Gene Summary

Gene:SERPINE1; serpin family E member 1
Aliases: PAI, PAI1, PAI-1, PLANH1
Summary:This gene encodes a member of the serine proteinase inhibitor (serpin) superfamily. This member is the principal inhibitor of tissue plasminogen activator (tPA) and urokinase (uPA), and hence is an inhibitor of fibrinolysis. Defects in this gene are the cause of plasminogen activator inhibitor-1 deficiency (PAI-1 deficiency), and high concentrations of the gene product are associated with thrombophilia. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:plasminogen activator inhibitor 1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (51)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SERPINE1 (cancer-related)

Ishida E, Lee J, Campbell JS, et al.
Intratumoral delivery of an HPV vaccine elicits a broad anti-tumor immune response that translates into a potent anti-tumor effect in a preclinical murine HPV model.
Cancer Immunol Immunother. 2019; 68(8):1273-1286 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Therapeutic cancer vaccines have met limited clinical success. In the setting of cancer, the immune system is either tolerized and/or has a limited tumor-specific T cell repertoire. In this study, we explore whether intratumoral (IT) vaccination with an HPV vaccine can elicit quantitative and qualitative differences in immune response as compared to intramuscular (IM) vaccination to overcome immune resistance in established tumors. We report that IT administration of an HPV-16 E7 peptide vaccine formulated with polyinosinic-polycytidylic acid [poly(I:C)] generated an enhanced antitumor effect relative to IM delivery. The elicited anti-tumor effect with IT vaccination was consistent among the vaccinated groups and across various C57BL/6 substrains. IT vaccination resulted in an increased frequency of PD-1

Freire PP, Fernandez GJ, Cury SS, et al.
The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis.
Int J Mol Sci. 2019; 20(8) [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/

Sabol RA, Beighley A, Giacomelli P, et al.
Obesity-Altered Adipose Stem Cells Promote ER⁺ Breast Cancer Metastasis through Estrogen Independent Pathways.
Int J Mol Sci. 2019; 20(6) [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Adipose stem cells (ASCs) play an essential role in tumor microenvironments. These cells are altered by obesity (obASCs) and previous studies have shown that obASCs secrete higher levels of leptin. Increased leptin, which upregulates estrogen receptor alpha (ERα) and aromatase, enhances estrogen bioavailability and signaling in estrogen receptor positive (ER⁺) breast cancer (BC) tumor growth and metastasis. In this study, we evaluate the effect of obASCs on ER⁺BC outside of the ERα signaling axis using breast cancer models with constitutively active ERα resulting from clinically relevant mutations (Y537S and D538G). We found that while obASCs promote tumor growth and proliferation, it occurs mostly through abrogated estrogen signaling when BC has constitutive ER activity. However, obASCs have a similar promotion of metastasis irrespective of ER status, demonstrating that obASC promotion of metastasis may not be completely estrogen dependent. We found that obASCs upregulate two genes in both ER wild type (WT) and ER mutant (MUT) BC:

Hsu JB, Chang TH, Lee GA, et al.
Identification of potential biomarkers related to glioma survival by gene expression profile analysis.
BMC Med Genomics. 2019; 11(Suppl 7):34 [PubMed] Related Publications
BACKGROUND: Recent studies have proposed several gene signatures as biomarkers for different grades of gliomas from various perspectives. However, most of these genes can only be used appropriately for patients with specific grades of gliomas.
METHODS: In this study, we aimed to identify survival-relevant genes shared between glioblastoma multiforme (GBM) and lower-grade glioma (LGG), which could be used as potential biomarkers to classify patients into different risk groups. Cox proportional hazard regression model (Cox model) was used to extract relative genes, and effectiveness of genes was estimated against random forest regression. Finally, risk models were constructed with logistic regression.
RESULTS: We identified 104 key genes that were shared between GBM and LGG, which could be significantly correlated with patients' survival based on next-generation sequencing data obtained from The Cancer Genome Atlas for gene expression analysis. The effectiveness of these genes in the survival prediction of GBM and LGG was evaluated, and the average receiver operating characteristic curve (ROC) area under the curve values ranged from 0.7 to 0.8. Gene set enrichment analysis revealed that these genes were involved in eight significant pathways and 23 molecular functions. Moreover, the expressions of ten (CTSZ, EFEMP2, ITGA5, KDELR2, MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and SOCS3) of these genes were significantly higher in GBM than in LGG, and comparing their expression levels to those of the proposed control genes (TBP, IPO8, and SDHA) could have the potential capability to classify patients into high- and low- risk groups, which differ significantly in the overall survival. Signatures of candidate genes were validated, by multiple microarray datasets from Gene Expression Omnibus, to increase the robustness of using these potential prognostic factors. In both the GBM and LGG cohort study, most of the patients in the high-risk group had the IDH1 wild-type gene, and those in the low-risk group had IDH1 mutations. Moreover, most of the high-risk patients with LGG possessed a 1p/19q-noncodeletion.
CONCLUSION: In this study, we identified survival relevant genes which were shared between GBM and LGG, and those enabled to classify patients into high- and low-risk groups based on expression level analysis. Both the risk groups could be correlated with the well-known genetic variants, thus suggesting their potential prognostic value in clinical application.

Fan B, Yang X, Li X, et al.
Photoacoustic-imaging-guided therapy of functionalized melanin nanoparticles: combination of photothermal ablation and gene therapy against laryngeal squamous cell carcinoma.
Nanoscale. 2019; 11(13):6285-6296 [PubMed] Related Publications
Multimodality therapy under imaging-guidance is significant to improve the accuracy of cancer treatment. In this study, a photoacoustic imaging (PAI)-guided anticancer strategy based on poly-l-lysine functionalized melanin nanoparticles (MNP-PLL) was developed to treat laryngeal squamous cell carcinoma (LSCC). As a promising alternative to traditional therapies for LSCC, MNP-PLL/miRNA nanoparticles were combined with photothermal ablation against primary tumors and miR-145-5p mediated gene therapy for depleting the metastatic potential of tumor cells. Furthermore, taking advantage of the photoacoustic properties of melanin, PAI guided therapy could optimize the time point of NIR irradiation to maximize the efficacy of photothermal therapy (PTT). The in vitro and in vivo results proved that the combined treatments displayed the most significant tumor suppression compared with monotherapy. By integrating thermo-gene therapies into a theranostic nanoplatform, the MNP-PLL/miR-145-5p nanoparticles significantly suppressed the LSCC progression, indicating their great potential use for cancer therapy.

