for Slit responsiveness in breast cancer cells. Slit induces redistribution of Robo1 from intracellular compartments to the plasma membrane in a USP33-dependent manner. Slit impairs directional migration of breast cancer cells without affecting their migration speed. This inhibitory effect is Robo-mediated and USP33-dependent. These data uncover a previously unknown function of USP33 and reveal a new player in Slit-Robo signaling in cancer cell migration.

Cody NA, Shen Z, Ripeau JS, et al.
Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer.
Mol Carcinog. 2009; 48(12):1077-92 [PubMed] Related Publications
The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ROBO1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999