Gene Summary

Gene:CTCF; CCCTC-binding factor
Aliases: MRD21
Summary:This gene is a member of the BORIS + CTCF gene family and encodes a transcriptional regulator protein with 11 highly conserved zinc finger (ZF) domains. This nuclear protein is able to use different combinations of the ZF domains to bind different DNA target sequences and proteins. Depending upon the context of the site, the protein can bind a histone acetyltransferase (HAT)-containing complex and function as a transcriptional activator or bind a histone deacetylase (HDAC)-containing complex and function as a transcriptional repressor. If the protein is bound to a transcriptional insulator element, it can block communication between enhancers and upstream promoters, thereby regulating imprinted expression. Mutations in this gene have been associated with invasive breast cancers, prostate cancers, and Wilms' tumors. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcriptional repressor CTCF
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Stomach Cancer
  • Testicular Cancer
  • X Chromosome Inactivation
  • Neoplasm Proteins
  • Base Sequence
  • RNA, Untranslated
  • Gene Expression Regulation
  • Wilms Tumour
  • DNA Methylation
  • Promoter Regions
  • Genomic Imprinting
  • Chromatin
  • Chromosome 16
  • Gene Expression Profiling
  • Trisomy
  • CpG Islands
  • Tamoxifen
  • beta-Galactosidase
  • Epigenetics
  • Repressor Proteins
  • bcl-2-Associated X Protein
  • Molecular Sequence Data
  • p53 Protein
  • Sweden
  • Protein Binding
  • Cancer Gene Expression Regulation
  • Tumor Suppressor Protein p14ARF
  • Messenger RNA
  • DNA-Binding Proteins
  • Binding Sites
  • Histones
  • Zinc Fingers
  • Sulfites
  • IGF2
  • Breast Cancer
  • Up-Regulation
  • YY1 Transcription Factor
  • Chromatin Immunoprecipitation
  • Long Noncoding RNA
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CTCF (cancer-related)

Ayala-Ortega E, Arzate-Mejía R, Pérez-Molina R, et al.
Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines.
BMC Cancer. 2016; 16:226 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells.
METHODS: To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing.
RESULTS: We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c.
CONCLUSION: Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis.

Qin F, Song Y, Zhang Y, et al.
Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA.
PLoS One. 2016; 11(3):e0150382 [PubMed] Free Access to Full Article Related Publications
The chimeric RNA, SLC45A3-ELK4, was found to be a product of cis-splicing between the two adjacent genes (cis-SAGe). Despite the biological and clinical significance of SLC45A3-ELK4, its generating mechanism has not been elucidated. It was shown in one cell line that the binding of transcription factor CTCF to the insulators located at or near the gene boundaries, inversely correlates with the level of the chimera. To investigate the mechanism of such cis-SAGe events, we sequenced potential regions that may play a role in such transcriptional read-through. We could not detect mutations at the transcription termination site, insulator sites, splicing sites, or within CTCF itself in LNCaP cells, thus suggesting a "soft-wired" mechanism in regulating the cis-SAGe event. To investigate the role CTCF plays in regulating the chimeric RNA expression, we compared the levels of CTCF binding to the insulators in different cell lines, as well as clinical samples. Surprisingly, we did not find an inverse correlation between CTCF level, or its bindings to the insulators and SLC45A3-ELK4 expression among different samples. However, in three prostate cancer cell lines, different environmental factors can cause the expression levels of the chimeric RNA to change, and these changes do inversely correlate with CTCF level, and/or its bindings to the insulators. We thus conclude that CTCF and its bindings to the insulators are not the primary reasons for differential SLC45A3-ELK4 expression in different cell lines, or clinical cases. However, they are the likely mechanism for the same cells to respond to different environmental cues, in order to regulate the expression of SLC45A3-ELK4 chimeric RNA. This response to different environmental cues is not general to other cis-SAGe events, as we only found one out of 16 newly identified chimeric RNAs showing a pattern similar to SLC45A3-ELK4.

