ACTA2

Gene Summary

Gene:ACTA2; actin, alpha 2, smooth muscle, aorta
Aliases: AAT6, ACTSA, MYMY5
Location:10q23.31
Summary:The protein encoded by this gene belongs to the actin family of proteins, which are highly conserved proteins that play a role in cell motility, structure and integrity. Alpha, beta and gamma actin isoforms have been identified, with alpha actins being a major constituent of the contractile apparatus, while beta and gamma actins are involved in the regulation of cell motility. This actin is an alpha actin that is found in skeletal muscle. Defects in this gene cause aortic aneurysm familial thoracic type 6. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Nov 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:actin, aortic smooth muscle
Source:NCBIAccessed: 14 March, 2017

Ontology:

What does this gene/protein do?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 14 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 14 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ACTA2 (cancer-related)

Li X, Zhang G, Wang Y, et al.
Loss of periplakin expression is associated with the tumorigenesis of colorectal carcinoma.
Biomed Pharmacother. 2017; 87:366-374 [PubMed] Related Publications
Periplakin (PPL), a member of the plakin protein family, has been reported to be down-expressed in urothelial carcinoma. The role of PPL in human colorectal cancer, however, remains largely unknown. Also little is known about the contribution of PPL to the malignant property of colorectal cancer and the intracellular function of PPL. In this study, we demonstrated that PPL was apparently down-expressed in colon carcinomas compared with normal and para-carcinoma tissues, which was correlated with the tumor size. Enforced expression of PPL in HT29 cells inhibited its proliferation evidenced by decreased expression of phosphorylated ERK and PCNA. Furthermore, PPL overexpression could reduce metastasis and epithelial-mesenchymal transition (EMT) of HT29 cells, with decreased expression of N-cadherin, Snail, Slug and α-SMA while increased expression of E-cadherin. On the contrary, the PPL knockdown could promote the cell proliferation, migratory, invasive and EMT ability of HT29 cells. Moreover, enforced expression of PPL induced G1/G0 cell cycle arrest, with decreased cyclin D1, p-Rb and increased expression of p27(kib), which could be reversed by PPL knockdown. In addition, PPL overexpression inhibited the growth of colon cancer allograft in vivo. Taken together, acted as a tumor suppressor in colon cancer progression, PPL could be a new biomarker or potential therapeutic target in colon cancer.

Riwaldt S, Bauer J, Wehland M, et al.
Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach.
Int J Mol Sci. 2016; 17(4):528 [PubMed] Free Access to Full Article Related Publications
Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

Weigand A, Boos AM, Tasbihi K, et al.
Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells.
Breast Cancer Res. 2016; 18(1):32 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is a need to establish more cell lines from breast tumors in contrast to immortalized cell lines from metastatic effusions in order to represent the primary tumor and not principally metastatic biology of breast cancer. This investigation describes the simultaneous isolation, characterization, growth and function of primary mammary epithelial cells (MEC), mesenchymal cells (MES) and adipose derived stem cells (ADSC) from four normal breasts, one inflammatory and one triple-negative ductal breast tumors.
METHODS: A total of 17 cell lines were established and gene expression was analyzed for MEC and MES (n = 42) and ADSC (n = 48) and MUC1, pan-KRT, CD90 and GATA-3 by immunofluorescence. DNA fingerprinting to track cell line identity was performed between original primary tissues and isolates. Functional studies included ADSC differentiation, tumor MES and MEC invasion co-cultured with ADSC-conditioned media (CM) and MES adhesion and growth on 3D-printed scaffolds.
RESULTS: Comparative analysis showed higher gene expression of EPCAM, CD49f, CDH1 and KRTs for normal MEC lines; MES lines e.g. Vimentin, CD10, ACTA2 and MMP9; and ADSC lines e.g. CD105, CD90, CDH2 and CDH11. Compared to the mean of all four normal breast cell lines, both breast tumor cell lines demonstrated significantly lower ADSC marker gene expression, but higher expression of mesenchymal and invasion gene markers like SNAI1 and MMP2. When compared with four normal ADSC differentiated lineages, both tumor ADSC showed impaired osteogenic and chondrogenic but enhanced adipogenic differentiation and endothelial-like structures, possibly due to high PDGFRB and CD34. Addressing a functional role for overproduction of adipocytes, we initiated 3D-invasion studies including different cell types from the same patient. CM from ADSC differentiating into adipocytes induced tumor MEC 3D-invasion via EMT and amoeboid phenotypes. Normal MES breast cells adhered and proliferated on 3D-printed scaffolds containing 20 fibers, but not on 2.5D-printed scaffolds with single fiber layers, important for tissue engineering.
CONCLUSION: Expression analyses confirmed successful simultaneous cell isolations of three different phenotypes from normal and tumor primary breast tissues. Our cell culture studies support that breast-tumor environment differentially regulates tumor ADSC plasticity as well as cell invasion and demonstrates applications for regenerative medicine.