Jevrić M, Matić IZ, Krivokuća A, et al.
Association of uPA and PAI-1 tumor levels and 4G/5G variants of PAI-1 gene with disease outcome in luminal HER2-negative node-negative breast cancer patients treated with adjuvant endocrine therapy.
BMC Cancer. 2019; 19(1):71 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: The aim of this study was to evaluate the prognostic potential of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) tumor tissue levels and examine the association between these biomarkers and classical prognostic factors in early node-negative luminal breast cancer patients. The clinical value of 4G/5G variants of PAI-1 gene was evaluated.
PATIENTS AND METHODS: This study involved 81 node-negative, estrogen receptor-positive and/or progesterone receptor-positive and human epidermal growth factor receptor 2-negative operable breast cancer patients who underwent radical surgical resection and received adjuvant endocrine therapy. Determination of uPA and PAI-1 concentrations in the breast cancer tissue extracts was performed using FEMTELLE® uPA/PAI-1 ELISA. An insertion (5G)/deletion (4G) polymorphism at position - 675 of the PAI-1 gene was detected by PCR-RFLP analysis.
RESULTS: Our research showed that patients with uPA tumor tissue levels higher than 3 ng/mg of protein had significantly reduced disease-free survival (DFS) and overall survival (OS) when compared to patients with uPA tumor tissue levels lower or equal to 3 ng/mg of protein. Patients with PAI-1 tumor tissue levels higher than 14 ng/mg of protein had significantly decreased OS in comparison with patients with PAI-1 tumor tissue levels lower or equal to 14 ng/mg of protein. ROC analysis confirmed the uPA and PAI-1 discriminative potential for the presence/absence of relevant events in these patients and resulted in higher cut-off values (5.65 ng/mg of protein for uPA and 27.10 ng/mg of protein for PAI-1) than standard reference cut-off values for both biomarkers. The prognostic importance of uPA and PAI-1 ROC cut-off values was confirmed by the impact of uPA higher than 5.65 ng/mg of protein and PAI-1 higher than 27.10 ng/mg of protein on poorer DFS, OS and event-free survival (EFS). We observed that patients with dominant allele in PAI-1 genotype (heterozygote and dominant homozygote, - 675 4G/5G and - 675 5G/5G) had significantly increased DFS, OS and EFS when compared with patients with recessive homozygote genotype (- 675 4G/4G).
CONCLUSION: Our study indicates that uPA and PAI-1 tumor tissue levels and 4G/5G variants of PAI-1 gene might be of prognostic significance in early node-negative luminal HER2-negative breast cancer patients treated with adjuvant endocrine therapy.

Xu X, Li M, Hu J, et al.
Expression profile analysis identifies a two-gene signature for prediction of head and neck squamous cell carcinoma patient survival.
J Cancer Res Ther. 2018; 14(7):1525-1534 [PubMed] Related Publications
Aim: The aim of this study is to identify a gene prognostic signature for the head-and-neck squamous cell carcinoma (HNSCC). HNSCC is one of the most common malignancies worldwide; however, the molecular mechanisms underlying the malignancy are unclear.
Materials and Methods: We analyzed the gene expression profiles of GSE2379, GSE53819, and GSE59102 derived from the gene expression omnibus, and the cancer genome atlas (TCGA) HNSC databases. The R software was used to identify the differentially expressed genes (DEGs) between HNSCC tissues and normal controls. Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, protein-protein interactions network, and survival analyses of common DEGs were also performed.
Results: A total of 52 upregulated and 31 downregulated DEGs were identified. Functional analyses demonstrated that these DEGs were mainly enriched in extracellular matrix-receptor interaction, focal adhesion, tyrosine metabolism, and cytokine-cytokine receptor interaction. According to the survival analyses, PLAU and SERPINE1 could predict the overall survival of HNSCC patients from the TCGA cohort. Multivariable Cox regression analyses showed that the PLAU and SERPINE1 were independent prognostic factors for HNSCC patients. The prediction power of this two-gene signature was evaluated through receiver operating characteristic curve analysis and achieved a better prognostic value than PLAU (area under curve 0.613 [95% confidence interval 0.569-0.656] vs. 0.577 [0.533-0.621]; P = 0.008) or SERPINE1 (0.613 [0.569-0.656] vs. 0.586 [0.541-0.629]; P = 0.043) when considered alone.
Conclusions: The study has identified a set of novel genes and pathways that play significant roles in the carcinogenesis and progression of HNSCC. This two-gene signature may prove to be a useful therapeutic target for HNSCC.