Sharmin M, Bravo HC, Hannenhalli S
Distinct genomic and epigenomic features demarcate hypomethylated blocks in colon cancer.
BMC Cancer. 2016; 16:88 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Large mega base-pair genomic regions show robust alterations in DNA methylation levels in multiple cancers. A vast majority of these regions are hypomethylated in cancers. These regions are generally enriched for CpG islands, Lamin Associated Domains and Large organized chromatin lysine modification domains, and are associated with stochastic variability in gene expression. Given the size and consistency of hypomethylated blocks (HMB) across cancer types, we hypothesized that the immediate causes of methylation instability are likely to be encoded in the genomic region near HMB boundaries, in terms of specific genomic or epigenomic signatures. However, a detailed characterization of the HMB boundaries has not been reported.
METHOD: Here, we focused on ~13 k HMBs, encompassing approximately half of the genome, identified in colon cancer. We modeled the genomic features of HMB boundaries by Random Forest to identify their salient features, in terms of transcription factor (TF) binding motifs. Additionally we analyzed various epigenomic marks, and chromatin structural features of HMB boundaries relative to the non-HMB genomic regions.
RESULT: We found that the classical promoter epigenomic mark--H3K4me3, is highly enriched at HMB boundaries, as are CTCF bound sites. HMB boundaries harbor distinct combinations of TF motifs. Our Random Forest model based on TF motifs can accurately distinguish boundaries not only from regions inside and outside HMBs, but surprisingly, from active promoters as well. Interestingly, the distinguishing TFs and their interacting proteins are involved in chromatin modification. Finally, HMB boundaries significantly coincide with the boundaries of Topologically Associating Domains of the chromatin.
CONCLUSION: Our analyses suggest that the overall architecture of HMBs is guided by pre-existing chromatin architecture, and are associated with aberrant activity of promoter-like sequences at the boundary.

Zadeh G, Aldape K
Bringing IDH into the Fold.
Cancer Cell. 2016; 29(2):139-40 [PubMed] Related Publications
Glioma-associated mutations in IDH1 or IDH2 lead to aberrant DNA methylation. A recent paper shows that loss of methylation-sensitive CTCF binding in IDH mutant cells leads to disruption of enhancer boundary function, which results in aberrant activation of PDGFRA expression via an enhancer associated with an adjacent gene.

Ing-Simmons E, Merkenschlager M
Oncometabolite Tinkers with Genome Folding, Boosting Oncogene Expression.
Trends Mol Med. 2016; 22(3):185-7 [PubMed] Related Publications
A recent article makes a compelling case for a new mechanism by which heterozygous mutations in isocitrate dehydrogenases (IDH1/2)--implicated in cancer--undermine gene regulation. 2-Hydroxyglutarate (2HG) produced by mutant IDH alters the binding of the chromosomal organizer protein CTCF, disrupting the spatial and regulatory organization of the genome.

Haag T, Richter AM, Schneider MB, et al.
The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms.
BMC Cancer. 2016; 16:49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Dual specificity phosphatases are a class of tumor-associated proteins involved in the negative regulation of the MAP kinase pathway. Downregulation of the dual specificity phosphatase 2 (DUSP2) has been reported in cancer. Epigenetic silencing of tumor suppressor genes by abnormal promoter methylation is a frequent mechanism in oncogenesis. It has been shown that the epigenetic factor CTCF is involved in the regulation of tumor suppressor genes.
METHODS: We analyzed the promoter hypermethylation of DUSP2 in human cancer, including primary Merkel cell carcinoma by bisulfite restriction analysis and pyrosequencing. Moreover we analyzed the impact of a DNA methyltransferase inhibitor (5-Aza-dC) and CTCF on the epigenetic regulation of DUSP2 by qRT-PCR, promoter assay, chromatin immuno-precipitation and methylation analysis.
RESULTS: Here we report a significant tumor-specific hypermethylation of DUSP2 in primary Merkel cell carcinoma (p = 0.05). An increase in methylation of DUSP2 was also found in 17 out of 24 (71%) cancer cell lines, including skin and lung cancer. Treatment of cancer cells with 5-Aza-dC induced DUSP2 expression by its promoter demethylation, Additionally we observed that CTCF induces DUSP2 expression in cell lines that exhibit silencing of DUSP2. This reactivation was accompanied by increased CTCF binding and demethylation of the DUSP2 promoter.
CONCLUSIONS: Our data show that aberrant epigenetic inactivation of DUSP2 occurs in carcinogenesis and that CTCF is involved in the epigenetic regulation of DUSP2 expression.

