Gene Summary

Gene:THRB; thyroid hormone receptor beta
Summary:The protein encoded by this gene is a nuclear hormone receptor for triiodothyronine. It is one of the several receptors for thyroid hormone, and has been shown to mediate the biological activities of thyroid hormone. Knockout studies in mice suggest that the different receptors, while having certain extent of redundancy, may mediate different functions of thyroid hormone. Mutations in this gene are known to be a cause of generalized thyroid hormone resistance (GTHR), a syndrome characterized by goiter and high levels of circulating thyroid hormone (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH). Several alternatively spliced transcript variants encoding the same protein have been observed for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:thyroid hormone receptor beta
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (23)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: THRB (cancer-related)

Li Z, Qi DL, Singh HP, et al.
A novel thyroid hormone receptor isoform, TRβ2-46, promotes SKP2 expression and retinoblastoma cell proliferation.
J Biol Chem. 2019; 294(8):2961-2969 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Retinoblastoma is a childhood retinal tumor that develops from cone photoreceptor precursors in response to inactivating

Jerzak KJ, Cockburn JG, Dhesy-Thind SK, et al.
Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study.
Breast Cancer Res Treat. 2018; 171(3):709-717 [PubMed] Related Publications
PURPOSE: Preliminary data suggest that high expression of the TRβ1 tumor suppressor is associated with longer survival among women with early breast cancer. We undertook this study to validate these findings.
METHODS: In this prospective cohort study, we analyzed the prognostic significance of TRβ1 protein expression in the breast tumors of 796 women who had undergone breast surgery in the Henrietta Banting Breast Cancer database. All women were recruited after undergoing primary surgical therapy at Women's College Hospital (Toronto, ON, Canada) between January 1987 and December 2000. Details regarding patient age at diagnosis, systemic, and local therapies, as well as pathological features of their tumor have been systematically recorded. Clinical outcomes including breast cancer recurrence and death have been updated at least once each year with a median follow-up of 9.6 years (range 0.1-21 years).
RESULTS: High TRβ1 expression (> 4 on the Allred score) was associated with a longer breast cancer-specific survival with a HR 0.45 (95% CI 0.33-0.61), p < 0.0001 in a univariable Cox regression model. This was maintained in a multivariable model adjusted for age, tumor size, nodal status, chemotherapy, hormone therapy, radiotherapy, surgery, and ER status with a HR of 0.61 (95% CI 0.44-0.85), p = 0.004.
CONCLUSIONS: High expression of TRβ1 is associated with longer breast cancer-specific survival independent of other prognostic factors. Given that low TRβ expression is associated with chemotherapy resistance in-vitro, TRβ1 may also serve as a predictive biomarker or even a therapeutic target given the availability of TRβ agonists.

Gillis NE, Taber TH, Bolf EL, et al.
Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1-Dependent Chromatin Remodeling.
Endocrinology. 2018; 159(6):2484-2494 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Thyroid hormone receptor β (TRβ) suppresses tumor growth through regulation of gene expression, yet the associated TRβ-mediated changes in chromatin assembly are not known. The chromatin ATPase brahma-related gene 1 (BRG1; SMARCA4), a key component of chromatin-remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRβ-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRβ. Here, we report differential expression of BRG1 in nonmalignant and malignant thyroid cells concordant with TRβ. BRG1 and TRβ have similar nuclear distribution patterns and significant colocalization. BRG1 interacts with TRβ, and together, they are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels, whereas reintroduction of TRβ and BRG1 synergistically decreases RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity increased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a mechanism of TRβ repression of oncogenic gene expression: TRβ recruitment of BRG1 induces chromatin compaction and diminishes RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRβ transcriptional repression and tumor suppressor function in thyroid tumorigenesis.

Peng X, Zhou Y, Sun Y, et al.
Overexpression of modified human TRβ1 suppresses the growth of hepatocarcinoma SK-hep1 cells in vitro and in xenograft models.
Mol Cell Biochem. 2018; 449(1-2):207-218 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Association studies suggest that TRβ1 functions as a tumor suppressor. Thyroid hormone receptors (TRs) mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). We previously constructed an artificially modified human TRβ1 (m-TRβ1) via the introduction of a 108-bp exon sequence into the corresponding position of the wild-type human TRβ1 (TRβ1) DBD. Studies confirmed that m-TRβ1 was functional and could inhibit the proliferation of breast cancer MDA-MB-468 cells in vitro. To understand the role of m-TRβ1 in liver tumor development, we adopted a gain-of-function approach by stably expressing TRβ (m-TRβ1 and TRβ1) genes in a human hepatocarcinoma cell line, SK-hep1 (without endogenous TRβ), and then evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. In the presence of 3,5,3-L-triiodothyronine (T3), the expression of TRβ in SK-hep1 cells inhibited cancer cell proliferation and impeded tumor cell migration through the up-regulation of 4-1BB, Caspase-3, and Bak gene expression; down-regulation of Bcl-2 gene expression; and activation of the Caspase-3 protein. TRβ expression in SK-hep1 led to less tumor growth in xenograft models. Additionally, the anti-tumor effect of m-TRβ1 was stronger than that of TRβ1. These data indicate that m-TRβ1 can act as a tumor suppressor in hepatocarcinoma and its role was significantly better than that of TRβ1.

