BAG1

Gene Summary

Gene:BAG1; BCL2 associated athanogene 1
Aliases: HAP, BAG-1, RAP46
Location:9p13.3
Summary:The oncogene BCL2 is a membrane protein that blocks a step in a pathway leading to apoptosis or programmed cell death. The protein encoded by this gene binds to BCL2 and is referred to as BCL2-associated athanogene. It enhances the anti-apoptotic effects of BCL2 and represents a link between growth factor receptors and anti-apoptotic mechanisms. Multiple protein isoforms are encoded by this mRNA through the use of a non-AUG (CUG) initiation codon, and three alternative downstream AUG initiation codons. A related pseudogene has been defined on chromosome X. [provided by RefSeq, Feb 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:BAG family molecular chaperone regulator 1
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (20)

Cancer Overview

BAG-1 expression is over-expressed relative to normal cells in a range of cancers.

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Division
  • Apoptosis
  • Androgens
  • Drug Resistance
  • Transcriptome
  • Messenger RNA
  • Membrane Proteins
  • Adenoma
  • Pituitary Tumors
  • Apoptosis Regulatory Proteins
  • Genetic Predisposition
  • Endometrial Cancer
  • Breast
  • Ubiquitin-Protein Ligases
  • Oncogene Proteins
  • Receptors, Progesterone
  • Signal Transduction
  • DNA-Binding Proteins
  • Neoplasm Recurrence, Local
  • Biomarkers, Tumor
  • Carcinoma
  • Transcription Factors
  • Cell Proliferation
  • Tumor Suppressor Proteins
  • myc Genes
  • Neoplastic Cell Transformation
  • Gene Expression Profiling
  • Chromosome 9
  • Receptor, erbB-2
  • Colorectal Cancer
  • TGFB1
  • Transfection
  • Estrogen Receptors
  • Young Adult
  • Signal Transducing Adaptor Proteins
  • Cell Cycle Proteins
  • Western Blotting
  • Cancer Gene Expression Regulation
  • Oligonucleotide Array Sequence Analysis
  • Cell Survival
  • Prostate Cancer
  • Breast Cancer
  • RTPCR
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: BAG1 (cancer-related)

Papadakis E, Robson N, Yeomans A, et al.
A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells.
Oncotarget. 2016; 7(14):18851-64 [PubMed] Free Access to Full Article Related Publications
Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial.

Huang W, Liu Z, Zhou G, et al.
Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro.
Tumour Biol. 2016; 37(8):10365-74 [PubMed] Related Publications
Apoptosis disorder is generally regarded as an important mechanism of carcinogenesis. Inducement of tumor cell apoptosis can be an effectual way to treat cancer. Bcl-2-associated athanogene 1 (Bag-1) is a positive regulator of Bcl-2 which is an anti-apoptotic gene. Bag-1 is highly expressed in colorectal cancer, which plays a critical role in promoting metastasis, poor prognosis, especially in anti-apoptotic function, and is perhaps a valuable gene target for colorectal cancer therapy. Recently, we applied a novel non-viral gene carrier, magnetic gold nanoparticle, and mediated plasmid pGPH1/GFP/Neo-Bag-1-homo-825 silencing Bag-1 gene for treating colorectal cancer in vivo and in vitro. By mediating with magnetic gold nanoparticle, siRNA plasmid was successfully transfected into cell. In 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, magnetic gold nanoparticle had no significant cytotoxicity and by which delivered RNA plasmid inhibited cell viability significantly (P < 0.05). Downregulation of Bag-1 promoted cell apoptosis (∼47.0 %) in vitro and significantly decreased tumor growth when the cells were injected into nude mice. Based on the studies in vivo, the relative expression of Bag-1 was 0.165 ± 0.072 at mRNA level and ∼60 % at protein level. In further study, C-myc and β-catenin, mainly molecules of Wnt/β-catenin pathway, were decreased notably when Bag-1 were silenced in nanoparticle plasmid complex-transfected Balb c/nude tumor xenograft. In conclusion, Bag-1 is confirmed an anti-apoptosis gene that functioned in colorectal cancer, and the mechanism of Bag-1 gene causing colorectal cancer may be related to Wnt/β-catenin signaling pathway abnormality and suggested that magnetic gold nanoparticle-delivered siRNA plasmid silencing Bag-1 is an effective gene therapy method for colorectal cancer.

Huang W, Liu Z, Zhou G, et al.
Magnetic gold nanoparticle-mediated small interference RNA silencing Bag-1 gene for colon cancer therapy.
Oncol Rep. 2016; 35(2):978-84 [PubMed] Related Publications
Bcl-2-associated athanogene 1 (Bag-1) is a positive regulator of Bcl-2 which is an anti-apoptotic gene. Bag-1 was very slightly expressed in normal tissues, but often highly expressed in many tumor tissues, particularly in colon cancer, which can promote metastasis, poor prognosis and anti-apoptotic function of colon cancer. We prepared and evaluated magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex, a gene therapy system, which can transfect cells efficiently, for both therapeutic effect and safety in vitro mainly by electrophoretic mobility shift assays, flow cytometric analyses, cell viability assays, western blot analyses and RT-PCR (real-time) assays. Magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex was successfully transfected into LoVo colon cancer cells and the exogenous gene was expressed in the cells. Flow cytometric results showed apoptosis rate was significantly increased. In MTT assays, magnetic gold nanoparticles revealed lower cytotoxicity than Lipofectamine 2000 transfection reagents (P<0.05). Both in western blot analyses and RT-PCR assays, magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex transfected cells demonstrated expression of Bag-1 mRNA (P<0.05) and protein (P<0.05) was decreased. In further study, c-myc and β-catenin which are main molecules of Wnt/β‑catenin pathway were decreased when Bag-1 were silenced in nanoparticle plasmid complex transfected LoVo cells. These results suggest that magnetic gold nanoparticle mediated siRNA silencing Bag-1 is an effective gene therapy method for colon cancer.