Liang Y, Zhang C, Ma MH, Dai DQ
Identification and prediction of novel non-coding and coding RNA-associated competing endogenous RNA networks in colorectal cancer.
World J Gastroenterol. 2018; 24(46):5259-5270 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
AIM: To identify and predict the competing endogenous RNA (ceRNA) networks in colorectal cancer (CRC) by bioinformatics analysis.
METHODS: In the present study, we obtained CRC tissue and normal tissue gene expression profiles from The Cancer Genome Atlas project. Differentially expressed (DE) genes (DEGs) were identified. Then, upregulated and downregulated miRNA-centered ceRNA networks were constructed by analyzing the DEGs using multiple bioinformatics approaches. DEmRNAs in the ceRNA networks were identified in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using KEGG Orthology Based Annotation System 3.0. The interactions between proteins were analyzed using the STRING database. Kaplan-Meier survival analysis was conducted for DEGs and real time quantitative polymerase chain reaction (RT-qPCR) was also performed to validate the prognosis-associated lncRNAs in CRC cell lines.
RESULTS: Eighty-one DElncRNAs, 20 DEmiRNAs, and 54 DEmRNAs were identified to construct the ceRNA networks of CRC. The KEGG pathway analysis indicated that nine out of top ten pathways were related with cancer and the most significant pathway was "colorectal cancer". Kaplan-Meier survival analysis showed that the overall survival was positively associated with five DEGs (IGF2-AS, POU6F2-AS2, hsa-miR-32, hsa-miR-141, and SERPINE1) and it was negatively related to three DEGs (LINC00488, hsa-miR-375, and PHLPP2). Based on the STRING protein database, it was found that SERPINE1 and PHLPP2 interact with AKT1. Besides, SERPINE1 can interact with VEGFA, VTN, TGFB1, PLAU, PLAUR, PLG, and PLAT. PHLPP2 can interact with AKT2 and AKT3. RT-qPCR revealed that the expression of IGF2-AS, POU6F2-AS2, and LINC00488 in CRC cell lines was consistent with the
CONCLUSION: CeRNA networks play an important role in CRC. Multiple DEGs are related with clinical prognosis, suggesting that they may be potential targets in tumor diagnosis and treatment.

Pusina S
Correlation of Serum Levels of Urokinase Activation Plasminogen (uPA) and Its Inhibitor (PAI-1) with Hormonal and HER-2 Status in the Early Invasive Breast Cancer.
Med Arch. 2018; 72(5):335-340 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Introduction: Breast cancer is the most common malignant tumor in women. On the list of causes of death immediately after lung cancer. It is a heterogeneous disease, considering the differences in morphological, cytogenetic, molecular, clinical and therapeutic aspects, so that the prognosis in a patient with the same histological grade and pathological status may vary.
Aim: In this paper we wanted to identify the correlation between the assay of the serum values of uPA-PAI-1 complexes and individual prognostic-predictive parameters, primarily with the status of estrogenic (Er), progesterogenic (PgR) and Her-2 receptors ("human epidermal growth factor).
Material and methods: The study was conducted at the Clinic for General and Abdominal Surgery, University Clinical Center of Sarajevo (CCUS), from September 2016 to April 2017. The study included 66 patients, ages 18 to 75, in whom by the needle biopsy preoperatively was pathohistologically verified primary invasive breast cancer.
Results: Two thirds of the sample were classified as invasive ductal carcinoma, similar to the percentage (68.2%) of pT2 size, and almost half in the grade G3. Lymph node status was negative in 54.5% of respondents, and positive in 31.8% of respondents. Most patients had positive estrogenic (83.3%) and progesterone receptors (62.1%). Almost 80% was Her-2 negative. The blood vessel invasion was present in 56.1%, while the neural invasion was present in less than a third of the sample (30.3%). Median values of uPA-PAI-1 complexes were 1.4 (interquartile range 0.9); almost 70% of the sample was negative for the status analysis of uPA-PAI-1 complex (<1).
Discussion: A statistically significant difference was determined in the mean values of uPA-PAI-1 complexes in subgroups according to menopausal status, tumor size, histological grade, histological type (invasive ductal carcinoma vs. invasive lobular cancer versus invasive ductal carcinoma vs. invasive lobular cancer), status axillary lymph nodes, Ki67 status (as binary variables), invasion of the blood vessels and neural invasion, as well as subgroups according to the status of expression of hormonal (estrogen and progesterone) receptors.
Conclusion: There is a statistically significant difference in the mean values of the uPA-PAI-1 complex and Her-2 receptor expression. Generally, in perspective, this would be the role played by the uPA/PAI-1 complex in breast cancer, which is that the elevated complex values have a negative prognosis and effect on survival, similar to the negative Her-2 receptor status. Complex uPA/PAI-1 is not a specific serum protein in breast cancer patients and cannot be taken as an individual prognostic-predictive marker for mass pre- or post treatment screening and prediction. Unfortunately, none of the biomarkers are able to independently and fully identify patients of the unknown stage of the disease with better or worse prognosis or to identify cases of more aggressive tumor behavior of the same stage for timely inclusion of adjuvant therapy and reduction of the risk of metastatic disease. The decision on treatment and prognosis should be the result of a combination of all diagnostic, therapeutic, pathohistological and molecular-genetic variables.

Chatterjee G, Pai T, Hardiman T, et al.
Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients.
Breast Cancer Res. 2018; 20(1):143 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Lymph node (LN) metastasis is an important prognostic parameter in breast carcinoma, a crucial site for tumour-immune cell interaction and a gateway for further dissemination of tumour cells to other metastatic sites. To gain insight into the underlying molecular changes from the pre-metastatic, via initial colonisation to the fully involved LN, we reviewed transcriptional research along the evolving microenvironment of LNs in human breast cancers patients. Gene expression studies were compiled and subjected to pathway-based analyses, with an emphasis on immune cell-related genes. Of 366 studies, 14 performed genome-wide gene expression comparisons and were divided into six clinical-biological scenarios capturing different stages of the metastatic pathway in the LN, as follows: metastatically involved LNs are compared to their patient-matched primary breast carcinomas (scenario 1) or the normal breast tissue (scenario 2). In scenario 3, uninvolved LNs were compared between LN-positive patients and LN-negative patients. Scenario 4 homed in on the residual uninvolved portion of involved LNs and compared it to the patient-matched uninvolved LNs. Scenario 5 contrasted uninvolved and involved LNs, whilst in scenario 6 involved (sentinel) LNs were assessed between patients with other either positive or negative LNs (non-sentinel).Gene lists from these chronological steps of LN metastasis indicated that gene patterns reflecting deficiencies in dendritic cells and hyper-proliferation of B cells parallel to tumour promoting pathways, including cell adhesion, extracellular matrix remodelling, cell motility and DNA repair, play key roles in the changing microenvironment of a pro-metastatic to a metastatically involved LN. Similarities between uninvolved LNs and the residual uninvolved portion of involved LNs hinted that LN alterations expose systemic tumour-related immune responses in breast cancer patients. Despite the diverse settings, gene expression patterns at different stages of metastatic colonisation in LNs were recognised and may provide potential avenues for clinical interventions to counteract disease progression for breast cancer patients.