Chen J, Yao ZX, Chen JS, et al.
TGF-β/β2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome.
J Clin Invest. 2016; 126(2):527-42 [PubMed] Free Access to Full Article Related Publications
Beckwith-Wiedemann syndrome (BWS) is a human stem cell disorder, and individuals with this disease have a substantially increased risk (~800-fold) of developing tumors. Epigenetic silencing of β2-spectrin (β2SP, encoded by SPTBN1), a SMAD adaptor for TGF-β signaling, is causally associated with BWS; however, a role of TGF-β deficiency in BWS-associated neoplastic transformation is unexplored. Here, we have reported that double-heterozygous Sptbn1+/- Smad3+/- mice, which have defective TGF-β signaling, develop multiple tumors that are phenotypically similar to those of BWS patients. Moreover, tumorigenesis-associated genes IGF2 and telomerase reverse transcriptase (TERT) were overexpressed in fibroblasts from BWS patients and TGF-β-defective mice. We further determined that chromatin insulator CCCTC-binding factor (CTCF) is TGF-β inducible and facilitates TGF-β-mediated repression of TERT transcription via interactions with β2SP and SMAD3. This regulation was abrogated in TGF-β-defective mice and BWS, resulting in TERT overexpression. Imprinting of the IGF2/H19 locus and the CDKN1C/KCNQ1 locus on chromosome 11p15.5 is mediated by CTCF, and this regulation is lost in BWS, leading to aberrant overexpression of growth-promoting genes. Therefore, we propose that loss of CTCF-dependent imprinting of tumor-promoting genes, such as IGF2 and TERT, results from a defective TGF-β pathway and is responsible at least in part for BWS-associated tumorigenesis as well as sporadic human cancers that are frequently associated with SPTBN1 and SMAD3 mutations.

Bornstein S, Schmidt M, Choonoo G, et al.
IL-10 and integrin signaling pathways are associated with head and neck cancer progression.
BMC Genomics. 2016; 17:38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Head and neck cancer is morbid with a poor prognosis that has not significantly improved in the past several decades. The purpose of this study was to identify biological pathways underlying progressive head and neck cancer to inform prognostic and adjuvant strategies. We identified 235 head and neck cancer patients in The Cancer Genome Atlas (TCGA) with sufficient clinical annotation regarding therapeutic treatment and disease progression to identify progressors and non-progressors. We compared primary tumor gene expression and mutational status between these two groups.
RESULTS: 105 genes were differentially expressed between progressors and nonprogressors (FDR < 0.05). Pathway analyses revealed deregulation (FDR < 0.05) of multiple pathways related to integrin signaling as well as IL-10 signaling. A number of genes were uniquely mutated in the progressor cohort including increased frequency of truncating mutations in CTCF (P = 0.007). An 11-gene signature derived from a combination of unique mutations and differential expression was identified (PAGE4, SMTNL1, VTN, CA5A, C1orf43, KRTAP19-1, LEP, HRH4, PAGE5, SEZ6L, CREB3). This signature was associated with decreased overall survival (Logrank Test; P = 0.03443). Cox modeling of both key clinical features and the signature was significant (P = 0.032) with the greatest prognostic improvement seen in the model based on nodal extracapsular spread and alcohol use alone (P = 0.004).
CONCLUSIONS: Molecular analyses of head and neck cancer tumors that progressed despite treatment, identified IL-10 and integrin pathways to be strongly associated with cancer progression. In addition, we identified an 11-gene signature with implications for patient prognostication. Mutational analysis highlighted a potential role for CTCF, a crucial regulator of long-range chromatin interactions, in head and neck cancer progression.

Flavahan WA, Drier Y, Liau BB, et al.
Insulator dysfunction and oncogene activation in IDH mutant gliomas.
Nature. 2016; 529(7584):110-4 [PubMed] Free Access to Full Article Related Publications
Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.

Yu F, Shen X, Fan L, Yu Z
Analysis of histone modifications at human ribosomal DNA in liver cancer cell.
Sci Rep. 2015; 5:18100 [PubMed] Free Access to Full Article Related Publications
Human liver cancer is the cancer commonly seen clinically. The transcription of ribosomal DNA (rDNA) is a critical step for cells, and epigenetic marks such as post-translational histone modifications have been involved in the regulation of rDNA transcription. But less is known about the pathogenesis of the liver cancers concerning the rDNA transcription regulation. Here we aligned the ChIP-seq data of histone modification markers and CTCF to the human genome assembly which contains a single rDNA repeat in human liver cancer cell and validated their distribution with ChIP-QPCR. Human liver cancer cell possesses a higher enrichment of H3K4me1 and H3K27me3 at ~28 kb within the intergenic spacer (IGS) of rDNA and a higher enrichment of H3K4me3 and H3K27ac upstream of TSS. Furtherly, we studied whether UBF could affect histone modification markers and CTCF at rDNA in human liver cancer cell. UBF depletion leads to a decrease of gene activation mark H3K4me3 across the rDNA promoter. And other histone modification marks and CTCF were not altered after UBF depletion. Taken together, our data showed a high resolution map of histone modification marks at rDNA in human liver cancer cell and provide novel evidence to decipher chromatin-mediated regulation of rDNA in liver cancer.