Leonetti CP, Butt CM, Stapleton HM
Disruption of thyroid hormone sulfotransferase activity by brominated flame retardant chemicals in the human choriocarcinoma placenta cell line, BeWo.
Chemosphere. 2018; 197:81-88 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Brominated flame retardants (BFRs) have been shown to disrupt thyroid hormone (TH) homeostasis through multiple mechanisms, including inhibition of enzymes that regulate intracellular levels of THs, such as sulfotransferases (SULTs). The placenta plays a critical role in helping to maintain TH levels during fetal development and expresses SULTs. This is concerning given that disruption of TH regulation within the placenta could potentially harm the developing fetus. In this study, we investigated the effects of two polybrominated diphenyl ethers (PBDEs), two hydroxylated PBDEs, and 2,4,6-tribromophenol (2,4,6-TBP) on TH SULT activity in a choriocarcinoma placenta cell line (BeWo). BeWo cells were exposed to BFR concentrations up to 1 μM for 1-24 h to investigate changes in basal SULT activity and in mRNA expression of several TH regulating genes. 2,4,6-TBP was the most potent inhibitor of basal 3,3'-T2 SULT activity at all exposure durations, decreasing activity by as much as 86% after 24 h of exposure. BDE-99, 3-OH BDE-47, and 6-OH BDE-47 also decreased 3,3'-T2 SULT activity by 23-42% at concentrations of 0.5 μM and 1.0 μM following 24 h exposures. BDE-47 had no effect on SULT activity, and there was no observed effect of any BFR exposure on expression of SULT1A1, or thyroid nuclear receptors alpha or beta. This research demonstrates that total TH SULT activity in placental cells are sensitive to BFR exposure; however, the mechanisms and consequences have yet to be fully elucidated.

Popławski P, Piekiełko-Witkowska A, Nauman A
The significance of TRIP11 and T3 signalling pathway in renal cancer progression and survival of patients.
Endokrynol Pol. 2017; 68(6):631-641 [PubMed] Related Publications
INTRODUCTION: TRIP11 is a multifunctional protein localizing either to Golgi apparatus, acting as a golgin, or in the nucleus, acting as coactivator of transcription mediated by thyroid hormone receptor (THR) and hypoxia induced factor (HIF). Triiodothyronine (T3) regulates nuclear localization of TRIP11 by inducing its phosphorylation. The exact mechanism of this regulation unknown. The expressions of THR and HIF are disturbed in various cancers, including renal cell cancer (RCC). In this study we aimed to analyze: 1) the mechanism of T3-dependent subcellular localization of TRIP11; 2) the significance of TRIP11 and T3 signaling pathway in RCC progression.
MATERIAL AND METHODS: TRIP11 subcellular localization was analyzed using immunocytochemistry in RCC-derived cell line treated with T3, T3-agarose and PI3K inhibitor, wortmannin. The expressions of TRIP11 and genes involved in T3 signaling and hypoxia were investigated using qPRC in 36 pairs of RCC tumor-control samples, followed by validation/survival analysis in an independent cohort of >450 renal cancer patients.
RESULTS: Wortmannin disrupted T3-dependent nuclear transport of TRIP11. T3-agarose did not change TRIP11 localization, precluding extracellular T3-mediated mechanism. The expressions of TRIP11, HIF-1β, THRA, THRB, FURIN, VEGFA, and GLUT1 were disturbed in renal cancer. Expressions of TRIP11 and HIF-1β correlated with tumor grades. Decreased expressions of TRIP11, THRA, and THRB correlated with poor survival of RCC patients.
CONCLUSIONS: 1) T3 induces nuclear TRIP11 localization via PI3K-dependent mechanism; 2) disturbed expression of T3 signaling pathway genes correlates with RCC progression. The specific mechanisms by which altered T3 signaling may contribute to RCC progression require further investigation.

Xiang D, Han J, Yao T, et al.
Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor.
Toxicol Sci. 2017; 160(2):205-216 [PubMed] Related Publications
A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides.

Columbano A, Chiellini G, Kowalik MA
GC-1: A Thyromimetic With Multiple Therapeutic Applications in Liver Disease.
Gene Expr. 2017; 17(4):265-275 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Thyroid hormones (THs), namely, 3,5,3'-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodo-l-thyronine (thyroxine or T4), influence a variety of physiological processes that have important implications in fetal development, metabolism, cell growth, and proliferation. While THs elicit several beneficial effects on lipid metabolism and improve myocardial contractility, these therapeutically desirable effects are associated to a thyrotoxic state that severely limits the possible use of THs as therapeutic agents. Therefore, several efforts have been made to develop T3 analogs that could retain the beneficial actions (triglyceride, cholesterol, obesity, and body mass lowering) without the adverse TH-dependent side effects. This goal was achieved by the synthesis of TRβ-selective agonists. In this review, we summarize the current knowledge on the effects of one of the best characterized TH analogs, the TRβ1-selective thyromimetic, GC-1. In particular, we review some of the effects of GC-1 on different liver disorders, with reference to its possible clinical application. A brief comment on the possible therapeutic use of GC-1 in extrahepatic disorders is also included.