Zhao L, Chi W, Cao H, et al.
Screening and clinical significance of tumor markers in head and neck squamous cell carcinoma through bioinformatics analysis.
Mol Med Rep. 2019; 19(1):143-154 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
In order to identify potential diagnostic and prognostic biomarkers, and treatment targets for head and neck squamous cell carcinoma (HNSCC), the present study obtained the gene expression profiles in HNSCC through public data mining, and core genes were identified using a series of bioinformatics analysis methods and databases. A total of nine hub genes (SPP1, ITGA6, TMPRSS11D, MMP1, LAMC2, FAT1, ACTA1, SERPINE1 and CEACAM1) were identified to be significantly correlated with HNSCC. Furthermore, overall survival analysis demonstrated that the expression values of hub genes were associated with overall survival in HNSCC. Furthermore, certain of the identified genes, including, TMPRSS11D, ACTA1 and CEACAM1, have not been thoroughly investigated in HNSCC previously. Taken together, the nine hub genes obtained by screening in the present study may serve as potential tumor markers and important prognostic indicators for HNSCC.

Szołtysek K, Janus P, Zając G, et al.
RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation.
BMC Genomics. 2018; 19(1):813 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: The cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR.
RESULTS: We identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors.
CONCLUSIONS: Four new candidates for genes directly co-regulated by NF-κB and p53 were revealed.

Eriksson BO, Gahm C, Halle M
Upregulation of Plasminogen Activator Inhibitor-1 in Irradiated Recipient Arteries and Veins from Free Tissue Transfer Reconstruction in Cancer Patients.
Mediators Inflamm. 2018; 2018:4058986 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Background: Clinical studies have shown that radiotherapy can induce vascular disease at the site of exposure but is usually not clinically evident until years after treatment. We have studied irradiated human arteries and veins to better understand the underlying biology in search of future treatments. The aim was to investigate whether radiotherapy contributed to a sustained expression of plasminogen activator inhibitor-1 (PAI-1) in human arteries and veins.
Methods: Irradiated arteries and veins were harvested, together with unirradiated control vessels, from patients undergoing free tissue transfer reconstruction at a median time of 90 weeks [5-650] following radiation exposure. Differential gene expression of PAI-1 was analysed, together with immunohistochemistry (IHC) and immunofluorescence (IF).
Results: PAI-1 gene expression was increased in both arteries (
Conclusion: The current study shows a sustained upregulation of PAI-1 in both arteries and veins after exposure to ionizing radiation, indicating a chronic inflammation mainly in the adventitia. We believe that the results contribute to further understanding of radiation-induced vascular disease, where targeting PAI-1 may be a potential treatment.

Patil V, Mahalingam K
Comprehensive analysis of Reverse Phase Protein Array data reveals characteristic unique proteomic signatures for glioblastoma subtypes.
Gene. 2019; 685:85-95 [PubMed] Related Publications
The most common and lethal type of intracranial tumors include the astrocytomas. Grade IV astrocytoma or Glioblastoma (GBM) is highly aggressive and treatment-refractory with a median survival of only 14 to 16 months. Molecular profiling of GBMs reveals a high degree of intra- and inter-tumoral heterogeneity, and hence it is important to understand the important signalling axes that get deregulated in different GBM subtypes to provide effective tailor-made therapies. In this study, we have carried out extensive analysis of Reverse Phase Protein Array (RPPA) data from TCGA cohort to develop protein signatures that define glioma grades or subtypes. The protein signatures that distinguished Grade II or III from GBM had largely overlapped, and pathway analysis revealed the positive enrichment of extracellular matrix proteins (ECM), MYC pathway, uPAR pathway and G2/M checkpoint genes in GBM. We also identified protein signatures for GBMs with genetic alterations (IDH mutation, p53 mutation, EGFR amplification or mutation, CDKN2A/CDKN2B deletion, and PTEN mutation) that occur at high frequency. G-CIMP positive GBM-specific protein signature showed a large similarity with IDH1-mutant protein signature, thus signifying the importance of IDH1 mutation driving the G-CIMP. Gene expression subtype analysis revealed an association of specific proteins to classical (EGFR and phosphor variants), mesenchymal (SERPINE1, TAZ, and Myosin-IIa_pS1943), neural (TUBA1B), and proneural (GSK3_pS9) types. Univariate Cox regression analysis identified several proteins showing significant correlation with GBM survival. Multivariate analysis revealed that IGFBP2 and RICTOR_pT1135 are independent predictors of survival. Overall, our analyses reveal that specific proteins are regulated in different glioma subtypes underscoring the importance of diverse signalling axes playing important role in the pathogenesis of glioma tumors.

Pai VC, Hsu CC, Chan TS, et al.
ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-β-catenin signaling.
Oncogene. 2019; 38(8):1340-1353 [PubMed] Related Publications
Recurrent and hormone-refractory prostate cancer (PCA) exhibits aggressive behaviors while current therapeutic approaches show little effect of prolonging the survival of patients with PCA. Thus, a deeper understanding of the patho-molecular mechanisms underlying the disease progression in PCA is crucial to identify novel diagnostic and/or therapeutic targets to improve the outcome of patients. Recent evidence suggests that activation of Wnt signaling in cancer stem cells (CSCs) contributes to cancer progression in malignant tumors. Here, we report that a novel Wnt co-activator ASPM (abnormal spindle-like microcephaly associated) maintains the prostate CSC subpopulation by augmenting the Wnt-β-catenin signaling in PCA. ASPM expression is incrementally upregulated in primary and metastatic PCA, implicating its potential role in PCA progression. Consistently, downregulation of ASPM expression pronouncedly attenuated the proliferation, colony formation, and the invasive behavior of PCA cells, and dramatically reduced the number of ALDH