Chang SW, Chao WR, Ruan A, et al.
A promising hypothesis of c-KIT methylation/ expression paradox in c-KIT (+) squamous cell carcinoma of uterine cervix ----- CTCF transcriptional repressor regulates c-KIT proto-oncogene expression.
Diagn Pathol. 2015; 10:207 [PubMed] Free Access to Full Article Related Publications
We recently reported one interesting case showing mutation-free c-KIT proto-oncogene overexpression and paradoxical hypermethylation in 54 cases of primary squamous cell carcinoma of uterine cervix (SCC). However, its molecular mechanisms still remain unknown. We propose the hypothesis that increased methylation at the CpG islands on the promoter near the first exon region might interfere with the binding of CTCF repressor with c-KIT promoter that regulates c-KIT proto-oncogene expression in such case. Further studies focusing on the status of epigenetic modifications of mutation-free c-KIT (+) tumors are encouraged.

Hu J, Zhang Y, Zhao L, et al.
Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes.
Cell. 2015; 163(4):947-59 [PubMed] Free Access to Full Article Related Publications
RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them.

Zou Y, Deng W, Wang F, et al.
A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.
Oncol Rep. 2016; 35(2):725-30 [PubMed] Related Publications
A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co‑occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC‑115, the MAPK1‑mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit α (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ε (POLE1), ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease.

Pu H, Zheng Q, Li H, et al.
CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc.
Oncotarget. 2015; 6(38):40775-98 [PubMed] Free Access to Full Article Related Publications
Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to reduce the DNA methylation on H19 promoter region and then to enhance the H19 expression. Strikingly, the overexpression of H19 increases the binding of TERT to TERC and reduces the interplay between TERT with TERRA, thus enhancing the cell telomerase activity and extending the telomere length. On the other hand, insulator CTCF recruits the CUDR-CyclinD1 complx to form the composite CUDR-CyclinD1-insulator CTCF complex which occupancied on the C-myc gene promoter region, increasing the outcome of oncogene C-myc. Ultimately, excessive TERT and C-myc lead to liver cancer stem cell and hepatocyte-like stem cell malignant proliferation. To understand the novel functions of long noncoding RNA CUDR will help in the development of new liver cancer therapeutic and diagnostic approaches.

Schultz B, Yao X, Deng Y, et al.
A Common Polymorphism within the IGF2 Imprinting Control Region Is Associated with Parent of Origin Specific Effects in Infantile Hemangiomas.
PLoS One. 2015; 10(10):e0113168 [PubMed] Free Access to Full Article Related Publications
Infantile hemangioma (IH) is the most common tumor of the pediatric age group, affecting up to 4% of newborns ranging from inconsequential blemishes, to highly aggressive tumors. Following well defined growth phases (proliferative, plateau involutional) IH usually regress into a fibro-fatty residuum. Despite the high prevalence of IH, little is known regarding the pathogenesis of disease. A reported six fold decrease in IGF2 expression (correlating with transformation of proliferative to involuted lesions) prompted us to study the IGF-2 axis further. We demonstrate that IGF2 expression in IH is strongly related to the expression of a cancer testes and suspected oncogene BORIS (paralog of CTCF), placing IH in the unique category of being the first known benign BORIS positive tumor. IGF2 expression was strongly and positively related to BORIS transcript expression. Furthermore, a stronger association was made when comparing BORIS levels against the expression of CTCF via either a percentage or difference between the two. A common C/T polymorphism at CTCF BS6 appeared to modify the correlation between CTCF/BORIS and IGF2 expression in a parent of origin specific manner. Moreover, these effects may have phenotypic consequences as tumor growth also correlates with the genotype at CTCF BS6. This may provide a framework for explaining the clinical variability seen in IH and suggests new insights regarding CTCF and BORIS related functionality in both normal and malignant states.