Welinder C, Pawłowski K, Szasz AM, et al.
Correlation of histopathologic characteristics to protein expression and function in malignant melanoma.
PLoS One. 2017; 12(4):e0176167 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
BACKGROUND: Metastatic melanoma is still one of the most prevalent skin cancers, which upon progression has neither a prognostic marker nor a specific and lasting treatment. Proteomic analysis is a versatile approach with high throughput data and results that can be used for characterizing tissue samples. However, such analysis is hampered by the complexity of the disease, heterogeneity of patients, tumors, and samples themselves. With the long term aim of quest for better diagnostics biomarkers, as well as predictive and prognostic markers, we focused on relating high resolution proteomics data to careful histopathological evaluation of the tumor samples and patient survival information.
PATIENTS AND METHODS: Regional lymph node metastases obtained from ten patients with metastatic melanoma (stage III) were analyzed by histopathology and proteomics using mass spectrometry. Out of the ten patients, six had clinical follow-up data. The protein deep mining mass spectrometry data was related to the histopathology tumor tissue sections adjacent to the area used for deep-mining. Clinical follow-up data provided information on disease progression which could be linked to protein expression aiming to identify tissue-based specific protein markers for metastatic melanoma and prognostic factors for prediction of progression of stage III disease.
RESULTS: In this feasibility study, several proteins were identified that positively correlated to tumor tissue content including IF6, ARF4, MUC18, UBC12, CSPG4, PCNA, PMEL and MAGD2. The study also identified MYC, HNF4A and TGFB1 as top upstream regulators correlating to tumor tissue content. Other proteins were inversely correlated to tumor tissue content, the most significant being; TENX, EHD2, ZA2G, AOC3, FETUA and THRB. A number of proteins were significantly related to clinical outcome, among these, HEXB, PKM and GPNMB stood out, as hallmarks of processes involved in progression from stage III to stage IV disease and poor survival.
CONCLUSION: In this feasibility study, promising results show the feasibility of relating proteomics to histopathology and clinical outcome, and insight thus can be gained into the molecular processes driving the disease. The combined analysis of histological features including the sample cellular composition with protein expression of each metastasis enabled the identification of novel, differentially expressed proteins. Further studies are necessary to determine whether these putative biomarkers can be utilized in diagnostics and prognostic prediction of metastatic melanoma.

Hojo H, Enya S, Arai M, et al.
Remote reprogramming of hepatic circadian transcriptome by breast cancer.
Oncotarget. 2017; 8(21):34128-34140 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Cancers adversely affect organismal physiology. To date, the genes within a patient responsible for systemically spreading cancer-induced physiological disruption remain elusive. To identify host genes responsible for transmitting disruptive, cancer-driven signals, we thoroughly analyzed the transcriptome of a suite of host organs from mice bearing 4T1 breast cancer, and discovered complexly rewired patterns of circadian gene expression in the liver. Our data revealed that 7 core clock transcription factors, represented by Rev-erba and Rorg, exhibited abnormal daily expression rhythm in the liver of 4T1-bearing mice. Accordingly, expression patterns of specific set of downstream circadian genes were compromised. Osgin1, a marker for oxidative stress, was an example. Specific downstream genes, including E2f8, a transcriptional repressor that controls cellular polyploidy, displayed a striking pattern of disruption, "day-night reversal." Meanwhile, we found that the liver of 4T1-bearing mice suffered from increased oxidative stress. The tetraploid hepatocytes population was concomitantly increased in 4T1-bearing mice, which has not been previously appreciated as a cancer-induced phenotype. In summary, the current study provides a comprehensive characterization of the 4T1-affected hepatic circadian transcriptome that possibly underlies cancer-induced physiological alteration in the liver.

Pappas L, Xu XL, Abramson DH, Jhanwar SC
Genomic instability and proliferation/survival pathways in RB1-deficient malignancies.
Adv Biol Regul. 2017; 64:20-32 [PubMed] Related Publications
Genomic instability (GIN) is a hallmark of most cancer cells. However, compared to most human cancer cell types, the retinoblastoma tumor cells show a relatively stable genome. The fundamental basis of this genomic stability has yet to be elucidated, and the role of certain proteins involved in cell cycle regulation may be the key to the development of these specific genotypes. We examined whether thyroid hormone receptor beta 1 and 2 (TRβ1 and TRβ2), known to regulate tumorigenesis, and PTTG1, a mitotic checkpoint protein, play a role in maintaining genomic stability in retinoblastoma. In order to elucidate the role of these proteins in development of aneuploidy/polyploidy, an indicator of GIN, we first studied comparative GIN in retinoblastomas and multiple RB mutant cancer cell lines using single nucleotide polymorphism (SNP) analysis. We then utilized pLKO lentiviral vectors to selectively modify expression of the targeted cell cycle proteins and interpret their effect on downstream cell cycle proteins and their relative effects on the development of polyploidy in multiple tumor cell lines. The SNP analysis showed that retinoblastomas displayed relatively fewer genomic copy number changes as compared to other RB1-deficient cancer cell lines. Both TRβ1 and TRβ2 knockdown led to accumulation of E2F1 and PTTG1 and increased GIN as demonstrated by an increase in polyploidy. Downregulation of PTTG1 led to a relative decrease in GIN while upregulation of PTTG1 led to a relative increase in GIN. Knockdown of E2F1 led to a downstream decrease in PTTG1 expression. Rb-knockdown also upregulated E2F1 and PTTG1 leading to increased GIN. We showed that Rb is necessary for PTTG1 inhibition and genomic stability. A relatively stable genome in retinoblastoma tumor cells is maintained by TRβ1 and TRβ2-mediated PTTG1 inhibition, counteracting Rb-deficiency-related GIN. TRβ1, TRβ2 and Rb-KD all led to the downstream PTTG1 accumulation, apparently through an activation of E2F1 resulting in extensive genomic instability as seen in other Rb-deficient tumors.