Etzold A, Galetzka D, Weis E, et al.
CAF-like state in primary skin fibroblasts with constitutional BRCA1 epimutation sheds new light on tumor suppressor deficiency-related changes in healthy tissue.
Epigenetics. 2016; 11(2):120-31 [PubMed] Free Access to Full Article Related Publications
Constitutive epimutations of tumor suppressor genes are increasingly considered as cancer predisposing factors equally to sequence mutations. In light of the emerging role of the microenvironment for cancer predisposition, initiation, and progression, we aimed to characterize the consequences of a BRCA1 epimutation in cells of mesenchymal origin. We performed a comprehensive molecular and cellular comparison of primary dermal fibroblasts taken from a monozygous twin pair discordant for recurrent cancers and BRCA1 epimutation, whose exceptional clinical case we previously reported in this journal. Comparative transcriptome analysis identified differential expression of extracellular matrix-related genes and pro-tumorigenic growth factors, such as collagens and CXC chemokines. Moreover, genes known to be key markers of so called cancer-associated fibroblasts (CAFs), such as ACTA2, FAP, PDPN, and TNC, were upregulated in fibroblasts of the affected twin (BRCA1(mosMe)) in comparison to those of the healthy twin (BRCA1(wt)). Further analyses detected CAF-typical cellular features, including an elevated growth rate, enhanced migration, altered actin architecture and increased production of ketone bodies in BRCA1(mosMe) fibroblasts compared to BRCA1(wt) fibroblasts. In addition, conditioned medium of BRCA1(mosMe) fibroblasts was more potent than conditioned medium of BRCA1(wt) fibroblasts to promote cell proliferation in an epithelial and a cancer cell line. Our data demonstrate, that a CAF-like state is not an exclusive feature of tumor-associated tissue but also exists in healthy tissue with tumor suppressor deficiency. The naturally occurring phenomenon of twin fibroblasts differing in their BRCA1 methylation status revealed to be a unique powerful tool for exploring tumor suppressor deficiency-related changes in healthy tissue, reinforcing their significance for cancer predisposition.

Hatta M, Naganuma K, Kato K, Yamazaki J
3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line.
Biochem Biophys Res Commun. 2015 Dec 4-11; 468(1-2):269-73 [PubMed] Related Publications
In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial-mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell-cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns.

Piersma B, de Rond S, Werker PM, et al.
YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts.
Am J Pathol. 2015; 185(12):3326-37 [PubMed] Related Publications
Dupuytren disease is a fibrotic disorder characterized by contraction of myofibroblast-rich cords and nodules in the hands. The Hippo member Yes-associated protein 1 (YAP1) is activated by tissue stiffness and the profibrotic transforming growth factor-β1, but its role in cell fibrogenesis is yet unclear. We hypothesized that YAP1 regulates the differentiation of dermal fibroblasts into highly contractile myofibroblasts and that YAP1 governs the maintenance of a myofibroblast phenotype in primary Dupuytren cells. Knockdown of YAP1 in transforming growth factor-β1-stimulated dermal fibroblasts decreased the formation of contractile smooth muscle α-actin stress fibers and the deposition of collagen type I, which are hallmark features of myofibroblasts. Translating our findings to a clinically relevant model, we found that YAP1 deficiency in Dupuytren disease myofibroblasts resulted in decreased expression of ACTA2, COL1A1, and CCN2 mRNA, but this did not result in decreased protein levels. YAP1-deficient Dupuytren myofibroblasts showed decreased contraction of a collagen hydrogel. Finally, we showed that YAP1 levels and nuclear localization were elevated in affected Dupuytren disease tissue compared with matched control tissue and partly co-localized with smooth muscle α-actin-positive cells. In conclusion, our data show that YAP1 is a regulator of myofibroblast differentiation and contributes to the maintenance of a synthetic and contractile phenotype, in both transforming growth factor-β1-induced myofibroblast differentiation and primary Dupuytren myofibroblasts.

Arva NC, Schafernak KT
Rare Presentations of Epstein-Barr Virus--Associated Smooth Muscle Tumor in Children.
Pediatr Dev Pathol. 2016 Mar-Apr; 19(2):132-8 [PubMed] Related Publications
Epstein-Barr virus (EBV) has oncogenic potential and has been implicated in the etiology of a wide range of malignancies. Certain EBV-driven neoplasms, such as smooth muscle tumors (SMTs), manifest typically in immunocompromised patients. In children, these neoplasms have been encountered in the setting of primary immune disorders, specifically severe combined and common variable immunodeficiency syndromes. Human immunodeficiency virus infection and posttransplant immunosuppression, in particular liver and kidney transplantation, likewise increase the risk in the pediatric population. The location of these neoplasms appears related to the type of immunodeficiency: in acquired immunodeficiency syndrome they are frequently located intracranially or intraspinally, whereas after transplant they usually involve the liver or lung. We report 2 distinct cases of EBV-related SMT, unique through their coassociated immunosuppressive state or location: the 1st occurred in a patient with immunodeficiency secondary to NEMO gene mutation following hematopoietic stem cell transplantation; the 2nd developed in the orbit after heart transplant.

Basile LE, Hoch B, Dillon JK
Synovial Sarcoma of the Tongue: Report of a Case.
J Oral Maxillofac Surg. 2016; 74(1):95-103 [PubMed] Related Publications
This report outlines the workup and management of a 55-year-old woman with a synovial sarcoma of the lateral border of the tongue that was initially diagnosed as a glomus tumor. A review was performed of the literature on synovial sarcomas of the oral cavity and current National Comprehensive Cancer Network guidelines. Synovial sarcomas of the tongue are rare neoplasms, with variable morphologic microscopic types and immunohistochemical profiles. Fluorescence in situ hybridization analysis of the known gene translocation also can be used in diagnosis. According to the literature, resection of the tumor is the current treatment of choice; however, owing to the rarity of this entity, diagnosis and management prove challenging for the oral and maxillofacial surgeon.