Li P, Wang YD, Cheng J, et al.
Association between polymorphisms of BAG-1 and XPD and chemotherapy sensitivity in advanced non-small-cell lung cancer patients treated with vinorelbine combined cisplatin regimen.
Tumour Biol. 2015; 36(12):9465-73 [PubMed] Related Publications
BCL-2 Associated athanogene 1 (BAG-1) and Xeroderma pigmentosum group D (XPD) are involved in the nucleotide excision repair pathway and DNA repair. We aimed to investigate whether polymorphisms in BAG-1 and XPD have effects on chemotherapy sensitivity and survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with vinorelbine combined cisplatin (NP) regimen. A total of 142 patients with diagnosed advanced NSCLC were recruited in the current study. NP regimen was applied for all eligible patients. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for BAG-1 (codon 324) and XPD (codons 312 and 751) genotyping. The treatment response was evaluated according to the RECIST guidelines. Progression-free survival (PFS) and overall survival (OS) were record as median and end point, respectively. As for BAG-1 codon 324, the chemotherapy sensitivity in NSCLC patients with CT genotype was 0.383 times of those with CC genotype (P < 0.05). With respect to XPD codon 751, the chemotherapy sensitivity in NSCLC patients with Lys/Gln genotype was 0.400 times of those with Lys/Lys genotype (P < 0.05). In addition, NSCLC patients carrying combined C/C genotype at codon 324 in BAG-1, Asp/Asp of XPD codon 312, and Lys/Lys of XPD codon 751 produced a higher efficacy of NP chemotherapy compared to those carrying mutation genotypes (all P < 0.05). Further, there were significant differences in PFS between patients with combined C/C genotype of BAG-1 codon 324, Lys/Lys genotype of XPD codon 751, and Asp/Asp genotype of XPD codon 312 and patients carrying BAG-1 codon 324 C/T genotype, XPD codon751 Lys/Gln genotype, and XPD codon312 Asp/Asn genotype (P < 0.05). Multivariate Cox regression analysis indicated that the combined wild-type of codon 324 XPD, codon 751 XPD, and codon 312 BAG-1 is the protective factor for OS and PFS, and clinical stages is the risk factor for OS and PFS. In conclusion, our research demonstrated the combined effects of BAG-1 and XPD polymorphisms on chemotherapy sensitivity and survival in patients with advanced NSCLC, which might be the important predictive markers for platinum-based chemotherapy efficacy.

Ma F, Zhang M, Gong W, et al.
MiR-138 Suppresses Cell Proliferation by Targeting Bag-1 in Gallbladder Carcinoma.
PLoS One. 2015; 10(5):e0126499 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MiR-138 is frequently downregulated in different cancer types and is thought to be involved in the progression of tumorigenesis. However, the molecular mechanism of miR-138 involvement in gallbladder carcinoma still remains unknown.
METHODS: The expression of miR-138 in 49 gallbladder carcinoma samples and paired normal gallbladder samples was analyzed using quantitative reverse transcription-polymerase chain reaction. The biological functions of miR-138 and Bag-1 (Bcl-2-associated athanogene-1) on cell proliferation were examined using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and apoptosis assays. Targets of miR-138 were predicted using bioinformatics and validated using luciferase reporter and Western blot analyses. The in vivo effects of miR-138 were examined using subcutaneous inoculation of gallbladder carcinoma cells in Balb/c nude mice.
RESULTS: Compared with their paired normal gallbladder samples, the gallbladder carcinoma samples had decreased expression of miR-138 and increased expression of Bag-1. Overexpression of miR-138 inhibited the proliferation of gallbladder carcinoma cells. Bag-1 was defined as a novel target of miR-138. Both the inhibition of Bag-1 by miR-138 and the silencing of Bag-1 by siRNA led to alterations of apoptosis-related proteins such as Bcl-2 and Bax. Restoring expression of Bag-1 eliminates the effects of miR-138 on cell proliferation and apoptosis. Furthermore, overexpression of miR-138 markedly inhibited the growth of tumors in the gallbladder carcinoma xenograft model in nude mice.
CONCLUSIONS: Expression of miR-138 is frequently reduced in gallbladder carcinoma when compared to normal cells. Overexpression of miR-138 inhibited cell proliferation by directly suppressing the expression of Bag-1. These results suggest that miR-138 plays an important role in inhibiting the growth of gallbladder carcinoma.

Aveic S, Viola G, Accordi B, et al.
Targeting BAG-1: a novel strategy to increase drug efficacy in acute myeloid leukemia.
Exp Hematol. 2015; 43(3):180-190.e6 [PubMed] Related Publications
Overexpression of antiapoptotic proteins occurs frequently in cancer, resulting in defective apoptosis that may contribute to a poor chemosensitivity of tumor cells. B-cell lymphoma (BCL) 2-associated AthanoGene-1 (BAG-1) is a prosurvival chaperone recently found involved in the maintenance of acute myeloid leukemia (AML) cells survival in vitro. Here we reported BAG-1 upregulation in 87 of 99 analyzed AML patients with respect to healthy control samples applying reverse phase protein assay. Silencing of BAG-1 expression confirmed a decreased BCL-2 protein level but, in addition, provoked the increased transcription of GADD34 stress sensor. Furthermore, a dephosphorylation of eIF2α, as well as alteration of expression of IRE-1 and CHOP proteins, were documented, suggesting that a disruption of the endoplasmic reticulum stress/unfolded protein response was provoked by downregulation of BAG-1. A similar phenomenon was triggered after addition of Thioflavin S, which was shown to block BAG-1/BCL-2 interaction and to increase cell death, enforcing a prosurvival role of the BAG-1 protein in AML. Interestingly, synergic cytotoxic effects of doxorubicin, VP16 drugs, and ABT-737 compound were observed when Thioflavin S was coupled with these drugs. Taken together, our results gave further proof that upregulation of BAG-1 plays a critical role in AML and that BAG-1 targeting might be considered for a combined therapeutic strategy with conventional chemotherapy drugs in the treatment of AML patients.