Kowalczyk K, Franik G, Kowalczyk D, et al.
Thyroid disorders in polycystic ovary syndrome.
Eur Rev Med Pharmacol Sci. 2017; 21(2):346-360 [PubMed] Related Publications
OBJECTIVE: Thyroid disorders, especially Hashimoto's thyroiditis (HT), are observed significantly more often in patients with polycystic ovary syndrome (PCOS) than in the general population - approximately 27% and 8%, respectively. This is extremely important in young women, because both disorders are connected with fertility problems. As HT and PCOS occur together, fertility problems may become a serious clinical issue in these patients.
MATERIALS AND METHODS: A systematic literature review in PubMed of PCOS- and HT-related articles in English, published until December 2015 was conducted.
RESULTS: The reasons for joint prevalence still remain unclear. Genetic and autoimmune backgrounds are recognized to be possible common etiological factors. Three genetic polymorphisms have been described to play a role in PCOS as well as in HT. They are polymorphism of the gene for fibrillin 3 (FBN3) regulating the activity of transforming growth factor-b (TGF-b) and regulatory T cell levels, gonadotropin-releasing hormone receptor (GnRHR) polymorphism and CYP1B1 polymorphism standing for estradiol hydroxylation. High estrogen-to-progesterone ratios owing to anovulatory cycles, as well as high estrogen levels during prenatal life, disrupt development of the thymus and its function in maintaining immune tolerance, and are suspected to enhance autoimmune response in PCOS. Vitamin D deficiency could be also involved in the pathogenesis of HT and PCOS.
CONCLUSIONS: The above-mentioned common etiological factors associated with fertility problems in HT and PCOS require further research.

Romano M, Della Porta MG, Gallì A, et al.
Antitumour activity of trabectedin in myelodysplastic/myeloproliferative neoplasms.
Br J Cancer. 2017; 116(3):335-343 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
BACKGROUND: Juvenile myelomonocytic leukaemia (JMML) and chronic myelomonocytic leukaemia (CMML) are myelodysplastic myeloproliferative (MDS/MPN) neoplasms with unfavourable prognosis and without effective chemotherapy treatment. Trabectedin is a DNA minor groove binder acting as a modulator of transcription and interfering with DNA repair mechanisms; it causes selective depletion of cells of the myelomonocytic lineage. We hypothesised that trabectedin might have an antitumour effect on MDS/MPN.
METHODS: Malignant CD14+ monocytes and CD34+ haematopoietic progenitor cells were isolated from peripheral blood/bone marrow mononuclear cells. The inhibition of CFU-GM colonies and the apoptotic effect on CD14+ and CD34+ induced by trabectedin were evaluated. Trabectedin's effects were also investigated in vitro on THP-1, and in vitro and in vivo on MV-4-11 cell lines.
RESULTS: On CMML/JMML cells, obtained from 20 patients with CMML and 13 patients with JMML, trabectedin - at concentration pharmacologically reasonable, 1-5 nM - strongly induced apoptosis and inhibition of growth of haematopoietic progenitors (CFU-GM). In these leukaemic cells, trabectedin downregulated the expression of genes belonging to the Rho GTPases pathway (RAS superfamily) having a critical role in cell growth and cytoskeletal dynamics. Its selective activity on myelomonocytic malignant cells was confirmed also on in vitro THP-1 cell line and on in vitro and in vivo MV-4-11 cell line models.
CONCLUSIONS: Trabectedin could be good candidate for clinical studies in JMML/CMML patients.

Mannarino L, Paracchini L, Craparotta I, et al.
A systems biology approach to investigate the mechanism of action of trabectedin in a model of myelomonocytic leukemia.
Pharmacogenomics J. 2018; 18(1):56-63 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
This study was designed to investigate the mode of action of trabectedin in myelomonocytic leukemia cells by applying systems biology approaches to mine gene expression profiling data and pharmacological assessment of the cellular effects. Significant enrichment was found in regulons of target genes inferred for specific transcription factors, among which MAFB was the most upregulated after treatment and was central in the transcriptional network likely to be relevant for the specific therapeutic effects of trabectedin against myelomonocytic cells. Using the Connectivity Map, similarity among transcriptional signatures elicited by treatment with different compounds was investigated, showing a high degree of similarity between transcriptional signatures of trabectedin and those of the topoisomerase I inhibitor, irinotecan, and an anti-dopaminergic antagonist, thioridazine. The study highlights the potential importance of systems biology approaches to generate new hypotheses that are experimentally testable to define the specificity of the mechanism of action of drugs.

Vázquez R, Riveiro ME, Astorgues-Xerri L, et al.
The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus.
Oncotarget. 2017; 8(5):7598-7613 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subgroup of breast tumors clinically defined by the lack of estrogen, progesterone and HER2 receptors, limiting the use of the targeted therapies employed in other breast malignancies. Recent evidence indicates that c-MYC is a key driver of TNBC. The BET-bromodomain inhibitor OTX015 (MK-8628) has potent antiproliferative activity accompanied by c-MYC down-regulation in several tumor types, and has demonstrated synergism with the mTOR inhibitor everolimus in different models. The aim of this study was to evaluate the anti-tumor activity of OTX015 as single agent and in combination with everolimus in TNBC models. OTX015 was assayed in three human TNBC-derived cell lines, HCC1937, MDA-MB-231 and MDA-MB-468, all showing antiproliferative activity after 72 h (GI50 = 75-650 nM). This was accompanied by cell cycle arrest and decreased expression of cancer stem cells markers. However, c-MYC protein and mRNA levels were only down-regulated in MDA-MB-468 cells. Gene set enrichment analysis showed up-regulation of genes involved in epigenetic control of transcription, chromatin and the cell cycle, and down-regulation of stemness-related genes. In vitro, combination with everolimus was additive in HCC1937 and MDA-MB-231 cells, but antagonistic in MDA-MB-468 cells. In MDA-MB-231 murine xenografts, tumor mass was significantly (p < 0.05) reduced by OTX015 with respect to vehicle-treated animals (best T/C = 40.7%). Although everolimus alone was not active, the combination was more effective than OTX015 alone (best T/C = 20.7%). This work supports current clinical trials with OTX015 in TNBC (NCT02259114).