Tanaka K, Miyata H, Sugimura K, et al.
miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts.
Carcinogenesis. 2015; 36(8):894-903 [PubMed] Related Publications
There is increasing evidence that the expression of microRNA (miRNA) in cancer is associated with chemosensitivity but the mechanism of miRNA-induced chemoresistance has not been fully elucidated. The aim of this study was to examine the role of extracellular miRNA in the response to chemotherapy in esophageal cancer. First, serum expression of miRNAs selected by miRNA array was measured by quantitative reverse transcription-polymerase chain reaction in 68 patients with esophageal cancer who received cisplatin-based chemotherapy to examine the relationship between miRNA expression and response to chemotherapy. The serum expression levels of 18 miRNAs were different between responders and non-responders by miRNA array. Of these, high expression levels of miR-27a/b correlated with poor response to chemotherapy in patients with esophageal cancer. Next, in vitro assays were conducted to investigate the mechanism of miRNA-induced chemoresistance. Although transfection of miR-27a/b to cancer cells had no significant impact on chemosensitivity, esophageal cancer cells cultured in supernatant of miR-27a/b-transfected normal fibroblast showed reduced chemosensitivity to cisplatin, compared with cancer cells cultured in supernatant of normal fibroblast. MiR-27a/b-transfected normal fibroblast showed α-smooth muscle actin (α-SMA) expression, a marker of cancer-associated fibroblasts (CAF) and increased production of transforming growth factor-β (TGF-β). Chemosensitivity recovered after administration of neutralizing antibody of TGF-β to the supernatant transfer experiments. Our results indicated that miR-27a/b is involved in resistance to chemotherapy in esophageal cancer, through miR-27a/b-induced transformation of normal fibroblast into CAF.

Zhang S, Thakur A, Liang Y, et al.
Polymorphisms in C-reactive protein and Glypican-5 are associated with lung cancer risk and Gartrokine-1 influences Cisplatin-based chemotherapy response in a Chinese Han population.
Dis Markers. 2015; 2015:824304 [PubMed] Free Access to Full Article Related Publications
The role of genetics in progression of cancer is an established fact, and susceptibility risk and difference in outcome to chemotherapy may be caused by the variation in low-penetrance alleles of risk genes. We selected seven genes (CRP, GPC5, ACTA2, AGPHD1, SEC14L5, RBMS3, and GKN1) that previously reported link to lung cancer (LC) and genotyped single nucleotide polymorphisms (SNPs) of these genes in a case-control study. A protective allele "C" was found in rs2808630 of the C-reactive protein (CRP). Model association analysis found genotypes "T/C" and "C/C" in the dominant model and genotype "T/C" in the overdominant model of rs2808630 associated with reduced LC risk. Gender-specific analysis in each model showed that genotypes "T/T" and "C/C" in rs2352028 of the Glypican 5 (GPC5) were associated with increased LC risk in males. Logistic regression analysis showed "C/T" genotype carriers of rs4254535 in the Gastrokine 1 (GKN1) had less likelihood to have chemotherapy response. Our results suggest a potential association between CRP and GPC5 variants with LC risk; variation in GKN1 is associated with chemotherapy response in the Chinese Han population.

Balla P, Maros ME, Barna G, et al.
Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone.
PLoS One. 2015; 10(5):e0125316 [PubMed] Free Access to Full Article Related Publications
Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in neoplastic stromal cells are associated with the clinical progression and worse prognosis in GCTB.

Bi D, Ning H, Liu S, et al.
Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.
Comput Biol Chem. 2015; 56:71-83 [PubMed] Related Publications
OBJECTIVES: To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis.
METHODS: The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.
RESULTS: Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways.
CONCLUSIONS: Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC.

Trevellin E, Scarpa M, Carraro A, et al.
Esophageal adenocarcinoma and obesity: peritumoral adipose tissue plays a role in lymph node invasion.
Oncotarget. 2015; 6(13):11203-15 [PubMed] Free Access to Full Article Related Publications
Obesity is associated with cancer risk in esophageal adenocarcinoma (EAC). Adipose tissue directly stimulates tumor progression independently from body mass index (BMI), but the mechanisms are not fully understood. We studied the morphological, histological and molecular characteristics of peritumoral and distal adipose tissue of 60 patients with EAC, to investigate whether depot-specific differences affect tumor behavior. We observed that increased adipocyte size (a hallmark of obesity) was directly associated with leptin expression, angiogenesis (CD31) and lymphangiogenesis (podoplanin); however, these parameters were associated with nodal metastasis only in peritumoral but not distal adipose tissue of patients. We treated OE33 cells with conditioned media (CM) collected from cultured biopsies of adipose tissue and we observed increased mRNA levels of leptin and adiponectin receptors, as well as two key regulator genes of epithelial-to-mesenchymal transition (EMT): alpha-smooth muscle actin (α-SMA) and E-cadherin. This effect was greater in cells treated with CM from peritumoral adipose tissue of patients with nodal metastasis and was partially blunted by a leptin antagonist. Therefore, peritumoral adipose tissue may exert a direct effect on the progression of EAC by secreting depot-specific paracrine factors, and leptin is a key player in this crosstalk.