Huang B, Zhou H, Lang X, et al.
Expression of BAG-1 is closely related to cell differentiation and TNM stage in esophageal cancer and its downregulation inhibits the proliferation and invasion of human esophageal carcinoma cells.
Oncol Rep. 2014; 32(4):1441-6 [PubMed] Related Publications
The aim of the present study was to explore the correlation of BAG-1 with clinical characteristics of esophageal cancer and its effects on the proliferation, invasion and apoptosis of the esophageal carcinoma cell line Eca109. Therefore, the expression of BAG-1 was assessed in esophageal carcinoma tumor tissues and adjacent normal esophageal tissues. The siRNA vector of BAG-1 was constructed and transfected into the Eca109 cell line, and then fluorescence microscopy was used to evaluate the transfection efficiency. MTT and Transwell assays were used to study cell proliferation and invasive activity, and the apoptosis rate was assessed by flow cytometry. Western blotting was adopted to assess the silencing efficiency and expression of related gene bcl-2. The results revealed that BAG-1 expression was low in the adjacent normal esophageal tissues while expression was high in the esophageal carcinoma tissues. After Eca109 cells were transfected with BAG-1-siRNA, the proliferation and invasive capabilities of the cells were significantly decreased while the apoptosis rate was greatly enhanced (P<0.01). When the expression of BAG-1 in the Eca109 cells was downregulated, the expression of bcl-2 was significantly abated (P<0.05). In conclusion, BAG-1 is closely connected with the pathogenesis and development of esophageal carcinoma, which may act through affecting bcl-2.

Ozfiliz P, Arisan ED, Coker-Gurkan A, et al.
Bag-1L is a stress-withstand molecule prevents the downregulation of Mcl-1 and c-Raf under control of heat shock proteins in cisplatin treated HeLa cervix cancer cells.
Asian Pac J Cancer Prev. 2014; 15(11):4475-82 [PubMed] Related Publications
BACKGROUND: Cisplatin, a DNA damaging agent, induces apoptosis through increasing DNA fragmentation. However, identification of intrinsic resistance molecules against Cisplatin is vital to estimate the success of therapy. Bag-1 (Bcl-2-associated anthanogene) is one anti-apoptotic protein involved in drug resistance impacting on therapeutic efficiency. Elevated levels of this protein are related with increase cell proliferation rates, motility and also cancer development. For this reason, we aimed to understand the role of Bag-1 expression in Cisplatin- induced apoptosis in HeLa cervix cancer cells. Cisplatin decreased cell viability in time- and dose-dependent manner in wt and Bag-1L+HeLa cells. Although, 10 μM Cisplatin treatment induced cell death within 24h by activating caspases in wt cells, Bag-1L stable transfection protected cells against Cisplatin treatment. To assess the potential protective role of Bag-1, we first checked the expression profile of interacting anti-apoptotic partners of Bag-1. We found that forced Bag-1L expression prevented Cisplatin-induced apoptosis through acting on Mcl-1 expression, which was reduced after Cisplatin treatment in wt HeLa cells. This mechanism was also supported by the regulation of heat shock protein (Hsp) family members, Hsp90 and Hsp40, which were involved in the regulation Bag-1 interactome including several anti-apoptotic Bcl-2 family members and c-Raf.

Schneider C, Setty M, Holmes AB, et al.
MicroRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas.
Proc Natl Acad Sci U S A. 2014; 111(22):8185-90 [PubMed] Free Access to Full Article Related Publications
Burkitt lymphoma (BL) is a highly aggressive B-cell non-Hodgkin lymphoma (B-NHL), which originates from germinal center (GC) B cells and harbors translocations deregulating v-myc avian myelocytomatosis viral oncogene homolog (MYC). A comparative analysis of microRNAs expressed in normal and malignant GC B cells identified microRNA 28 (miR-28) as significantly down-regulated in BL, as well as in other GC-derived B-NHL. We show that reexpression of miR-28 impairs cell proliferation and clonogenic properties of BL cells by modulating several targets including MAD2 mitotic arrest deficient-like 1, MAD2L1, a component of the spindle checkpoint whose down-regulation is essential in mediating miR-28-induced proliferation arrest, and BCL2-associated athanogene, BAG1, an activator of the ERK pathway. We identify the oncogene MYC as a negative regulator of miR-28 expression, suggesting that its deregulation by chromosomal translocation in BL leads to miR-28 suppression. In addition, we show that miR-28 can inhibit MYC-induced transformation by directly targeting genes up-regulated by MYC. Overall, our data suggest that miR-28 acts as a tumor suppressor in BL and that its repression by MYC contributes to B-cell lymphomagenesis.

Zhou RP, Chen G, Shen ZL, Pan LQ
Cinobufacin suppresses cell proliferation via miR-494 in BGC- 823 gastric cancer cells.
Asian Pac J Cancer Prev. 2014; 15(3):1241-5 [PubMed] Related Publications
Cinobufacin is used clinically to treat patients with many solid malignant tumors. However, the mechanisms underlying action remain to be detailed. Our study focused on miRNAs involved in cinobufacin inhibition of GC cell proliferation. miRNA microarray analysis and real time PCR identified miR-494 as a significant cinobufacin- associated miRNA. In vivo, ectopic expression of miR-494 inhibited the proliferation and induced apoptosis of BGC-823 cells on CCK-8 and flow cytometry analysis. Further study verified BAG-1 (anti-apoptosis gene) to bea target of miR-494 by luciferase reporter assay and Western blotting. In summary, our study demonstrated that cinobufacin may inhibit the proliferation and promote the apoptosis of BGC-823 cells. Cinobufacin-associated miR-494 may indirectly be involved in cell proliferation and apoptosis by targeting BAG-1, pointing to use as a potential molecular target of cinobufacin in gastric cancer therapy.