Martínez-Iglesias O, Olmeda D, Alonso-Merino E, et al.
The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis.
Oncotarget. 2016; 7(48):78971-78984 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.

Sriphrapradang C, Srichomkwun P, Refetoff S, Mamanasiri S
A Novel Thyroid Hormone Receptor Beta Gene Mutation (G251V) in a Thai Patient with Resistance to Thyroid Hormone Coexisting with Pituitary Incidentaloma.
Thyroid. 2016; 26(12):1804-1806 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
A patient is reported with resistance to thyroid hormone beta caused by a novel THRB gene mutation and coexisting pituitary microadenoma. A 41-year-old Thai woman presented with elevated serum thyroid hormone levels and non-suppressed thyrotropin (TSH). Magnetic resonance imaging showed a 4 mm × 2 mm pituitary adenoma. Five of her relatives had similar thyroid tests abnormalities, but a sister had Graves' disease. Thyroperoxidase and thyroglobulin antibodies were positive in all affected family members, except for the proband's 4.5-year-old niece. Lack of thyrotoxic symptoms and TSH suppression by triiodothyronine indicated incidentaloma rather than a TSH-secreting pituitary adenoma. Genetic analysis revealed a THRB gene mutation (c.1037G>T), resulting in p.G251V.

Wang FY, Kang CS, Wang-Gou SY, et al.
EGFL7 is an intercellular EGFR signal messenger that plays an oncogenic role in glioma.
Cancer Lett. 2017; 384:9-18 [PubMed] Related Publications
Epidermal Growth Factor like domain 7 (EGFL7), also known as Vascular Endothelial-statin (VE-statin), is a secreted angiogenic factor. Recent data have demonstrated the potential oncogenic role and prognostic significance of EGFL7 in several human cancers. However, the clinical signature and further mechanisms of EGFL7's function in gliomagenesis are poorly understood. In the present study, we found that increased EGFL7 expression was associated with tumor grade. High expression of EGFL7 in EGFRvIII-positive glioblastoma multiforme (GBM) was determined to be a strong and independent risk factor for reduced life expectancy. EGFRvIII cells can secrete the EGFL7 protein to improve the activity of the β-catenin/TCF4 Transcription complex in EGFRwt cells, thus promoting their own EGFL7 expression. Our research demonstrates that oncogenic activation of EGFRwt in GBM is likely maintained by a continuous EGFL7 autocrine flow line, and may be an attractive target for therapeutic intervention.

Demaegdt H, Daminet B, Evrard A, et al.
Endocrine activity of mycotoxins and mycotoxin mixtures.
Food Chem Toxicol. 2016; 96:107-16 [PubMed] Related Publications
Reporter gene assays incorporating nuclear receptors (estrogen, androgen, thyroid β and PPARγ2) have been implemented to assess the endocrine activity of 13 mycotoxins and their mixtures. As expected, zearalenone and its metabolites α-zearalenol and β- zearalenol turned out to have the strongest estrogenic potency (EC50 8,7 10-10 ± 0,8; 3,1 10-11 ± 0,5 and 1,3 10-8 ± 0,3 M respectively). The metabolite of deoxynivalenol, 3-acetyl-deoxynivalenol also had estrogenic activity (EC50 3,8 10-7 ± 1,1 M). Furthermore, most of the mycotoxins (and their mixtures) showed anti-androgenic effects (15-acetyldeoxynivalenol, 3-acetyl-deoxynivalenol and α-zearalenol with potencies within one order of magnitude of that of the reference compound flutamide). In particular, deoxynivalenol and 15-acetyl-deoxynivalenol acted as antagonists for the PPARy2 receptor. When testing mixtures of mycotoxins on the same cell systems, we showed that most of the mixtures reacted as predicted by the concentration addition (CA) theory. Generally, the CA was within the 95% confidence interval of the observed ones, only minor deviations were detected. Although these reporter gene tests cannot be directly extrapolated in vivo, they can be the basis for further research. Especially the additive effects of ZEN and its metabolites are of importance and could have repercussions in vivo.

Zhu X, Enomoto K, Zhao L, et al.
Bromodomain and Extraterminal Protein Inhibitor JQ1 Suppresses Thyroid Tumor Growth in a Mouse Model.
Clin Cancer Res. 2017; 23(2):430-440 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
PURPOSE: New therapeutic approaches are needed for patients with thyroid cancer refractory to radioiodine treatment. An inhibitor of bromodomain and extraterminal domain (BET) proteins, JQ1, shows potent antitumor effects in hematological cancers and solid tumors. To evaluate whether JQ1 is effective against thyroid cancer, we examined antitumor efficacy of JQ1 using the Thrb
RESULTS: JQ1 markedly inhibited thyroid tumor growth and prolonged survival of these mice. Global differential gene expression analysis showed that JQ1 suppressed the cMyc (hereafter referred to as Myc) transcription program by inhibiting mRNA expression of Myc, ccnd1, and other related genes. JQ1-suppressed Myc expression was accompanied by chromatin remodeling as evidenced by increased expression of histones and hexamethylene bis-acetamide inducible 1, a suppressor of RNA polymerase II transcription elongation. Analyses showed that JQ1 decreased MYC abundance in thyroid tumors and attenuated the cyclin D1-CDK4-Rb-E2F3 signaling to decrease tumor growth. Further analysis indicated that JQ1 inhibited the recruitment of BDR4 to the promoter complex of the Myc and Ccnd1 genes in rat thyroid follicular PCCL3 cells, resulting in decreased MYC expression at the mRNA and protein levels to inhibit tumor cell proliferation.
CONCLUSIONS: These preclinical findings suggest that BET inhibitors may be an effective agent to reduce thyroid tumor burden for the treatment of refractory thyroid cancer. Clin Cancer Res; 23(2); 430-40. ©2016 AACR.