Martinez LM, Labovsky V, Calcagno ML, et al.
CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients.
PLoS One. 2015; 10(3):e0121421 [PubMed] Free Access to Full Article Related Publications
Several studies have confirmed that the breast tumor microenvironment drives cancer progression and metastatic development. The aim of our research was to investigate the prognostic significance of the breast tumor microenvironment in untreated early breast cancer patients. Therefore, we analyzed the association of the expression of α-SMA, FSP, CD105 and CD146 in CD34-negative spindle-shaped stromal cells, not associated with the vasculature, in primary breast tumors with classical prognostic marker levels, metastatic recurrence, local relapse, disease-free survival, metastasis-free survival and the overall survival of patients. In the same way, we evaluated the association of the amount of intra-tumor stroma, fibroblasts, collagen deposition, lymphocytic infiltration and myxoid changes in these samples with the clinical-pathological data previously described. This study is the first to demonstrate the high CD105 expression in this stromal cell type as a possible independent marker of unfavorable prognosis in early breast cancer patients. Our study suggests that this new finding can be useful prognostic marker in the clinical-pathological routine.

Schweiger T, Nikolowsky C, Starlinger P, et al.
Stromal expression of heat-shock protein 27 is associated with worse clinical outcome in patients with colorectal cancer lung metastases.
PLoS One. 2015; 10(3):e0120724 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pulmonary metastases are common in patients with primary colorectal cancer (CRC). Heat-shock protein 27 (Hsp27) is upregulated in activated fibroblasts during wound healing and systemically elevated in various diseases. Cancer-associated fibroblasts (CAFs) are also thought to play a role as prognostic and predictive markers in various malignancies including CRC. Surprisingly, the expression of Hsp27 has never been assessed in CAFs. Therefore we aimed to investigate the expression level of Hsp27 in CAFs and its clinical implications in patients with CRC lung metastases.
METHODS: FFPE tissue samples from 51 pulmonary metastases (PMs) and 33 paired primary tumors were evaluated for alpha-SMA, CD31, Hsp27 and vimentin expression by immunohistochemistry and correlated with clinicopathological variables. 25 liver metastases served as control group. Moreover, serum samples (n=10) before and after pulmonary metastasectomy were assessed for circulating phospho-Hsp27 and total Hsp27 by ELISA.
RESULTS: Stromal expression of Hsp27 was observed in all PM and showed strong correlation with alpha-SMA (P<0.001) and vimentin (P<0.001). Strong stromal Hsp27 was associated with higher microvessel density in primary CRC and PM. Moreover, high stromal Hsp27 and αSMA expression were associated with decreased recurrence-free survival after pulmonary metastasectomy (P=0.018 and P=0.008, respectively) and overall survival (P=0.031 and P=0.017, respectively). Serum levels of phospho- and total Hsp27 dropped after metastasectomy to levels comparable to healthy controls.
CONCLUSIONS: Herein we describe for the first time that Hsp27 is highly expressed in tumor stroma of CRC. Stromal α-SMA and Hsp27 expressions correlate with the clinical outcome after pulmonary metastasectomy. Moreover, serum Hsp27 might pose a future marker for metastatic disease in CRC.

Trylcova J, Busek P, Smetana K, et al.
Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro.
Tumour Biol. 2015; 36(8):5873-9 [PubMed] Related Publications
Cancer-associated fibroblasts (CAFs) significantly influence biological properties of many tumors. The role of these mesenchymal cells is also anticipated in human gliomas. To evaluate the putative role of CAFs in glioblastoma, we tested the effect of CAF conditioned media on the proliferation and chemotaxis of glioma cells. The proliferation of glioma cells was stimulated to similar extent by both the normal fibroblasts (NFs) and CAF-conditioned media. Nevertheless, CAF-conditioned media enhanced the chemotactic migration of glioma cells significantly more potently than the media from normal fibroblasts. In order to determine whether CAF-like cells are present in human glioblastomas, immunofluorescence staining was performed on tissue samples from 20 patients using markers typical for CAFs. This analysis revealed regular presence of mesenchymal cells expressing characteristic CAF markers α-smooth muscle actin and TE-7 in human glioblastomas. These observations indicate the potential role of CAF-like cells in glioblastoma biology.

Matsuoka Y, Yoshida R, Nakayama H, et al.
The tumour stromal features are associated with resistance to 5-FU-based chemoradiotherapy and a poor prognosis in patients with oral squamous cell carcinoma.
APMIS. 2015; 123(3):205-14 [PubMed] Related Publications
It has been increasingly recognized that the tumour microenvironment is a critical factor involved in cancer progression. However, little is known about the clinical value of the stromal features in oral squamous cell carcinoma (OSCC). The purpose of this study was to determine the clinical significance of cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) in OSCC. OSCC specimens were obtained from 60 patients who underwent surgery following 5-fluorouracil-based chemoradiotherapy. Paraffin-embedded sections obtained from biopsy specimens were immunohistochemically analysed. The associations among CAFs, TAMs and various clinicopathological features were examined, and the effects of CAFs and TAMs on the prognosis were evaluated. In the group with a high level of CAFs, the incidence of advanced pT- and pN-stage cases was significantly higher than that in the group with the low level. A high TAMs tumour expression was significantly correlated with a poor response to preoperative chemoradiotherapy. A Kaplan-Meier analysis revealed that higher numbers of CAFs and TAMs were significantly correlated with a poor prognosis. These findings suggest that TAMs are a potential biomarker for predicting the clinical response to 5-FU-based chemoradiotherapy, and the expression status of the CAFs and TAMs may be useful for making treatment decisions to improve the survival of OSCC patients.