Saha B, Pai GB, Subramanian M, et al.
Resveratrol analogue, trans-4,4'-dihydroxystilbene (DHS), inhibits melanoma tumor growth and suppresses its metastatic colonization in lungs.
Biomed Pharmacother. 2018; 107:1104-1114 [PubMed] Related Publications
The prevalence of melanoma and the lack of effective therapy for metastatic melanoma warrant extensive and systematic evaluations of small molecules in cellular and pre-clinical models. We investigated, herein, the antitumor and anti-metastatic effects of trans-4,4'-dihydroxystilbene (DHS), a natural product present in bark of Yucca periculosa, using in vitro and in vivo melanoma murine models. DHS showed potent melanoma cytotoxicity, as determined by MTT and clonogenic assay. Further, DHS induced cytotoxicity was mediated through apoptosis, which was assessed by annexin V-FITC/PI, sub-G1 and caspase activation assays. In addition, DHS inhibited cell proliferation by inducing robust cell cycle arrest in G1-phase. Imperatively, these inhibitory effects led to a significant reduction of melanoma tumor in pre-clinical murine model. DHS also inhibited cell migration and invasion of melanoma cells, which were examined using wound healing and Transwell migration/invasion assays. Mechanistically, DHS modulated the expressions of several key metastasis regulating proteins e.g., MMP-2/9, N-cadherin, E-cadherin and survivin. We also showed the anti-metastatic effect of DHS in a melanoma mediated lung metastasis model in vivo. DHS significantly reduced large melanoma nodule formation in the parenchyma of lungs. Therefore, DHS may represent a promising natural drug in the repertoire of treatment against melanoma tumor growth and metastasis.

Li T, Chen Y, Zhang J, Liu S
LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in epithelial ovarian cancer cells.
Medicine (Baltimore). 2018; 97(36):e12131 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
This study aimed to assess the effect of long noncoding RNAs (lncRNAs) taurine-upregulated gene 1 (TUG1) on cells proliferation and apoptosis as well as its targeting genes in epithelial ovarian cancer (EOC) cells.Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor plasmids were transfected into SK-OV-3 (SKOV3) cells. Rescue experiment was performed by the transfection of lncRNA TUG1 inhibitor and Aurora kinase A (AURKA) mimic plasmids into SKOV3 cells. Cell counting kit-8 (CKK-8), annexin V-FITC (AV)-propidium iodide (PI) (AV-PI), quantitative polymerase chain reaction (qPCR), and western blot assays were performed to detect cells proliferation, apoptosis, RNA expression, and protein expression respectively.Cells proliferation was increased in lncRNA TUG1 mimic group and decreased in lncRNA TUG1 inhibitor group than normal control (NC) groups. Cells apoptosis rate was repressed after treatment with lncRNA TUG1 mimic and promoted after treatment with lncRNA TUG1 inhibitor. AURKA expression but not CLDN3, SERPINE1, or ETS1 expression was adversely regulated by lncRNA TUG1 mimic and inhibitor. After transferring lncRNA TUG1 (-) and AURKA (+) plasmids, cells proliferation was increased, while cells apoptosis rate was decreased in AURKA mimic (+)/lncRNA TUG1 inhibitor (-) group than NC (+)/lncRNA TUG1 (-) group, which suggested lncRNA TUG1 regulated cells proliferation and cells apoptosis through targeting AURKA.LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in EOC cells.

Pierpaoli E, Fiorillo G, Lombardi P, et al.
Antitumor activity of NAX060: A novel semisynthetic berberine derivative in breast cancer cells.
Biofactors. 2018; 44(5):443-452 [PubMed] Related Publications
Breast cancer (BC) is the most common malignancy and the most common cause of cancer death in elderly women. We recently demonstrated that innovative compounds structurally related to and semisynthetically derived from the plant alkaloid berberine represent a promising unexplored resource for novel therapeutic tools in BC therapy. In this study, we analyzed the effectiveness of new 13-dichlorophenylalkyl berberine semisynthetic derivatives (NAX060, NAX103, NAX111, and NAX114) on the viability of BC cell lines. Our results demonstrated that the new compounds effectively inhibited the growth of a variety of human BC cell lines. In particular, the viability of HER-2 overexpressing SK-BR-3 cells was significantly reduced by the treatment with NAX060, the most active compound, in a dose and time-dependent manner. In the same tumor cell line, NAX060 induced a strong increase in sub-G1 population while G0/G1 and G2/M phase cells remarkably decreased. NAX060 withdrawal after 72 h of treatment resulted in an irreversible cell proliferation arrest and increasing cell death. Real-time PCR analyses showed that NAX060 induced the expression of some cell-cycle checkpoint molecules involved in cell senescence such as p21WAF1, p27, p16INK4a, and PAI-1. Furthermore, the HER-2 protein expression and phosphorylation, as well as the level of heparanase expression, were remarkably reduced on SK-BR-3 cells. NAX060 was effective also on HER-2 negative tumor cells, and, in particular, on human triple-negative MDA-MB-231 cells. These data suggest a potential therapeutic effect of NAX060 compound in the management of BC malignancies. Interestingly, NAX060 may represent a new useful tool also in triple-negative BC. © 2018 BioFactors, 44(5):443-452, 2018.