Liu H, Lu S, Gu L, et al.
Modulation of BAG-1 expression alters the sensitivity of breast cancer cells to tamoxifen.
Cell Physiol Biochem. 2014; 33(2):365-74 [PubMed] Related Publications
BACKGROUND: BAG-1 (bcl-2 associated athanogene) is a multifunctional protein that protects cells from a wide range of apoptotic stimuli including radiation, hypoxia and chemotherapeutic agents. Overexpression of cytoplasmic BAG-1 has been associated with the increased survival and decreased response to treatment with tamoxifen (TAM) in breast cancer. We attempted to assess the expression of BAG-1 in the human breast cancer cells that are resistant to treatment with 4-OH TAM and effect of altered BAG-1 expression on their sensitivity to 4-OH TAM.
METHODS: BAG-1 expression was examined in the MCF-7 cells that became resistant to 4-OH TAM. The 4-OH TAM-resistant MCF-7 cells were then transfected with the BAG-1 siRNA and the 4-OH TAM-sensitive MCF-7 cells with the plasmids carrying the human BAG-1 isoform-specific expression constructs respectively to investigate the effect of BAG-1 on the TAM-induced apoptosis.
RESULTS: Our results showed that the TAM-resistant MCF-7 (TAMR/MCF-7) cells expressed higher level of BAG-1 than that of the MCF-7 cells. Down-regulation of BAG-1 significantly enhanced the sensitivity of the TAMR/MCF-7 cells to TAM treatment. Additionally, we found that BAG-1 p50 was the only isoform that inhibited the TAM-induced apoptosis in the MCF-7 cells, while the other isoforms had little effect.
CONCLUSION: Our study indicated that up and down regulations of the BAG-1 expression were associated with the decreased and increased sensitivity to 4-OH TAM in the estrogen receptor-positive (ER+) human breast cancer cell line MCF-7 respectively, and distinct isoforms of BAG-1 had different anti-apoptotic ability in breast cancer cells treated with the 4-OH TAM.

Sun NF, Tian AL, Liu ZA, et al.
Antiapoptotic gene BAG-1 vector structure of RNA interference and endogenous targeted screening in colon cancer cell lines.
Tumour Biol. 2014; 35(2):1057-63 [PubMed] Related Publications
The purposes of the present work were to construct the shRNA plasmids for BAG-1 gene of human and test the expression of mRNA and protein of BAG-1. Recombinant plasmids containing green fluorescent protein reporter genes are constructed using gene cloning methods. The shRNA plasmids for the BAG-1 gene are constructed by RNA interference technology. We applied fluorescent plasmid-transfected target cells in the cell transfection experiments and monitored the transfection rate of plasmids by observing the fluorescence amount. We transfected three synthesized shRNA in target screening cell and adopted RT-PCR and Western test to identify the difference of target gene transfection and translation level in cells. The specific shRNA plasmid for the BAG-1 gene was successfully recombined, and stably transfected colon cancer Lo Vo cell lines were obtained. The results present that the constructed shRNA plasmids significantly inhibited the expression of mRNA and protein of Lo Vo cell BAG-1, and can maintain the effect for a long term. pGPH1/GFP/Neo-BAG-1-homo-825 was screened as the optimum sequence of interference so as to lay a solid foundation to explore into the research on the BAG-1 gene and the biological behavior of colon cancer cells. It showed the remarkable advantage of RNAi in the generation of posttranscriptional gene silencing.

Enthammer M, Papadakis ES, Salomé Gachet M, et al.
Isolation of a novel thioflavin S-derived compound that inhibits BAG-1-mediated protein interactions and targets BRAF inhibitor-resistant cell lines.
Mol Cancer Ther. 2013; 12(11):2400-14 [PubMed] Related Publications
Protein-protein interactions mediated through the C-terminal Bcl-2-associated athanogene (BAG) domain of BAG-1 are critical for cell survival and proliferation. Thioflavin S (NSC71948)-a mixture of compounds resulting from the methylation and sulfonation of primulin base-has been shown to dose-dependently inhibit the interaction between BAG-1 and Hsc70 in vitro. In human breast cancer cell lines, with high BAG-1 expression levels, Thioflavin S reduces the binding of BAG-1 to Hsc70, Hsp70, or CRAF and decreases proliferation and viability. Here, we report the development of a protocol for the purification and isolation of biologically active constituents of Thioflavin S and the characterization of the novel compound Thio-2. Thio-2 blocked the growth of several transformed cell lines, but had much weaker effects on untransformed cells. Thio-2 also inhibited the proliferation of melanoma cell lines that had become resistant to treatment with PLX4032, an inhibitor of mutant BRAF. In transformed cells, Thio-2 interfered with intracellular signaling at the level of RAF, but had no effect on the activation of AKT. Thio-2 decreased binding of BAG-1 to Hsc70 and to a lesser extent BRAF in vitro and in vivo, suggesting a possible mechanism of action. Given that tumors frequently develop resistance to kinase inhibitors during treatment, Thio-2 and related compounds may offer promising alternative strategies to currently available therapies.

Afentakis M, Dowsett M, Sestak I, et al.
Immunohistochemical BAG1 expression improves the estimation of residual risk by IHC4 in postmenopausal patients treated with anastrazole or tamoxifen: a TransATAC study.
Breast Cancer Res Treat. 2013; 140(2):253-62 [PubMed] Related Publications
BAG1 is a multifunctional anti-apoptotic protein located on chromosome 9q12, which binds to Bcl-2. BAG1 is present as a separate module in the GHI-RS 21-gene panel. It may provide additional prognostic information as an immunohistochemical marker when added to IHC4. Analysis of BAG1 was performed on archival tumour blocks from patients from the anastrozole and tamoxifen arms of the ATAC trial of 5 years endocrine therapy in postmenopausal women with oestrogen receptor (ER)-positive primary breast cancer. Staining was scored separately as nuclear or cytoplasmic. Statistical analyses were performed on data from median 10-year follow-up with distant recurrence as primary endpoint. Data on both nuclear and cytoplasmic BAG1 as well as the IHC4 markers (ER, PgR, HER2 and Ki67) were available on 963 ER-positive cases of which 860 were HER2-negative. Cytoplasmic and nuclear BAG1 were highly correlated (Spearman r = 0.79, p < 00001). Women with higher BAG1 expression developed 30 % fewer distant recurrences compared to those with low expression. Nuclear BAG1 contributed significantly to the clinical and IHC4 models with added information being greater in node-positive cases. Similar results were seen if all recurrences were the endpoints. BAG1 expression provides significant prognostic information when added to the classical clinicopathological parameters and IHC4, particularly in node-positive patients.