Illemann M, Eefsen RH, Bird NC, et al.
Tissue inhibitor of matrix metalloproteinase-1 expression in colorectal cancer liver metastases is associated with vascular structures.
Mol Carcinog. 2016; 55(2):193-208 [PubMed] Related Publications
Metastatic growth by colorectal cancer cells in the liver requires the ability of the cancer cells to interact with the new microenvironment. This interaction results in three histological growth patterns of liver metastases: desmoplastic, pushing, and replacement. In primary colorectal cancer several proteases, involved in the degradation of extracellular matrix components, are up-regulated. In liver metastases, their expression is growth pattern dependent. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a strong prognostic marker in plasma from colorectal cancer patients, with significant higher levels in patients with metastatic disease. We therefore wanted to determine the expression pattern of TIMP-1 in primary colorectal cancers and their matching liver metastases. TIMP-1 mRNA was primarily seen in α-smooth-muscle actin (α-SMA)-positive cells. In all primary tumors and liver metastases with desmoplastic growth pattern, TIMP-1 mRNA was primarily found in α-SMA-positive myofibroblasts located at the invasive front. Some α-SMA-positive cells with TIMP-1 mRNA were located adjacent to CD34-positive endothelial cells, identifying them as pericytes. This indicates that TIMP-1 in primary tumors and liver metastases with desmoplastic growth pattern has dual functions; being an MMP-inhibitor at the cancer periphery and involved in tumor-induced angiogenesis in the pericytes. In the liver metastases with pushing or replacement growth patterns, TIMP-1 was primarily expressed by activated hepatic stellate cells at the metastasis/liver parenchyma interface. These cells were located adjacent to CD34-positive endothelial cells, suggesting a function in tumor-induced angiogenesis. We therefore conclude that TIMP-1 expression is growth pattern dependent in colorectal cancer liver metastases.

Galván JA, García-Martínez J, Vázquez-Villa F, et al.
Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma.
BMC Cancer. 2014; 14:867 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The human COL11A1 gene has been shown to be up-regulated in stromal cells of colorectal tumours, but, so far, the immunodetection of procollagen 11A1, the primary protein product of COL11A1, has not been studied in detail in human colon adenocarcinomas. Some cancer-associated stromal cells seem to be derived from bone marrow mesenchymal cells; the expression of the COL11A1 gene and the parallel immunodetection of procollagen 11A1 have not been evaluated in these latter cells, either.
METHODS: We used quantitative RT-PCR and/or immunocytochemistry to study the expression of DES/desmin, VIM/vimentin, ACTA2/αSMA (alpha smooth muscle actin) and COL11A1/procollagen 11A1 in HCT 116 human colorectal adenocarcinoma cells, in immortalised human bone marrow mesenchymal cells and in human colon adenocarcinoma-derived cultured stromal cells. The immunodetection of procollagen 11A1 was performed with the new recently described DMTX1/1E8.33 mouse monoclonal antibody. Human colon adenocarcinomas and non-malignant colon tissues were evaluated by immunohistochemistry as well. Statistical associations were sought between anti-procollagen 11A1 immunoscoring and patient clinicopathological features.
RESULTS: Procollagen 11A1 was immunodetected in human bone marrow mesenchymal cells and in human colon adenocarcinoma-associated spindle-shaped stromal cells but not in colon epithelial or stromal cells of the normal colon. This immunodetection paralleled, in both kinds of cells, that of the other mesenchymal-related biomarkers studied: vimentin and alpha smooth muscle actin, but not desmin. Thus, procollagen 11A1(+) adenocarcinoma-associated stromal cells are similar to "activated myofibroblasts". In the series of human colon adenocarcinomas here studied, a high procollagen 11A1 expression was associated with nodal involvement (p = 0.05), the development of distant metastases (p = 0.017), and advanced Dukes stages (p = 0.047).
CONCLUSION: The immunodetection of procollagen 11A1 in cancer-associated stromal cells could be a useful biomarker for human colon adenocarcinoma characterisation.