Park JW, Zhao L, Willingham MC, Cheng SY
Loss of tyrosine phosphorylation at Y406 abrogates the tumor suppressor functions of the thyroid hormone receptor β.
Mol Carcinog. 2017; 56(2):489-498 [PubMed] Related Publications
We have recently identified that phosphorylation at tyrosine (Y)406 is critical for the tumor suppressor functions of the thyroid hormone receptor β1 (TRβ) in a breast cancer line. However, still unclear is whether the critical tumor suppressor role of phosphorylated Y406 of TRβ is limited to only breast cancer cells or could be extended to other cell types. In the present studies, we addressed this question by stably expressing TRβ, a mutated TRβ oncogene (PV), or a TRβ mutated at Y406 (TRβY406F) in rat PCCL3 thyroid follicular cells and evaluated their tumor characteristics in athymic mice with elevated thyroid stimulating hormone. PCCL3 cells stably expressing PV (PCCL3-PV), TRβY406F (PCCL3-TRβY406F), or vector only (PCCL3-Neo) developed tumors with sizes in the rank order of TRβY406F>PV = Neo, whereas PCCL3 cells expressing TRβ (PCCL3-TRβ) barely developed tumors. As evidenced by markedly elevated Ki67, cyclin D1, and p-Rb protein abundance, proliferative activity was high in PV and TRβY406F tumors, but low in TRβ tumors. These results indicate that TRβ acted as a tumor suppressor in PCCL3 cells, whereas TRβY406F and PV had lost tumor suppressor activity. Interestingly, TRβY406F tumors had very low necrotic areas with decreased TNFα-NFκB signaling to lower apoptotic activity. In contrast, PV tumors had prominent large necrotic areas, with no apparent changes in TNFα-NFκB signaling, indicating distinct oncogenic activities of mutant PV and TRβY406F. Thus, the present studies uncovered a novel mechanism by which TRβ could function as a tumor suppressor through modulation of the TNFα-NFκB signaling. © 2016 Wiley Periodicals, Inc.

Carr FE, Tai PW, Barnum MS, et al.
Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer.
Endocrinology. 2016; 157(8):3278-92 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.

Zheng Y, Shao X, Huang Y, et al.
Role of estrogen receptor in breast cancer cell gene expression.
Mol Med Rep. 2016; 13(5):4046-50 [PubMed] Related Publications
The aim of the present study was to establish the underlying regulatory mechanism of estrogen receptor (ER) in breast cancer cell gene expression. A gene expression profile (accession no. GSE11324) was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) from an estrogen treatment group and a control group were identified. Chromatin immunoprecipitation with high‑throughput sequencing data (series GSE25710) was obtained from the GEO for the ER binding sites, and binding and expression target analysis was performed. A total of 3,122 DEGs were obtained and ER was demonstrated to exhibit inhibition and activation roles during the regulation of its target gene expression. Motif analysis revealed that the upregulated target genes that demonstrated interactions with ER were meis homeobox 1 (MEIS1) and forkhead box P3 (FOXP3). The downregulated target genes, which demonstrated interactions with ER, were thyroid hormone receptor, β (THRB) and grainyhead‑like 1 (GRHL1). Thus, it was observed that ER stimulated gene expression by interacting with MEIS1 and FOXP3, and ER inhibited gene expression by interacting with THRB and GRHL1. However, additional experiments are required to provide further confirmation of these findings.

Achille NJ, Othus M, Phelan K, et al.
Association between early promoter-specific DNA methylation changes and outcome in older acute myeloid leukemia patients.
Leuk Res. 2016; 42:68-74 [PubMed] Free Access to Full Article Related Publications
Treatment options for older patients with acute myeloid leukemia (AML) range from supportive care alone to full-dose chemotherapy. Identifying factors that predict response to therapy may help increase efficacy and avoid toxicity. The phase II SWOG S0703 study investigated the use of hydroxyurea and azacitidine with gemtuzumab ozogamicin in the elderly AML population and found survival rates similar to those expected with standard AML regimens, with less toxicity. As part of this study, global DNA methylation along with promoter DNA methylation and expression analysis of six candidate genes (CDKN2A, CDKN2B, HIC1, RARB, CDH1 and APAF1) were determined before and during therapy to investigate whether very early changes are prognostic for clinical response. Global DNA methylation was not associated with a clinical response. Samples after 3 or 4 days of treatment with azacitidine showed significantly decreased CDKN2A promoter DNA methylation in patients achieving complete remission (CR) compared to those who did not. Samples from day 7 of treatment showed significantly decreased RARB, CDKN2B and CDH1 promoter DNA methylation in responders compared to nonresponders. Gene-specific DNA methylation analysis of peripheral blood samples may help early identification of those older AML patients most likely to benefit from demethylating agent therapy.