Völker HU, Weigel M, Strehl A, Frey L
Levels of uPA and PAI-1 in breast cancer and its correlation to Ki67-index and results of a 21-multigene-array.
Diagn Pathol. 2018; 13(1):67 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Conventional parameters including Ki67, hormone receptor and Her2/neu status are used for risk stratification for breast cancer. The serine protease urokinase plasminogen activator (uPA) and the plasminogen activator inhibitor type-1 (PAI-1) play an important role in tumour invasion and metastasis. Increased concentrations in tumour tissue are associated with more aggressive potential of the disease. Multigene tests provide detailed insights into tumour biology by simultaneously testing several prognostically relevant genes. With OncotypeDX®, a panel of 21 genes is tested by means of quantitative real-time polymerase chain reaction. The purpose of this pilot study was to analyse whether a combination of Ki67 and uPA/PAI-1 supplies indications of the result of the multigene test.
METHODS: The results of Ki67, uPA/PAI-1 and OncotypeDX® were analysed in 25 breast carcinomas (luminal type, pT1/2, max pN1a, G2). A statistical and descriptive analysis was performed.
RESULTS: With a proliferation index Ki67 of < 14%, the recurrence score (RS) from the multigene test was on average in the low risk range, with an intermediate RS usually resulting if Ki67 was > 14%. Not elevated values of uPA and PAI-1 showed a lower rate of proliferation (average 8.5%) than carcinomas with an increase of uPA and/or PAI-1 (average 13.9%); p = 0.054, Student's t-test. When Ki67 was > 14% and uPA and/or PAI-1 was raised, an intermediate RS resulted. These differences were significant when compared to cases with Ki67 < 14% with non-raised uPA/PAI-1 (p < 0.03, Student's t-test). Without taking into account the proliferative activity, an intermediate RS was also verifiable if both uPA and PAI-1 showed raised values.
CONCLUSION: A combination of the values Ki67 and uPA/PAI-1 tended to depict the RS to be expected. From this it can be deduced that an appropriate analysis of this parameter combination may be undertaken before the multigene test in routine clinical practice. The increasing cost pressure makes it necessary to base the implementation of a multigene test on ancillary variables and to potentially leave it out if not required in the event of a certain constellation of results (Ki67 raised, uPA and PAI-1 raised).

Kartha VK, Alamoud KA, Sadykov K, et al.
Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer.
Genome Med. 2018; 10(1):54 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy characterized by tumor heterogeneity, locoregional metastases, and resistance to existing treatments. Although a number of genomic and molecular alterations associated with HNSCC have been identified, they have had limited impact on the clinical management of this disease. To date, few targeted therapies are available for HNSCC, and only a small fraction of patients have benefited from these treatments. A frequent feature of HNSCC is the inappropriate activation of β-catenin that has been implicated in cell survival and in the maintenance and expansion of stem cell-like populations, thought to be the underlying cause of tumor recurrence and resistance to treatment. However, the therapeutic value of targeting β-catenin activity in HNSCC has not been explored.
METHODS: We utilized a combination of computational and experimental profiling approaches to examine the effects of blocking the interaction between β-catenin and cAMP-responsive element binding (CREB)-binding protein (CBP) using the small molecule inhibitor ICG-001. We generated and annotated in vitro treatment gene expression signatures of HNSCC cells, derived from human oral squamous cell carcinomas (OSCCs), using microarrays. We validated the anti-tumorigenic activity of ICG-001 in vivo using SCC-derived tumor xenografts in murine models, as well as embryonic zebrafish-based screens of sorted stem cell-like subpopulations. Additionally, ICG-001-inhibition signatures were overlaid with RNA-sequencing data from The Cancer Genome Atlas (TCGA) for human OSCCs to evaluate its association with tumor progression and prognosis.
RESULTS: ICG-001 inhibited HNSCC cell proliferation and tumor growth in cellular and murine models, respectively, while promoting intercellular adhesion and loss of invasive phenotypes. Furthermore, ICG-001 preferentially targeted the ability of subpopulations of stem-like cells to establish metastatic tumors in zebrafish. Significantly, interrogation of the ICG-001 inhibition-associated gene expression signature in the TCGA OSCC human cohort indicated that the targeted β-catenin/CBP transcriptional activity tracked with tumor status, advanced tumor grade, and poor overall patient survival.
CONCLUSIONS: Collectively, our results identify β-catenin/CBP interaction as a novel target for anti-HNSCC therapy and provide evidence that derivatives of ICG-001 with enhanced inhibitory activity may serve as an effective strategy to interfere with aggressive features of HNSCC.

Benkheil M, Paeshuyse J, Neyts J, et al.
HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis.
Biochem Pharmacol. 2018; 155:305-315 [PubMed] Related Publications
HCV is a major risk factor for hepatocellular carcinoma (HCC). HCC development in chronically infected HCV patients has until now been attributed to persistent inflammation and interference of viral proteins with host cell signaling. Since activation of the epidermal growth factor receptor (EGFR) presents a crucial step in HCV entry, we aimed at investigating whether EGFR signaling may contribute to the pathogenesis of HCV-related HCC. By applying microarray analysis, we generated a gene expression signature for secreted proteins in HCV-infected hepatoma cells. This gene signature was enriched for inflammatory and angiogenic processes; both crucially involved in HCC development. RT-qPCR analysis, conducted on the entire list of upregulated genes, confirmed induction of 11 genes (AREG, IL8, CCL20, CSF1, GDF15, IGFBP1, VNN3, THBS1 and PAI-1) in a virus titer- and replication-dependent manner. EGFR activation in hepatoma cells largely mimicked the gene signature seen in the infectious HCV model. Further, the EGFR-ERK pathway, but not Akt signaling, was responsible for this gene expression profile. Finally, microarray analysis conducted on clinical data from the GEO database, revealed that our validated gene expression profile is significantly represented in livers of patients with HCV-related liver pathogenesis (cirrhosis and HCC) compared to healthy livers. Taken together, our data indicate that persistent activation of EGFR-ERK signaling in chronically infected HCV patients may induce a specific pro-inflammatory and pro-angiogenic signature that presents a new mechanism by which HCV can promote liver cancer pathogenesis. A better understanding of the key factors in HCV-related oncogenesis, may efficiently direct HCC drug development.