Falcão AS, Kataoka MS, Ribeiro NA, et al.
A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.
PLoS One. 2014; 9(8):e105231 [PubMed] Free Access to Full Article Related Publications
Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1) derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1). Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG). Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

Liszka L
Ductal adenocarcinoma of the pancreas usually retained SMAD4 and p53 protein status as well as expression of epithelial-to-mesenchymal transition markers and cell cycle regulators at the stage of liver metastasis.
Pol J Pathol. 2014; 65(2):100-12 [PubMed] Related Publications
There are limited data on the biology of metastatic pancreatic ductal adenocarcinoma (PDAC). The aim of the present study was to compare the expression of immunohistochemical markers that may be involved in the development of metastatic disease in primary PDAC and in synchronous liver metastatic tissues. Thirty-two stains (corresponding to proteins encoded by 31 genes: SMAD4, TP53, ACTA2, CDH1, CDKN1A, CLDN1, CLDN4, CLDN7, CTNNB1, EGFR, ERBB2, FN1, KRT19, MAPK1/MAPK3, MAPK14, MKI67, MMP2, MMP9, MUC1 (3 antibodies), MUC5AC, MUC6, MTOR, MYC, NES, PTGS2, RPS6, RPS6KB1, TGFB1, TGFBR1, VIM) were evaluated using tissue microarray of 26 pairs of primary PDACs and their liver metastases. There were no significant differences in expression levels of examined proteins between primary and secondary lesions. In particular, metastatic PDAC retained the primary tumour's SMAD4 protein status in all and p53 protein status in all but one case. This surprising homogeneity also involved expression levels of markers of epithelial-to-mesenchymal transition as well as cell cycle regulators studied. In conclusion, the biological profiles of primary PDACs and their liver metastases seemed to be similar. Molecular alterations of PDAC related to a set of immunohistochemical markers examined in the present study were already present at the stage of localized disease.

Fu Z, Song P, Li D, et al.
Cancer-associated fibroblasts from invasive breast cancer have an attenuated capacity to secrete collagens.
Int J Oncol. 2014; 45(4):1479-88 [PubMed] Related Publications
Normal fibroblasts produce extracellular matrix (ECM) components that form the structural framework of tissues. Cancer-associated fibroblasts (CAFs) with an activated phenotype mainly contribute to ECM deposition and construction of cancer masses. However, the stroma of breast cancer tissues has been shown to be more complicated, and the mechanisms through which CAFs influence ECM deposition remain elusive. In this study, we found that the activated fibroblast marker α-smooth muscle actin (α-SMA) was only present in the stroma of breast cancer tissue, and the CAFs isolated from invasive breast cancer sample remained to be activated and proliferative in passages. To further assess the difference between CAFs and normal breast fibroblasts (NFs), MALDI TOF/TOF‑MS was used to analyze the secretory proteins of primary CAFs and NFs. In total, 2,903 and 3,023 proteins were identified. Mass spectrum quantitative assay and data analysis for extracellular proteins indicated that the CAFs produce less collagens and matrix-degrading enzymes compared with NFs. This finding was confirmed by western blot analysis. Furthermore, we discovered that reduced collagen deposition was present in the stroma of invasive breast cancer. These studies showed that although CAFs from invasive breast cancer possess an activated phenotype, they secreted less collagen and induced less ECM deposition in cancer stroma. In cancer tissue, the remodeling of stromal structure and tumor microenvironment might, therefore, be attributed to the biological changes in CAFs including their protein expression profile.

Ha SY, Yeo SY, Xuan YH, Kim SH
The prognostic significance of cancer-associated fibroblasts in esophageal squamous cell carcinoma.
PLoS One. 2014; 9(6):e99955 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer-associated fibroblasts (CAF) are activated fibroblasts in the cancer stroma and play an important role in cancer progression. Some reports have indicated the correlation between the expression of CAF markers and adverse prognosis in several cancers. However, no reports have studied CAF phenotype and its clinical relevance in esophageal squamous cell carcinoma (ESCC).
METHODS: We investigated CAF phenotype of ESCC based on histology and immunohistochemical expressions of five CAF markers such as fibroblast activation protein (FAP), smooth muscle actin (SMA), fibroblast-specific protein-1 (FSP1), platelet-derived growth factor receptor (PDGFRα), and PDGFRβ in 116 ESCC tissue samples. Besides, we also examined the correlation of the CAF phenotype with clinical relevance as well as other cancer-microenvironment related factors.
RESULTS: Histologically immature CAF phenotype was correlated with poor prognosis (p<0.001) and associated with increased microvessel density, increased tumor associated macrophages, and epithelial to mesenchymal transition. CAF markers were characteristically expressed in stromal fibroblast close to tumor cells and the expression pattern of 5 CAF markers was highly heterogeneous in every individual cases. Of five CAF markers, SMA, FSP1, and PDGFRα were unfavorable prognostic indicators of ESCC. The number of positive CAF markers was greater in ESCC with immature CAFs than in those with mature ones.
CONCLUSIONS: Our results demonstrate that histologic classification of CAF phenotype is a reliable and significant prognostic predictor in ESCC. CAF markers have the potential to be diagnostic and therapeutic targets in ESCC.