Zhou KY, Jin HH, Zhou T, Luo YK
[The expression and significance of apoptosis related gene BAG-1 in meningioma].
Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013; 29(2):110-3 [PubMed] Related Publications
OBJECTIVE: To analyze the expressions of BAG-1 in meningioma for further understanding of biological behaviors of meningiomas.
METHODS: The specimens included in this study were collected from 158 meningioma cases. Streptavidin-peroxidase were used in immunohistochemical staining. The results of immunohistochemical score were depending on the positive ratio and intensity of the immunoreactivity. The expressions of BAG-1 in meningioma were analyzed in relationship with histopathologic grading, postoperative recurrence.
RESULTS: The difference in the expression degree of BAG-1 between each subtype in the same histopathologic grade and various subtypes between the grade of II to III were not statically significant (P > 0.05). The expression degree of BAG-1 between each subtype in the pathological grade I to the each subtype pathological grade I or III was different, the difference had statistical significance (P < 0.05 or P < 0.01). The immunohistochemical score of the expression of BAG-1 was decreased gradually with the pathologic grading of WHO increased, and the result was statistically significant (chi2 = 141.49, P < 0.01). As the immunohistochemical score of the expression of BAG-1 decreased the postoperative meningioma was easy to recur, the result was statistically significant (x2 = 55.13, P < 0.01).
CONCLUSION: The expression degree of BAG-1 is in close correlations with the WHO pathologic grading of meningioma. The lower the expressions of BAG-1, the more recurrent with postoperation of meningiomas will be.

Ingoldsby H, Webber M, Wall D, et al.
Prediction of Oncotype DX and TAILORx risk categories using histopathological and immunohistochemical markers by classification and regression tree (CART) analysis.
Breast. 2013; 22(5):879-86 [PubMed] Related Publications
Oncotype DX is an RT-PCR assay used to predict which patients with ER-positive node-negative (NN) disease will benefit from chemotherapy. Each patient is stratified into a risk category based on a recurrence score (RS) and the TAILORx trial is determining the benefit of chemotherapy for patients with mid-range RSs. We tested if Oncotype DX and TAILORx risk categories could be predicted by standard pathological features and protein markers corresponding to 10 genes in the assay (ER, PR, Ki67, HER2, BCL2, CD68, Aurora A kinase, survivin, cyclin B1 and BAG1) on 52 patients who enrolled on TAILORx. Immunohistochemistry for the protein markers was performed on whole tissue sections. Classification and regression tree (CART) analysis correctly classified 69% of cases into Oncotype DX risk categories based on the expression of PR, survivin and nuclear pleomorphism. All tumours with PR staining (Allred score ≥ 2) and marked nuclear pleomorphism were in the high-risk category. No case with PR <2, low survivin (≤ 15.5%) and nuclear pleomorphism <3 was high-risk. Similarly, 77% of cases were correctly classified into TAILORx categories based on nuclear pleomorphism, survivin, BAG1 and cyclin B1. Ki67 was the only variable that predicted the absolute RS with a cut-off for positivity of 15% (p = 0.003). In conclusion, CART revealed key predictors including proliferation markers, PR and nuclear pleomorphism that correctly classified over two thirds of ER-positive NN cancers into Oncotype DX and TAILORx risk categories. These variables could be used as an alternative to the RT-PCR assay to reduce the number of patients requiring Oncotype DX testing.

Ni W, Chen B, Zhou G, et al.
Overexpressed nuclear BAG-1 in human hepatocellular carcinoma is associated with poor prognosis and resistance to doxorubicin.
J Cell Biochem. 2013; 114(9):2120-30 [PubMed] Related Publications
Bcl-2-associated athanogene-1 (BAG-1) is a multifunctional anti-apoptotic protein which regulates an array of cellular processes, including apoptosis, signaling, proliferation, transcription, and cell motility and has been reported to be over-expressed in a number of human malignancies. To investigate the possible involvement of BAG-1 in tumorigenesis of hepatocellular carcinoma (HCC), we performed Western blot analysis in eight paired samples of HCC and adjacent peritumoral tissues and immunohistochemistry in 65 paraffin sections of HCC, which both showed an enhanced expression of nuclear BAG-1 isoform in HCC tissues. Statistical analysis confirmed that overexpression of nuclear BAG-1 in HCC tissues was significantly associated with histological grading (P < 0.001), poor prognosis (P = 0.004), and was found to be an independent prognostic indicator for HCC (P = 0.023). We also noted that BAG-1 was overexpressed in four HCC cell lines compared with a normal hepatocyte cell line, and BAG-1 overexpression increased resistance of HCC cells to doxorubicin, a common chemotherapeutic agent for HCC. Furthermore, we observed that knock down of BAG-1 with siRNA in HepG2 cells increased the chemosensitivity of cells, a process mediated through inhibition of doxorubicin-triggered NF-κB activation; and knock down of BAG-1 suppressed proliferation and cell cycle transition of HepG2 cells. In consequence, our results for the first time indicated that BAG-1 was dysregulated in HCC and suppression of BAG-1 expression which resulted in inhibiting of NF-κB signaling might be developed into a new strategy in HCC therapy.

Aust S, Pils S, Polterauer S, et al.
Expression of Bcl-2 and the antiapoptotic BAG family proteins in ovarian cancer.
Appl Immunohistochem Mol Morphol. 2013; 21(6):518-24 [PubMed] Related Publications
In epithelial ovarian cancer (EOC), literature on the prognostic value of B-cell lymphoma 2 (Bcl-2) is limited and inconsistent. Little is known about the expression patterns and the prognostic value of prosurvival proteins of the Bcl-2-associated athanogene (BAG) family proteins interacting with Bcl-2. The major aim of this study was to further define the expression pattern and the prognostic role of Bcl-2 together with BAG-1, BAG-3, and BAG-4 proteins in EOC patients receiving platinum/taxane-based chemotherapy. A tissue array was constructed comprising 63 EOC patients. The expression and the prognostic value of Bcl-2, BAG-1, BAG-3, and BAG-4 in EOC were evaluated by immunohistochemistry and multivariate analysis. A positive cytoplasmic staining for Bcl-2 was observed in 23.8% of EOC samples and in all histologic subtypes. BAG-1, BAG-3, and BAG-4 were detected in tumor cell nuclei and cytoplasm. Interestingly, all patients presenting with a positive Bcl-2 staining showed additional positive nuclear and cytoplasmic BAG-4 expression (P=0.014). Expression of Bcl-2, or the BAG family proteins, independent of nuclear or cytoplasmic localization, had no significant impact on either disease-free or overall survival, both in univariate and multivariate survival analyses with the limitation of a small cohort of cases. In this study, no association between Bcl-2 expression in EOC tumor tissue and prognosis was found. Similarly, nuclear and cytoplasmic expression of the prosurvival proteins of the BAG family had no significant impact on patients' outcome.