Tsai YJ, Huang SC, Lin HH, et al.
Differences in gene mutations according to gender among patients with colorectal cancer.
World J Surg Oncol. 2018; 16(1):128 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: The incidence, site distribution, and mortality rates of patients with colorectal cancer differ according to gender. We investigated gene mutations in colorectal patients and wanted to examine gender-specific differences.
METHODS: A total of 1505 patients who underwent surgical intervention for colorectal cancer were recruited from March 2000 to January 2010 at Taipei Veterans' General Hospital and investigated for gene mutations in K-ras, N-ras, H-ras, BRAF, loss of 18q, APC, p53, SMAD4, TGF-β, PIK3CA, PTEN, FBXW7, AKT1, and MSI.
RESULTS: There were significant differences between male and female patients in terms of tumor location (p < 0.0001) and pathological stage (p = 0.011). The female patients had significantly more gene mutations in BRAF (6.4 vs. 3.3%, OR 1.985, p = 0.006), TGF-β (4.7 vs. 2.5%, OR 1.887, p = 0.027), and revealed a MSI-high status (14.0 vs. 8.3%, OR 1.800, p = 0.001) than male patients. Male patients had significantly more gene mutations in N-ras (5.1 vs. 2.3%, OR 2.227, p = 0.012); however, the significance was maintained only for mutations in BRAF (OR 2.104, p = 0.038), MSI-high status (OR 2.003 p = 0.001), and N-ras (OR 3.000, p = 0.010) after the groups were divided by tumor site.
CONCLUSION: Gene mutations in BRAF, MSI-high status, and N-ras differ according to gender among patients with colorectal cancer.

Chao WT, Liu CH, Lai CR, et al.
Alpha-fetoprotein-producing ovarian clear cell adenocarcinoma with fetal gut differentiation: a rare case report and literature review.
J Ovarian Res. 2018; 11(1):52 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Alpha-fetoprotein (AFP) is a useful tumor marker for ovarian germ cell tumors, particularly yolk sac tumor (YST). It is valuable for both diagnosis and further follow-up. Epithelial ovarian carcinoma (EOC) rarely secretes AFP, especially for clear cell type and in the postmenopausal women. Based on the limited knowledge about AFP-producing clear cell type EOC, a case and literature review on this topic is extensively reviewed.
CASE PRESENTATION: We report a 55-year-old postmenopausal woman experienced vaginal spotting for one month, and serum level of AFP was 60,721 ng/ml initially. Histological examination was clear cell type EOC. Tumor cells revealed strong immunoreactivity for glypican-3 (GPC3) and AFP and weak for hepatocyte nuclear factor-1 beta (HNF-1 beta), but negative for CD30, making the diagnosis of AFP-producing clear cell type EOC with fetal gut differentiation in focal areas, FIGO (International Federation of Gynecology and Obstetrics) IIIc. Although the patient underwent an intensive treatment, including optimal debulking surgery and multi-agent chemotherapy, the patient died of disease. To provide a better understanding of clinical and molecular characteristics of the AFP-producing clear cell type EOC, we conducted a systematic literature review.
CONCLUSIONS: A total of three papers described the AFP-producing clear cell type EOC are available. The overall survival rate of these cases, including the current case is 50%. Although immunohistochemical examination is not always needed in routine for the diagnosis of clear cell type EOC, to distinguish from other tumors, especially germ cell tumors, or to provide the better way to monitor therapeutic response or to evaluate the disease status, immunostaining, including GPC3, HNF-1 beta, CD30, cytokeratin 7 or 20, and AFP is taken into account. Due to rarity, the appropriate chemotherapy regimen and the biological behavior of AFP-producing clear cell type EOC are still unclear.

Hariharan N, Ashcraft KA, Svatek RS, et al.
Adipose Tissue-Secreted Factors Alter Bladder Cancer Cell Migration.
J Obes. 2018; 2018:9247864 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Background: Obesity is associated with an increased risk of bladder cancer recurrence. This study investigated the role of adipose tissue in bladder cancer progression.
Methods: Gene expression profiling was performed on adipose tissues collected from normal weight (
Results: Expression profiling demonstrated depot-specific or body mass index-specific differences. Increased T24 cell migration was observed using CM harvested from all ASCs. ASC CM from an obese patient significantly increased T24 cell migration and invasion compared to ASC CM collected from normal weight and overweight patients. We identified abundant expression of CXCL1, PAI1, IL6, CX3CL1, and CCL2 in all CM. Exogenous treatment of T24 cells with PAI1, IL6, and CXCL1 enhanced migration. Depletion of CXCL1, PAI1, and IL6 in an obese patient ASC CM abrogated T24 migration.
Conclusion: Factors secreted by adipose tissue influence the migration of bladder tumor cells and could play an active role in tumor progression.

Li S, Wei X, He J, et al.
Plasminogen activator inhibitor-1 in cancer research.
Biomed Pharmacother. 2018; 105:83-94 [PubMed] Related Publications
[Despite as a major inhibitor of urokinase (uPA), paradoxically,] Plasminogen activator inhibitor-1 (PAI-1) has been validated to be highly expressed in various types of tumor biopsy tissues or plasma compared with controls based on huge clinical data bases analysis, more importantly, PAI-1 alone or in conjunction with uPA have been identified as prognostic for disease progression and relapse in certain cancer types. particularly in breast cancer. In addition to play important roles in cell adhesion, migration and invasion, PAI-1 has been reported to induce tumor vascularization and thus promote cell dissemination and tumor metastasis. Furthermore, there are many tumor promoting factors involved in the modulation of PAI-1 expression and activity, which will strengthen the pro-tumorigenic roles of PAI-1. Undoubtedly, PAI-1 may be a promising target for therapeutic intervention of specific cancer treatment. In fact, some PAI-1 inhibitors are currently being evaluated in cancer therapy, which may be developed to new antitumor agents in the future.

Keam SP, Gulati T, Gamell C, et al.
Biodosimetric transcriptional and proteomic changes are conserved in irradiated human tissue.
Radiat Environ Biophys. 2018; 57(3):241-249 [PubMed] Related Publications
Transcriptional dosimetry is an emergent field of radiobiology aimed at developing robust methods for detecting and quantifying absorbed doses using radiation-induced fluctuations in gene expression. A combination of RNA sequencing, array-based and quantitative PCR transcriptomics in cellular, murine and various ex vivo human models has led to a comprehensive description of a fundamental set of genes with demonstrable dosimetric qualities. However, these are yet to be validated in human tissue due to the scarcity of in situ-irradiated source material. This represents a major hurdle to the continued development of transcriptional dosimetry. In this study, we present a novel evaluation of a previously reported set of dosimetric genes in human tissue exposed to a large therapeutic dose of radiation. To do this, we evaluated the quantitative changes of a set of dosimetric transcripts consisting of FDXR, BAX, BCL2, CDKN1A, DDB2, BBC3, GADD45A, GDF15, MDM2, SERPINE1, TNFRSF10B, PLK3, SESN2 and VWCE in guided pre- and post-radiation (2 weeks) prostate cancer biopsies from seven patients. We confirmed the prolonged dose-responsivity of most of these transcripts in in situ-irradiated tissue. BCL2, GDF15, and to some extent TNFRSF10B, were markedly unreliable single markers of radiation exposure. Nevertheless, as a full set, these genes reliably segregated non-irradiated and irradiated tissues and predicted radiation absorption on a patient-specific basis. We also confirmed changes in the translated protein product for a small subset of these dosimeters. This study provides the first confirmatory evidence of an existing dosimetric gene set in less-accessible tissues-ensuring peripheral responses reflect tissue-specific effects. Further work will be required to determine if these changes are conserved in different tissue types, post-radiation times and doses.