Chen Y, Zou L, Zhang Y, et al.
Transforming growth factor-β1 and α-smooth muscle actin in stromal fibroblasts are associated with a poor prognosis in patients with clinical stage I-IIIA nonsmall cell lung cancer after curative resection.
Tumour Biol. 2014; 35(7):6707-13 [PubMed] Related Publications
The aims of this study were to investigate the expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in surgical resection specimens from nonsmall cell lung cancer (NSCLC) and to evaluate the prognostic significance of this gene expression in stromal fibroblasts for patients with clinical stage I-IIIA NSCLC. The immunohistochemical expression of TGF-β1 and α-SMA was evaluated in 78 formalin-fixed paraffin-embedded tumor specimens from clinical stage I-IIIA NSCLC. Correlations between this gene expression and the clinicopathologic characteristics were determined by chi-square test. The prognostic impact of this gene expression in stromal fibroblasts with regard to overall survival (OS) was determined by Kaplan-Meier and Cox hazard proportional model. The percentages of high TGF-β1 expression in stromal fibroblasts and cancer cells were 19.2 % (15/78) and 35.9 % (28/78), respectively. There were 28.2 % (22/78) of patients with high α-SMA expression in stromal fibroblasts. The analysis revealed a significant positive association between TGF-β1 expression in stromal fibroblasts and in cancer cells (χ (2) = 4.86, p = 0.03). No significant association was found between TGF-β1 in cancer cells and α-SMA expression in stromal fibroblasts (χ (2) = 0.978, p = 0.326). The 3-year OS rates with low and high TGF-β1 expression in stromal fibroblasts were 52.4 and 26.7 %, respectively (χ (2) = 5.42, p = 0.019). The 3-year OS rates with low and high α-SMA expression in stromal fibroblasts were 53.9 and 31.0 %, respectively (χ (2) =5.01, p=0.025). The multivariate analysis revealed that clinical stage and TGF-β1 and α-SMA expression levels in stromal fibroblasts were identified as independent predictive factors of OS. The results suggest that the expression level of TGF-β1 and α-SMA in stromal fibroblasts may have prognostic significance in patients with clinical stage I-IIIA NSCLC after curative resection.

Kojima M, Higuchi Y, Yokota M, et al.
Human subperitoneal fibroblast and cancer cell interaction creates microenvironment that enhances tumor progression and metastasis.
PLoS One. 2014; 9(2):e88018 [PubMed] Free Access to Full Article Related Publications
BACKGROUNDS: Peritoneal invasion in colon cancer is an important prognostic factor. Peritoneal invasion can be objectively identified as periotoneal elastic laminal invasion (ELI) by using elastica stain, and the cancer microenvironment formed by the peritoneal invasion (CMPI) can also be observed. Cases with ELI more frequently show distant metastasis and recurrence. Therefore, CMPI may represent a particular milieu that facilitates tumor progression. Pathological and biological investigations into CMPI may shed light on this possibly distinctive cancer microenvironment.
METHODS: We analyzed area-specific tissue microarrays to determine the pathological features of CMPI, and propagated subperitoneal fibroblasts (SPFs) and submucosal fibroblasts (SMFs) from human colonic tissue. Biological characteristics and results of gene expression profile analyses were compared to better understand the peritoneal invasion of colon cancer and how this may form a special microenvironment through the interaction with SPFs. Mouse xenograft tumors, derived by co-injection of cancer cells with either SPFs or SMFs, were established to evaluate their active role on tumor progression and metastasis.
RESULTS: We found that fibrosis with alpha smooth muscle actin (α-SMA) expression was a significant pathological feature of CMPI. The differences in proliferation and gene expression profile analyses suggested SPFs and SMFs were distinct populations, and that SPFs were characterized by a higher expressions of extracellular matrix (ECM)-associated genes. Furthermore, compared with SMFs, SPFs showed more variable alteration in gene expressions after cancer-cell-conditioned medium stimulation. Gene ontology analysis revealed that SPFs-specific upregulated genes were enriched by actin-binding or contractile-associated genes including α-SMA encoding ACTA2. Mouse xenograft tumors derived by co-injection of cancer cells with SPFs showed enhancement of tumor growth, metastasis, and capacity for tumor formation compared to those derived from co-injection with cancer cells and SMFs.
CONCLUSIONS: CMPI is a special microenvironment, and interaction of SPFs and cancer cells within CMPI promote tumor growth and metastasis.

D'Anselmi F, Masiello MG, Cucina A, et al.
Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.
PLoS One. 2013; 8(12):e83770 [PubMed] Free Access to Full Article Related Publications
The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White) from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog). Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.

Luo Y, Cui X, Zhao J, et al.
Cells susceptible to epithelial-mesenchymal transition are enriched in stem-like side population cells from prostate cancer.
Oncol Rep. 2014; 31(2):874-84 [PubMed] Related Publications
Accumulating evidence suggests that epithelial-mesenchymal transition (EMT) acts as an important factor for the promotion of tumor progression. Strategies for suppressing EMT remain the subject of ongoing research. In the present study, fluorescence-activated cell sorting (FACS) was used to isolate side population (SP) cells from human prostate cancer (PCa) cell lines and xenograft tissues. After identifying their molecular and functional stem-like characteristics, stem-like SP cells from a cell line and from xenograft tissue were transfected with hypoxia inducible factor-1α (HIF-1α). The potential of the prostate stem-like SP cells to undergo EMT was compared with that in their bulk counterparts after HIF-1α introduction. Stem-like SP cells acquired more complete EMT molecular features and exhibited stronger aggressive capability than the homologous bulk population cells both in vitro (proliferation and invasion) and in vivo (tumorigenesis and metastasis formation). We, therefore, concluded that EMT is closely associated with tumor heterogeneity, and that PCa cells susceptible to EMT are enriched in stem-like SP cells. These findings disclose a new approach, targeting the cellular basis of the EMT process that may help to identify effective and accurate methods for suppressing tumor growth and preventing distant dissemination.