Zhou K, Jin H, Zhou T, Luo Y
BAG-1 expression in human meningioma and correlation with clinical characteristics.
Med Oncol. 2013; 30(1):458 [PubMed] Related Publications
The aim of this study is to investigate BAG-1 expression in human meningiomas and to assess its association with pathological and clinical characteristics. BAG-1 expression was analyzed in 158 specimens of meningiomas using immunohistochemical staining, and the results were graded according to the positivity ratio and the staining intensity. We examined the correlations between BAG-1 expression and the 2007 WHO pathological classification, peritumoral edema and postoperative recurrence. There were no significant differences in BAG-1 expression among meningioma subtypes within the same histopathologic grade, as well as between grades II and III. BAG-1 expression in grade I was much higher than in grade II (P < 0.05) or III (P < 0.01). BAG-1 expression was gradually decreased with increasing WHO pathologic classification (χ (2) = 141.49, P < 0.01), as well as with the increase in peritumoral edema (χ (2) = 43.93, P < 0.01) and postoperative recurrence (χ (2) = 55.13, P < 0.01). BAG-1 expression in meningioma depends upon WHO pathologic classification and is decreased in higher tumor classification. It is associated with heavier peritumoral edema and more postoperative recurrences.

Brendel A, Felzen V, Morawe T, et al.
Differential regulation of apoptosis-associated genes by estrogen receptor alpha in human neuroblastoma cells.
Restor Neurol Neurosci. 2013; 31(2):199-211 [PubMed] Related Publications
PURPOSE: The neuroendocrinology of female sex hormones is of great interest for a variety of neuropsychiatric disorders. In fact, estrogens and estrogen receptors (ERs) exert neuromodulatory and neuroprotective functions. Here we investigated potential targets of the ER subtype alpha that may mediate neuroprotection and focused on direct modulators and downstream executors of apoptosis.
METHODS: We employed subclones of human neuroblastoma cells (SK-N-MC) stably transfected with one of the ER subtypes, ERalpha or ERbeta. Differences between the cell lines regarding the mRNA expression levels were examined by qPCR, changes on protein levels were examined by Western Blot and immunocytochemistry. Differences concerning apoptosis induction were analysed by cell survival assays which included primary rat neurons.
RESULTS: In this report we show a potent protection against apoptosis-stimuli in ERalpha expressing cells compared to controls lacking ERalpha. In fact, almost a complete silencing of Caspase 3 expression in SK-ERalpha cells compared to SK-01 control transfected cells was observed. In addition, prosurvival bcl2, bag1 and bag3 expression was highly up-regulated in the presence of ERalpha.
CONCLUSION: Taken together, we identified Caspase 3, BAG1 and BAG3 as key targets of ERalpha in neuronal cells that may play a role in ERalpha-mediated neuroprotection.

Skeen VR, Collard TJ, Southern SL, et al.
BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells.
Oncogene. 2013; 32(38):4490-9 [PubMed] Free Access to Full Article Related Publications
As colorectal cancer remains the second highest cause of cancer-related deaths in much of the industrialised world, identifying novel strategies to prevent colorectal tumour development remains an important challenge. BAG-1 is a multi-functional protein, the expression of which is up-regulated at relatively early stages in colorectal tumorigenesis. Importantly, BAG-1 is thought to enhance colorectal tumour progression through promoting tumour cell survival. Here, we report for the first time a novel role for BAG-1, establishing it as a suppressor of transforming growth factor β (TGF-β1) expression in colorectal tumour cells. Microarray analysis first highlighted the possibility that BAG-1 may regulate TGF-β1 expression, a key cytokine in normal colonic tissue homoeostasis. Q-RT-PCR and ELISA demonstrated TGFB1 mRNA and protein expression to be significantly increased when BAG1 levels were reduced by small interfering RNA; additionally, induction of BAG-1L caused suppression of TGFB1 mRNA in colorectal tumour cells. Using reporter and chromatin immunoprecipitation assays, a direct association of BAG-1 with the TGFB1 gene regulatory region was identified. Immunohistochemistry and Weiser fraction data indicated that the levels of BAG-1 and TGF-β1 are inversely correlated in the normal colonic epithelium in vivo, consistent with a role for BAG-1-mediated repression of TGF-β1 production. In vitro studies showed that the change in TGF-β1 production following manipulation of BAG-1 is functionally relevant; through induction of anchorage-independent growth in TGF-β1-dependent normal rat kidney fibroblasts and regulation of SMAD2 phosphorylation in TGF-β1-sensitive adenoma cells. Taken together, this study identifies the anti-apoptotic protein BAG-1 as a suppressor of the inhibitory growth factor TGF-β1, suggesting that high expression of BAG-1 can impact on a number of the hallmarks of cancer, of potential importance in promoting the early stages of colorectal tumorigenesis. Establishing BAG-1 as a repressor of TGF-β1 has important biological implications, and highlights a new role for BAG-1 in colorectal tumorigenesis.

Collard TJ, Urban BC, Patsos HA, et al.
The retinoblastoma protein (Rb) as an anti-apoptotic factor: expression of Rb is required for the anti-apoptotic function of BAG-1 protein in colorectal tumour cells.
Cell Death Dis. 2012; 3:e408 [PubMed] Free Access to Full Article Related Publications
Although the retinoblastoma-susceptibility gene RB1 is inactivated in a wide range of human tumours, in colorectal cancer, the retinoblastoma protein (Rb) function is often preserved and the RB locus even amplified. Importantly, we have previously shown that Rb interacts with the anti-apoptotic Bcl-2 associated athanogene 1 (BAG-1) protein, which is highly expressed in colorectal carcinogenesis. Here we show for the first time that Rb expression is critical for BAG-1 anti-apoptotic activity in colorectal tumour cells. We demonstrate that Rb expression not only increases the nuclear localisation of the anti-apoptotic BAG-1 protein, but that expression of Rb is required for inhibition of apoptosis by BAG-1 both in a γ-irradiated Saos-2 osteosarcoma cell line and colorectal adenoma and carcinoma cell lines. Further, consistent with the fact that nuclear BAG-1 has previously been shown to promote cell survival through increasing nuclear factor (NF)-κB activity, we demonstrate that the ability of BAG-1 to promote NF-κB activity is significantly inhibited by repression of Rb expression. Taken together, data presented suggest a novel function for Rb, promoting cell survival through regulating the function of BAG-1. As BAG-1 is highly expressed in the majority of colorectal tumours, targeting the Rb-BAG-1 complex to promote apoptosis has exciting potential for future therapeutic development.