Qu C, He, Lu X, et al.
Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation.
J Hepatol. 2016; 64(5):1076-1089 [PubMed] Related Publications
BACKGROUND & AIMS: In this study, we investigated the role of salt-inducible kinase 1 (SIK1) and its possible mechanisms in human hepatocellular carcinoma (HCC).
METHODS: Immunoprecipitation, immunohistochemistry, luciferase reporter, Chromatin immunoprecipitation, in vitro kinase assays and a mouse model were used to examine the role of SIK1 on the β-catenin signaling pathway.
RESULTS: SIK1 was significantly downregulated in HCC compared with normal controls. Its introduction in HCC cells markedly suppresses epithelial-to-mesenchymal transition (EMT), tumor growth and lung metastasis in xenograft tumor models. The effect of SIK1 on tumor development occurs at least partially through regulation of β-catenin, as evidenced by the fact that SIK1 overexpression leads to repression of β-catenin transcriptional activity, while SIK1 depletion has the opposite effect. Mechanistically, SIK1 phosphorylates the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) at threonine (T)1391, which promotes the association of nuclear receptor corepressor (NCoR)/SMRT with transducin-beta-like protein 1 (TBL1)/transducing-beta-like 1 X-linked receptor 1 (TBLR1) and disrupts the binding of β-catenin to the TBL1/TBLR1 complex, thereby inactivating the Wnt/β-catenin pathway. However, SMRT-T1391A reverses the phenotype of SIK1 and promotes β-catenin transactivation. Twist1 is identified as a critical factor downstream of SIK1/β-catenin axis, and Twist1 knockdown (Twist1(KD)) reverses SIK1(KD)-mediated changes, whereas SIK1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing tumor growth and metastasis than SIK1(KD) cells. The promoter activity of SIK1 were negatively regulated by Twist1, indicating that a double-negative feedback loop exists. Importantly, levels of SIK1 inversely correlate with Twist1 expression in human HCC specimens.
CONCLUSIONS: Our findings highlight the critical roles of SIK1 and its targets in the regulation of HCC development and provides potential new candidates for HCC therapy.

Martínez-Iglesias OA, Alonso-Merino E, Gómez-Rey S, et al.
Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis.
Proc Natl Acad Sci U S A. 2016; 113(3):E328-37 [PubMed] Free Access to Full Article Related Publications
Nuclear corepressor 1 (NCoR) associates with nuclear receptors and other transcription factors leading to transcriptional repression. We show here that NCoR depletion enhances cancer cell invasion and increases tumor growth and metastatic potential in nude mice. These changes are related to repressed transcription of genes associated with increased metastasis and poor prognosis in patients. Strikingly, transient NCoR silencing leads to heterochromatinization and stable silencing of the NCoR gene, suggesting that NCoR loss can be propagated, contributing to tumor progression even in the absence of NCoR gene mutations. Down-regulation of the thyroid hormone receptor β1 (TRβ) appears to be associated with cancer onset and progression. We found that expression of TRβ increases NCoR levels and that this induction is essential in mediating inhibition of tumor growth and metastasis by this receptor. Moreover, NCoR is down-regulated in human hepatocarcinomas and in the more aggressive breast cancer tumors, and its expression correlates positively with that of TRβ. These data provide a molecular basis for the anticancer actions of this corepressor and identify NCoR as a potential molecular target for development of novel cancer therapies.

Matsunaga H, Sasaki S, Suzuki S, et al.
Essential Role of GATA2 in the Negative Regulation of Type 2 Deiodinase Gene by Liganded Thyroid Hormone Receptor β2 in Thyrotroph.
PLoS One. 2015; 10(11):e0142400 [PubMed] Free Access to Full Article Related Publications
The inhibition of thyrotropin (thyroid stimulating hormone; TSH) by thyroid hormone (T3) and its receptor (TR) is the central mechanism of the hypothalamus-pituitary-thyroid axis. Two transcription factors, GATA2 and Pit-1, determine thyrotroph differentiation and maintain the expression of the β subunit of TSH (TSHβ). We previously reported that T3-dependent repression of the TSHβ gene is mediated by GATA2 but not by the reported negative T3-responsive element (nTRE). In thyrotrophs, T3 also represses mRNA of the type-2 deiodinase (D2) gene, where no nTRE has been identified. Here, the human D2 promoter fused to the CAT or modified Renilla luciferase gene was co-transfected with Pit-1 and/or GATA2 expression plasmids into cell lines including CV1 and thyrotroph-derived TαT1. GATA2 but not Pit-1 activated the D2 promoter. Two GATA responsive elements (GATA-REs) were identified close to cAMP responsive element. The protein kinase A activator, forskolin, synergistically enhanced GATA2-dependent activity. Gel-shift and chromatin immunoprecipitation assays with TαT1 cells indicated that GATA2 binds to these GATA-REs. T3 repressed the GATA2-induced activity of the D2 promoter in the presence of the pituitary-specific TR, TRβ2. The inhibition by T3-bound TRβ2 was dominant over the synergism between GATA2 and forskolin. The D2 promoter is also stimulated by GATA4, the major GATA in cardiomyocytes, and this activity was repressed by T3 in the presence of TRα1. These data indicate that the GATA-induced activity of the D2 promoter is suppressed by T3-bound TRs via a tethering mechanism, as in the case of the TSHβ gene.