Xu J, Zhang W, Tang L, et al.
Epithelial-mesenchymal transition induced PAI-1 is associated with prognosis of triple-negative breast cancer patients.
Gene. 2018; 670:7-14 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) is a key developmental program in which epithelial cells lose polarity and become mesenchymal cells, and that is often activated during cancer invasion and metastasis. Triple negative breast cancer (TNBC) patients have a relatively aggressive biological behavior with a high risk of distant recurrence and metastasis. Here, we stimulated TNBC cells to undergo EMT, and detected the protein expression profiles of the protein secretion. High-throughput data showed that EMT could promote TNBC cells to secret PAI-1. We found that TNBC-secreted PAI-1 could increase cell growth, migration and invasion, and the expression of EMT markers in the TNBC cell lines and xenograft PAI-1-/- mice model. Using a tissues microarray of 165 TNBC patients and published breast cancer database, we found PAI-1 expression was significantly elevated in the breast cancer tissues, comparing with the normal adjacent tissues and was associated with prognosis of patients with TNBC. Taken together, our results suggests an important role of PAI-1 in the EMT process of TNBC cells and illustrates the great potential of developing PAI-1-targeting therapy for clinical TNBC patients.

Kisanga EP, Tang Z, Guller S, Whirledge S
Glucocorticoid signaling regulates cell invasion and migration in the human first-trimester trophoblast cell line Sw.71.
Am J Reprod Immunol. 2018; 80(1):e12974 [PubMed] Related Publications
PROBLEM: The development of the placenta and its functions are sensitive to infection and stress, which can activate the hypothalamic-pituitary-adrenal axis. Adrenally produced glucocorticoids are the body's primary mediators of the inflammatory and stress response. Although the glucocorticoid receptor (GR) is expressed in all human villous trophoblast tissue, the effect of glucocorticoids on placentation is not well understood.
METHOD OF STUDY: Using microarray analysis, we identified the glucocorticoid-regulated transcriptional profile in the immortalized first-trimester extravillous trophoblast cell line Swan.71 (Sw.71).
RESULTS: The synthetic glucocorticoid dexamethasone significantly regulated 3829 genes, including genes associated with cell movement, growth, and survival. SERPINE1, an inhibitor of trophoblast invasion, was induced by glucocorticoids in Sw.71 cells and is associated with the pathogenesis of preeclampsia. Glucocorticoid treatment induced recruitment of activated polymerase II and GR to the SERPINE1 promoter, suggesting a mechanism for transcriptional regulation. Functionally, glucocorticoid treatment inhibited cell proliferation, migration, and invasion.
CONCLUSION: These findings suggest that glucocorticoids regulate extravillous trophoblast functions by altering the gene expression profile, which may contribute to the pathogenesis of reproductive disorders such as preeclampsia and IUGR.

Peterle GT, Maia LL, Trivilin LO, et al.
PAI-1, CAIX, and VEGFA expressions as prognosis markers in oral squamous cell carcinoma.
J Oral Pathol Med. 2018; 47(6):566-574 [PubMed] Related Publications
BACKGROUND: In oral squamous cell carcinoma (OSCC), the HIF-1 complex promotes the expression of genes involved in specific mechanisms of cell survival under hypoxic conditions, such as plasminogen activator inhibitor-1 (PAI-1), carbonic anhydrase 9 (CAIX), and vascular endothelial growth factor A (VEGFA). The study aimed to investigate the presence and prognostic value of PAI-1, CAIX, and VEGFA in OSCC.
MATERIALS AND METHODS: Immunohistochemistry was used to analyze the expressions of these proteins in 52 tumoral tissue samples of patients with OSCC, surgically treated and followed by a minimum of 24 months after surgery. The correlations between protein expressions and clinicopathological parameters and prognosis were analyzed.
RESULTS: Positive PAI-1 membrane expression was significantly associated with local disease relapse (P = .027). Multivariate analysis revealed that the positive PAI-1 membrane expression is an independent marker for local disease relapse, with approximately 14-fold increased risk when compared to negative expression (OR = 14.49; CI = 1.40-150.01, P = .025). Strong PAI-1 cytoplasmic expression was significantly associated with the less differentiation grade (P = .027). Strong CAIX membrane expression was significantly associated with local disease-free survival (P = .038). Positive CAIX cytoplasmic expression was significantly associated with lymph node affected (P = .025) and with disease-specific survival (P = .022). Multivariate analysis revealed that the positive CAIX cytoplasmic expression is an independent risk factor for disease-related death, increasing their risk approximately 3-fold when compared to negative expression (HR = 2.84; CI = 1.02-7.87, P = .045). Positive VEGFA cytoplasmic expression was significantly associated with less differentiation grade (P = .035).
CONCLUSION: Our results suggest a potential role for these expressions profiles as tumor prognostic markers in OSCC patients.

Park JY, Forman D, Waskito LA, et al.
Epidemiology of
Toxins (Basel). 2018; 10(4) [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Gastric cancer is a major health burden and is the fifth most common malignancy and the third most common cause of death from cancer worldwide. Development of gastric cancer involves several aspects, including host genetics, environmental factors, and

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SERPINE1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999