Mustafa M, Lee JY, Kim MH
CTCF negatively regulates HOXA10 expression in breast cancer cells.
Biochem Biophys Res Commun. 2015; 467(4):828-34 [PubMed] Related Publications
HOX genes not only play important roles in defining body patterning during embryonic development, but also control numerous cellular events in adult cells. Deregulated HOX gene expression in different cancers including breast cancer is now increasingly being reported. Given that human HOXA cluster is marked with several CTCF binding sites, we investigated whether the presence of CTCF is associated directly with expression of HOXA genes in breast cancer cells. Several HOX genes, such as HOXA4, HOXA5 and HOXA10, were deregulated by CTCF overexpression and knockdown in MCF-7 cells. Among these genes, HOXA10 is an emerging tumor suppressor for its role in activation of p53 and in countering tumorigenesis in breast cancer. Here we provided evidences that CTCF functions as a negative regulator of HOXA10 in breast cancer cells. The putative promoter region of HOXA10 lies between 5.3 and 6.1 kb upstream of its start codon and its promoter activity was negatively regulated by CTCF. Together with in-silico analysis and in vitro mutation assay we identified a 20 bp CTCF binding motif flanking with core promoter element of HOXA10. HOXA10 promoter region was kept inactivated by maintaining H3K27me3 inactivation marks in the presence of CTCF. Epigenetic silencing of HOXA10 by CTCF in breast cancer cells may contribute towards tumorigenesis by decreasing apoptosis and promoting metastasis.

Qian M, Yang X, Li Z, et al.
P50-associated COX-2 extragenic RNA (PACER) overexpression promotes proliferation and metastasis of osteosarcoma cells by activating COX-2 gene.
Tumour Biol. 2016; 37(3):3879-86 [PubMed] Related Publications
P50-associated cyclooxygenase-2 (COX-2) extragenic RNA (PACER) is a novel long noncoding RNA that has been found to activate the COX-2 gene, which may function as an oncogene in osteosarcoma. However, the role of PACER and the relationship between PACER and COX-2 in osteosarcoma progression have been unknown until now. Here, we examined the expression levels of PACER in clinical tumor samples and human osteosarcoma cell lines, assessed the functions of PACER in osteosarcoma cell proliferation and invasion, and then explored the mechanism of PACER dysregulation in osteosarcoma. The results showed that PACER was overexpressed in osteosarcoma tissues and cell lines compared with normal tissues and osteoblasts, respectively. PACER knockdown inhibited the proliferation and invasion of human osteosarcoma cells. Downregulation of PACER significantly suppressed the expression of COX-2, and the effects of PACER on cell proliferation and invasion were rescued by COX-2 overexpression. Furthermore, COX-2 activation by PACER was NF-κB-dependent. The regulation of PACER by CCCTC-binding factor (CTCF) was associated with DNA methylation status. Taken together, these findings suggest that PACER promotes proliferation and metastasis of osteosarcoma cells by activating the COX-2 gene and its own expression was influenced by DNA methylation.

Wang H, Ge S, Qian G, et al.
Restoration of IGF2 imprinting by polycomb repressive complex 2 docking factor SUZ12 in colon cancer cells.
Exp Cell Res. 2015; 338(2):214-21 [PubMed] Related Publications
The insulin-like growth factor II (IGF2) gene is aberrantly expressed in tumors as a result of loss of imprinting (LOI). Reactivation of the normally-suppressed maternal allele may lead to IGF2 upregulation and increased tumor growth, particularly in colon cancer. However, the mechanisms underlying IGF2 LOI in tumors are poorly defined. In this report, we identified polycomb repressive complex 2 (PRC2) docking factor SUZ12 as a critical factor in regulating IGF2 imprinting in tumors. Human colon cancer cell lines (HRT18 and HT29) show loss of IGF2 imprinting. Ectopic expression of SUZ12 restored normal monoallelic expression of IGF2 in these two colon cancer cell lines. Using chromatin immunoprecipitation (ChIP) and chromatin conformation capture (3C), we found that the virally-expressed SUZ12 bound to IGF2 promoters, coordinating with endogenous CTCF to orchestrate a long range intrachromosomal loop between the imprinting control region (ICR) and the IGF2 promoters. The histone methyltransferase EZH2 was recruited to the IGF2 promoters, where it induced H3K27 hypermethylation, suppressing one allele, leading to the restoration of IGF2 imprinting. These data demonstrate that SUZ12 is a key molecule in the regulation of monoallelic expression of IGF2, suggesting a novel epigenetic therapeutic strategy for modulating IGF2 production in human tumors.