Ling Y, Li Q, Yang H, et al.
Loss of heterozygosity in thyroid hormone receptor beta in invasive breast cancer.
Tumori. 2015 Sep-Oct; 101(5):572-7 [PubMed] Related Publications
BACKGROUND: Loss of heterozygosity (LOH) on chromosome arm 3p, where the gene of thyroid hormone receptor beta (THRB) is located, has been reported in breast cancer. Although some studies performed in vitro have suggested that THRB could act as a tumor suppressor in breast cancer development, there is still no unequivocal evidence to support this.
METHODS: To determine the role of LOH in breast tumor development, the LOH of THRB and its proximal microsatellite markers D3S1293, D3S3659, D3S3700, D3S2307 and D3S2336 was investigated in a genomic region spanning ~3.3 Mb in tumor specimens and in corresponding normal tissues of 74 invasive breast cancer patients. The association was analyzed between LOH in microsatellite markers and clinicopathological characteristics.
RESULTS: LOH was detected in D3S1293 (36.7%), THRB (59.4%), D3S3659 (37.5%) and D3S3700 (55.2%) among the informative cases, while LOH was not detected in D3S2307 and D3S2336. Cases exhibited LOH of 52.8%-71.4% if any 2 markers were combined and analyzed out of the first 4 microsatellite markers. LOH in THRB was associated with negative estrogen receptor (ER), negative progesterone receptor (PR), both negative estrogen receptor and progesterone receptor (HR) and human epidermal growth factor receptor-2 (HER2) and lymph node metastasis (p = 0.0001, p = 0.005, p = 0.001 and p = 0.018). The association with negative PR in LOH in THRB and/or D3S1293 was pronounced (p<0.0001). LOH in D3S3700 showed an association with lymph node metastasis (p = 0.014). This association was enhanced if D3S3700 was combined with THRB or D3S3659 (p = 0.0004, p = 0.0002).
CONCLUSIONS: LOH in THRB and its proximal microsatellite markers may play a role in tumorigenesis and development in invasive breast cancer.

Kim AY, Lim B, Choi J, Kim J
The TFG-TEC oncoprotein induces transcriptional activation of the human β-enolase gene via chromatin modification of the promoter region.
Mol Carcinog. 2016; 55(10):1411-23 [PubMed] Related Publications
Recurrent chromosome translocations are the hallmark of many human cancers. A proportion of human extraskeletal myxoid chondrosarcomas (EMCs) are associated with the characteristic chromosomal translocation t(3;9)(q11-12;q22), which results in the formation of a chimeric protein in which the N-terminal domain of the TRK-fused gene (TFG) is fused to the translocated in extraskeletal chondrosarcoma (TEC; also called CHN, CSMF, MINOR, NOR1, and NR4A3) gene. The oncogenic effect of this translocation may be due to the higher transactivation ability of the TFG-TEC chimeric protein; however, downstream target genes of TFG-TEC have not yet been identified. The results presented here, demonstrate that TFG-TEC activates the human β-enolase promoter. EMSAs, ChIP assays, and luciferase reporter assays revealed that TFG-TEC upregulates β-enolase transcription by binding to two NGFI-B response element motifs located upstream of the putative transcription start site. In addition, northern blot, quantitative real-time PCR, and Western blot analyses showed that overexpression of TFG-TEC up-regulated β-enolase mRNA and protein expression in cultured cell lines. Finally, ChIP analyses revealed that TFG-TEC controls the activity of the endogenous β-enolase promoter by promoting histone H3 acetylation. Overall, the results presented here indicate that TFG-TEC triggers a regulatory gene hierarchy implicated in cancer cell metabolism. This finding may aid the development of new therapeutic strategies for the treatment of human EMCs. © 2015 Wiley Periodicals, Inc.

Chen YL, Song JJ, Chen XC, et al.
Mechanisms of pyruvate kinase M2 isoform inhibits cell motility in hepatocellular carcinoma cells.
World J Gastroenterol. 2015; 21(30):9093-102 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate biological mechanisms underlying pyruvate kinase M2 isoform (PKM2) regulation of cell migration and invasion in hepatocellular carcinoma cells.
METHODS: HepG2 and Huh-7 hepatocellular carcinoma cell lines were stably transfected and cultured in DMEM (HyClone, Logan, UT, United States). To investigate the effects of PKM2 on cellular proliferation, hepatocellular carcinoma cells were subjected to the Cell Counting Kit-8 (Dojindo, Kamimashiki-gun, Kumamoto, Japan). And investigate the effects of PKM2 on cell signal pathway related with migration and invasion, Western immunoblotting were used to find out the differential proteins. All the antibody used was purchaseed from Cell Signal Technology. In order to explore cell motility used Transwell invasion and wound healing assays. The transwell plate with 0.5 mg/mL collagen type I (BD Bioscience, San Jose, CA)-coated filters. The wound-healing assay was performed in 6-well plates. Total RNA was extracted using TRIzol reagent (Invitrogen, CA, United States) and then reverse transcription was conducted. Quantitative reverse transcription-polymerase chain reaction (PCR) analysis was performed with the ABI 7500 real-time PCR system (Applied Biosystems). We further use digital gene expression tag profiling and identification of differentially expressed genes.
RESULTS: The cells seeded in four 96-well plates were measured OD450 by conducted Cell Counting Kit-8. From this conduction we observed that both HepG2 and Huh-7 hepatocellular carcinoma cells with silenced PKM2 turn on a proliferate inhibition; however, cell migration and invasion were enhanced compared with the control upon stimulation with epidermal growth factor (EGF). Our results indicate that the knockdown of PKM2 decreased the expression of E-cadherin and enhanced the activity of the EGF/EGFR signaling pathway, furthermore up-regulate the subsequent signal molecular the PLCγ1 and extracellular signal-regulated kinase 1/2 expression in the hepatocellular carcinoma cell lines HepG2 and Huh-7, which regulates cell motility. These variations we observed were due to the activation of the transforming growth factor beta (TGFβ) signaling pathway after PKM2 knockdown. We also found that the expression of TGFBRI was increased and the phosphorylation of Smad2 was enhanced. Taken together, our findings demonstrate that PKM2 can regulate cell motility through the EGF/EGFR and TGFβ/TGFR signaling pathways in hepatocellular carcinoma cells.
CONCLUSION: PKM2 play different roles in modulating the proliferation and metastasis of hepatocellular carcinoma cells, and this finding could help to guide the future targeted therapies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. THRB, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999