Maddalo D, Neeb A, Jehle K, et al.
A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death.
PLoS One. 2012; 7(10):e45690 [PubMed] Free Access to Full Article Related Publications
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy.

Larysz D, Zebracka-Gala J, Rudnik A, et al.
Expression of genes FOLR1, BAG1 and LAPTM4B in functioning and non-functioning pituitary adenomas.
Folia Neuropathol. 2012; 50(3):277-86 [PubMed] Related Publications
INTRODUCTION: The mechanism of pathogenesis of adenomas pituitary is still unknown; differences between pituitary cells of different origin are observed. Identification of genes specific to pituitary adenomas should give better understanding of differences in their response to therapy, especially to radiotherapy. The aim of our study was to independently validate differences in the expression of FOLR1, BAG1, LAPTM4B between functioning (FA) and non-functioning (NFA) pituitary adenomas reported by microarray-based studies.
MATERIAL AND METHODS: Analysis of gene expression was performed by real-time quantitative PCR (QPCR) in 76 pituitary adenomas, 25 functioning and 51 non-functioning ones. The expression of the examined genes was normalized to the reference index, obtained by calculation of the geometric mean of reference genes expression: GUS-B, B2M, ACTB, EIF3S10, UBE2D2 and ATP6V1E.
RESULTS: Two genes showed significant differences in expression between non-functioning adenomas and functioning ones (FA) (FOLR1 32.4 x greater p = 0.022, BAG1 2.2 x lower p = 0.0002). The expression of LAPTM4B (1.1 x lower) was only insignificantly changed. The expression of FOLR1 in all tumours (functioning and non-functioning) was higher in older patients (over 50 years of age) (p = 0.018). Expression of BAG1 was significantly lower in older patients (p = 0.015). In a subgroup of pure non-functioning adenomas there was a higher expression of FOLR1 in older patients (p = 0.006). Analysis of expression profiles and invasiveness of tumours did not reveal any significant differences both in non-functioning and functioning tumours.
CONCLUSIONS: Among pituitary adenomas, the highest level of expression FOLR1 is seen in NFA which are negative by immunohistochemistry to all pituitary hormones while GH-producing adenomas are the only class of pituitary tumours where FOLR1 expression is virtually absent. For BAG1 we confirm a significantly higher expression in functioning (both PRL and GH producing) adenomas than non-functioning ones, while LAPTM4B does not exhibit any expression changes between different classes of pituitary tumours.

van der Zee JA, Ten Hagen TL, Hop WC, et al.
Bcl-2 associated anthanogen-1 (Bag-1) expression and prognostic value in pancreatic head and periampullary cancer.
Eur J Cancer. 2013; 49(2):323-8 [PubMed] Related Publications
The expression of anti-apoptosis gene Bcl-2 associated anthanogen-1 (Bag-1), has been associated with outcome in several cancer types, however its prognostic role in pancreatic cancer is unknown. Aim was therefore to evaluate expression of Bag-1 in two anatomically closely related however prognostically different tumours, pancreatic head- and periampullary cancer and correlate expression with outcome. Bag-1 protein expression was studied by immunohistochemistry on original paraffin embedded tissue from 217 patients with microscopic radical resection (R0) of adenocarcinoma of the pancreatic head or periampullary region. Expression was assessed for associations with recurrence free- (RFS), cancer specific- (CSS), overall survival (OS) and conventional prognostic factors. Nuclear Bag-1 was present in 80% of tumours. In 40% Bag-1 resided in the cytosol, which was almost exclusively associated with nuclear expression. Nuclear Bag-1 protein was identified as an independent factor predicting a favourable outcome following radical resection of pancreatic head cancer. Eighteen percent of patients with nuclear Bag-1 were recurrence free and alive 5 years following surgery compared to none of the patients lacking expression. In periampullary cancer Bag-1 was not associated with outcome. In conclusion, Bag-1 was present in the majority of both pancreatic head- and periampullary cancers. However it was only identified as a discriminator of outcome in pancreatic head cancer.

Hassumi-Fukasawa MK, Miranda-Camargo FA, Zanetti BR, et al.
Expression of BAG-1 and PARP-1 in precursor lesions and invasive cervical cancer associated with human papillomavirus (HPV).
Pathol Oncol Res. 2012; 18(4):929-37 [PubMed] Related Publications
Cervical cancer remains persistently the second most common malignancies among women worldwide, responsible for 500,000 new cases annually. Only in Brazil, the estimate is for 18,430 new cases in 2011. Several types of molecular markers have been studied in carcinogenesis including proteins associated with apoptosis such as BAG-1 and PARP-1. This study aims to demonstrate the expression of BAG-1 and PARP-1 in patients with low-grade squamous intraepithelial lesions (LSILs), high-grade squamous intraepithelial lesions (HSILs) and invasive squamous cell carcinomas (SCCs) of the uterine cervix and to verify a possible association with HPV infection. Fifty samples of LSILs, 50 samples of HSILs and 50 samples of invasive SCCs of the uterine cervix were analyzed by immunohistochemistry for BAG-1 and PARP-1 expression. PCR was performed to detect and type HPV DNA. BAG-1 expression levels were significantly different between LSILs and HSILs (p = 0,014) and between LSILs and SCCs (p = 0,014). In regards to PARP-1 expression, we found significant differences between the expression levels in HSILs and SCCs (p = 0,022). No association was found between BAG-1 expression and the presence of HPV. However, a significant association was found between PARP-1 expression and HPV positivity in the HSILs group (p = 0,021). In conclusion our research suggests that BAG-1 expression could contribute to the differentiation between LSIL and HSIL/SCC whereas PARP-1 could be useful to the differentiation between HSIL HPV-related and SCC. Further studies are needed to clarify the molecular aspects of the relationship between PARP-1 expression and HPV infection, with potential applications for cervical cancer prediction.