Xu LN, Xu BN, Cai J, et al.
Tumor-associated fibroblast-conditioned medium promotes tumor cell proliferation and angiogenesis.
Genet Mol Res. 2013; 12(4):5863-71 [PubMed] Related Publications
This study aimed to explore how tumor-associated fibroblasts (TAFs) promote the proliferation and angiogenesis of tumor cells via the paracrine mechanism in vitro. Conditioned media (CM) of ovarian TAFs and normal fibroblasts (NFs) were collected. Ovarian cancer cells (OCCs) were treated with 2 mL TAFs-CM and NFs-CM in experimental and control groups, respectively; 20 mM SB431512, a specific small molecule inhibitor of transforming growth factor-β (TGF-β), was added in the experimental group as the intervention group. The cell cycle was determined in each group. mRNA expressions of proliferating cell nuclear antigen (PCNA), α-smooth muscle actin (α-SMA), and vascular endothelial growth factor (VEGF), and protein expressions of α-SMA and VEGF were detected in each group. Proliferation of OCCs was significantly promoted in the experimental group compared with that of the control group. The proliferative effect was obviously inhibited in the intervention group. The mRNA expressions of PCNA, α-SMA, and VEGF, and protein expressions of α-SMA and VEGF were all dramatically up-regulated in each group, and were strongly inhibited by SB-431512. TAFs promote the proliferation of OCCs via paracrine and up-regulated expression of angiogenic genes and proteins, which can be effectively inhibited by inhibiting the TGF-β signaling pathway.

Rosenberg EE, Prudnikova TY, Zabarovsky ER, et al.
D-glucuronyl C5-epimerase cell type specifically affects angiogenesis pathway in different prostate cancer cells.
Tumour Biol. 2014; 35(4):3237-45 [PubMed] Related Publications
D-glucuronyl C5-epimerase (GLCE) is involved in breast and lung carcinogenesis as a potential tumor suppressor gene, acting through inhibition of tumor angiogenesis and invasion/metastasis pathways. However, in prostate tumors, increased GLCE expression is associated with advanced disease, suggesting versatile effects of GLCE in different cancers. To investigate further the potential cancer-promoting effect of GLCE in prostate cancer, GLCE was ectopically re-expressed in morphologically different LNCaP and PC3 prostate cancer cells. Transcriptional profiles of normal PNT2 prostate cells, LNCaP, PC3 and DU145 prostate cancer cells, and GLCE-expressing LNCaP and PC3 cells were determined. Comparative analysis revealed the genes whose expression was changed in prostate cancer cells compared with normal PNT2 cells, and those differently expressed between the cancer cell lines (ACTA2, IL6, SERPINE1, TAGLN, SEMA3A, and CDH2). GLCE re-expression influenced mainly angiogenesis-involved genes (ANGPT1, SERPINE1, IGF1, PDGFB, TNF, IL8, TEK, IFNA1, and IFNB1) but in a cell type-specific manner (from basic deregulation of angiogenesis in LNCaP cells to significant activation in PC3 cells). Invasion/metastasis pathway was also affected (MMP1, MMP2, MMP9, S100A4, ITGA1, ITGB3, ERBB2, and FAS). The obtained results suggest activation of angiogenesis as a main molecular mechanism of pro-oncogenic effect of GLCE in prostate cancer. GLCE up-regulation plus expression pattern of a panel of six genes, discriminating morphologically different prostate cancer cell sub-types, is suggested as a potential marker of aggressive prostate cancer.

Herrera A, Herrera M, Alba-Castellón L, et al.
Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells.
Int J Cancer. 2014; 134(12):2984-90 [PubMed] Related Publications
Snail1 is a transcriptional factor that plays an important role in epithelial-mesenchymal transition and in the acquisition of invasive properties by epithelial cells. In colon tumors, Snail1 expression in the stroma correlates with lower specific survival of cancer patients. However, the role(s) of Snail1 expression in stroma and its association with patients' survival have not been determined. We used human primary carcinoma-associated fibroblasts (CAFs) or normal fibroblasts (NFs) and fibroblast cell lines to analyze the effects of Snail1 expression on the protumorigenic capabilities in colon cancer cells. Snail1 expression was higher in CAFs than in NFs and, as well as α-SMA, a classic marker of activated CAFs. Moreover, in tumor samples from 50 colon cancer patients, SNAI1 expression was associated with expression of other CAF markers, such as α-SMA and fibroblast activation protein. Interestingly, coculture of CAFs with colon cells induced a significant increase in epithelial cell migration and proliferation, which was associated with endogenous SNAI1 expression levels. Ectopic manipulation of Snail1 in fibroblasts demonstrated that Snail1 expression controlled migration as well as proliferation of cocultured colon cancer cells in a paracrine manner. Furthermore, expression of Snail1 in fibroblasts was required for the coadjuvant effect of these cells on colon cancer cell growth and invasion when coxenografted in nude mice. Finally, cytokine profile changes, particularly MCP-3 expression, in fibroblasts are put forward as mediators of Snail1-derived effects on colon tumor cell migration. In summary, these studies demonstrate that Snail1 is necessary for the protumorigenic effects of fibroblasts on colon cancer cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ACTA2, Cancer Genetics Web: http://www.cancer-genetics.org/ACTA2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 March, 2017     Cancer Genetics Web, Established 1999