Leng XF, Chen MW, Xian L, et al.
Combined analysis of mRNA expression of ERCC1, BAG-1, BRCA1, RRM1 and TUBB3 to predict prognosis in patients with non-small cell lung cancer who received adjuvant chemotherapy.
J Exp Clin Cancer Res. 2012; 31:25 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The aim of this study was to investigate prognostic value of excision repair cross-complementing 1 (ERCC1), BCL2-associated athanogene (BAG-1), the breast and ovarian cancer susceptibility gene 1 (BRCA1), ribonucleotide reductase subunit M1 (RRM1) and class III β-tubulin (TUBB3) in patients with non-small cell lung cancer (NSCLC) who received platinum- based adjuvant chemotherapy.
METHODS: Messenger RNA expressions of these genes were examined in 85 tumor tissues and 34 adjacent tissue samples using semi-quantitative RT-PCR. The expressions of these five genes were analyzed in relation to chemotherapy and progression-free survival (PFS) and overall survival (OS). Seventy-four patients were enrolled into chemotherapy.
RESULTS: Patients with ERCC1 or BAG-1 negative expression had a significantly longer PFS (P = 0.001 and P = 0.001) and OS (P = 0.001 and P = 0.001) than those with positive expression. Patients with negative ERCC1 and BAG-1 expression benefited more from platinum regimen (P = 0.001 and P = 0.002). Patients with BRCA1 negative expression might have a longer OS (P = 0.052), but not PFS (P = 0.088) than those with BRCA1 positive expression. A significant relationship was observed between the mRNA expression of ERCC1 and BAG-1 (P = 0.042). In multivariate analysis, ERCC1 and BAG-1 were significantly favorable factors for PFS (P = 0.018 and P = 0.017) and OS (P = 0.027 and P = 0.022).
CONCLUSIONS: ERCC1 and BAG-1 are determinants of survival after surgical treatment of NSCLC, and its mRNA expression in tumor tissues could be used to predict the prognosis of NSCLC treated by platinum.

Wang YD, Ha MW, Cheng J, et al.
The role of expression and polymorphism of the BAG-1 gene in response to platinum-based chemotherapeutics in NSCLC.
Oncol Rep. 2012; 27(4):979-86 [PubMed] Free Access to Full Article Related Publications
We investigated the correlation between BAG-1 expression and sensitivity to platinum-based chemotherapeutics in patients with non-small cell lung cancer (NSCLC). mRNA and protein expression of BAG-1 in lung tissue of NSCLC postoperative patients (I-IIIA stage) or healthy subjects were detected using reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively. Cox regression analysis was used to quantify the association of prognostic factors with survival in NSCLC patients. Venous blood samples from patients newly diagnosed with advanced NSCLC (IIIB-IV stage) were collected before chemotherapy to analyze allelic frequency and gene polymorphisms. Compared to healthy controls (11.67%, 14 cases), levels of mRNA and protein of BAG-1 in lung tissues was significantly higher in NSCLC patients (61.67%, 74 cases) (χ²=5.601, P<0.05). Moreover, BAG-1 expression was identified as an independent prognostic factor for survival in NSCLC patients. As time to progression and survival rate was dramatically increased, patients with a positive expression of BAG-1 exhibited a prolonged survival period (TTP, 49.3 months; 5-year survival rat, 16.21%) compared with those without BAG-1 expression (χ²=7.243, P<0.05). Two BAG-1 digestion patterns (CC and CT) were identified and confirmed. patients (77.46%) had a C/C genotype at BAG-1 codon 324, while 22.54% had the C/T genotype. The T/T genotype was not present in these patients. The progression risk of patients carrying the C/C genotype at Bag-1 codon 324 was 1.87 times higher than that of patients carrying the C/T genotype (P<0.001). Follow-up examination showed that the chemotherapeutic sensitivity of patients carrying the C/C genotype was 2.852 times higher than that of patients carrying the C/T genotype (95% CI, 1.133-7.182; P=0.026). Significant differences were found in the median progression-free survival (PFS) and overall survival (OS) of these two cohorts of patients. Compared to patients carrying the C/T genotype of BAG-1, patients carrying the C/C genotype at Bag-1 codon 324 exhibited better responses to platinum-based chemotherapy. Hence, the expression of BAG-1 was closely associated with the sensitivity to platinum-based chemotherapeutics in NSCLC patients.

Aveic S, Pigazzi M, Basso G
BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.
PLoS One. 2011; 6(10):e26097 [PubMed] Free Access to Full Article Related Publications
BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

Zhang XY, Pfeiffer HK, Mellert HS, et al.
Inhibition of the single downstream target BAG1 activates the latent apoptotic potential of MYC.
Mol Cell Biol. 2011; 31(24):5037-45 [PubMed] Free Access to Full Article Related Publications
Aberrant MYC expression is a common oncogenic event in human cancer. Paradoxically, MYC can either drive cell cycle progression or induce apoptosis. The latent ability of MYC to induce apoptosis has been termed "intrinsic tumor suppressor activity," and reactivating this apoptotic function in tumors is widely considered a valuable therapeutic goal. As a transcription factor, MYC controls the expression of many downstream targets, and for the majority of these, it remains unclear whether or not they play direct roles in MYC function. To identify the subset of genes specifically required for biological activity, we conducted a screen for functionally important MYC targets and identified BAG1, which encodes a prosurvival chaperone protein. Expression of BAG1 is regulated by MYC in both a mouse model of breast cancer and transformed human cells. Remarkably, BAG1 induction is essential for protecting cells from MYC-induced apoptosis. Ultimately, the synthetic lethality we have identified between MYC overexpression and BAG1 inhibition establishes a new pathway that might be exploited to reactivate the latent apoptotic potential of MYC as a cancer therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BAG1, Cancer Genetics Web: http://www.cancer-genetics.org/BAG1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999