Gui X, Li H, Li T, et al.
Long Noncoding RNA CUDR Regulates HULC and β-Catenin to Govern Human Liver Stem Cell Malignant Differentiation.
Mol Ther. 2015; 23(12):1843-53 [PubMed] Free Access to Full Article Related Publications
Long noncoding RNA cancer upregulated drug resistant (CUDR) is overexpressed in many tumors and promotes tumorigenesis. Herein, we demonstrate CUDR could enhance the human embryonic stem cells (ESC) differentiation into hepatocyte-like cells by reducing trimethylation on histone H3 twenty-seventh lysine (H3K27me3). On the other hand, excessive CUDR triggers hepatocyte-like cells malignant transformation. Mechanistically, we identify CUDR causes highly upregulated in liver cancer (HULC) and β-catenin abnormal expression by inhibiting HULC promoter methylation and promoting β-catenin promoter-enhancer chromatin looping formation mediated by CUDR-ccctc-binding factor (CTCF) complex, which recruits more RNA polII and P300. Strikingly, HULC and β-catenin activity are crucial for CUDR oncogenic function. These findings provide the first demonstration that CUDR plays a positive potential role in liver cancer stem cell through the cascade of CUDR-HULC/CUDR-β-catenin signaling, and offer insights into a novel link between long noncoding RNA (lncRNA) and the epigenetic modification in cancer stem cells.

Walker CJ, Miranda MA, O'Hern MJ, et al.
Patterns of CTCF and ZFHX3 Mutation and Associated Outcomes in Endometrial Cancer.
J Natl Cancer Inst. 2015; 107(11) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The genetic events responsible for tumor aggressiveness in endometrioid endometrial cancer (EEC) remain poorly understood. The chromosome 16q22 tumor suppressor genes CTCF and ZFHX3 are both frequently mutated in EEC, but their respective roles in outcome have not been determined.
METHODS: Targeted deep sequencing of CTCF and ZFHX3 was performed for 542 EEC samples. Copy number loss (CNL) was determined using microsatellite typing of paired tumor and normal DNA and a novel Bayesian method based on variant allele frequencies of germline polymorphisms. All statistical tests were two-sided.
RESULTS: Mutation rates for CTCF and ZFHX3 were 25.3% and 20.4%, respectively, and there was a statistically significant excess of tumors with mutation in both genes (P = .003). CNL rates were 17.4% for CTCF and 17.2% for ZFHX3, and the majority of CNLs included both CTCF and ZFHX3. Mutations were more frequent in tumors with microsatellite instability, and CNLs were more common in microsatellite-stable tumors (P < .001). Patients with ZFHX3 mutation and/or CNL had higher-grade tumors (P = .001), were older (P < .001), and tended to have more frequent lymphovascular space invasion (P = .07). These patients had reduced recurrence-free and overall survival (RFS: hazard ratio [HR] = 2.35, 95% confidence interval [CI] = 1.38 to 3.99, P = .007; OS: HR = 1.51, 95% CI = 1.11 to 2.07, P = .04).
CONCLUSIONS: Our data demonstrate there is strong selection for inactivation of both CTCF and ZFHX3 in EEC. Mutation occurs at high frequency in microsatellite-unstable tumors, whereas CNLs are common in microsatellite-stable cancers. Loss of these two tumor suppressors is a frequent event in endometrial tumorigenesis, and ZFHX3 defects are associated with poor outcome.

Al-Obaide MA, Alobydi H, Abdelsalam AG, et al.
Multifaceted roles of 5'-regulatory region of the cancer associated gene B4GALT1 and its comparison with the gene family.
Int J Oncol. 2015; 47(4):1393-404 [PubMed] Related Publications
β1,4-Galactosylransferases are a family of enzymes encoded by seven B4GALT genes and are involved in the development of anticancer drug resistance and metastasis. Among these genes, the B4GALT1 shows significant variations in the transcript origination sites in different cell types/tissues and encodes an interesting dually partitioning β-1, 4-galactosyltransferase protein. We identified at 5'-end of B4GALT1 a 1.454 kb sequence forming a transcription regulatory region, referred to by us as the TR1-PE1, had all characteristics of a bidirectional promoter directing the transcription of B4GALT1 in a divergent manner along with its long non-coding RNA (lncRNA) antisense counterpart B4GALT1-AS1. The TR1-PE1 showed unique dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs), INR and BRE, and harbored CpG Island (CGI) that showed GC skew with potential for R-loop formation at the transcription starting sites (TSSs). The 5'-regulatory axis of B4GALT1 also included five more novel TFBSs for CTCF, GLI1, TCF7L2, GATA3 and SOX5, in addition to unique (TG)18 repeats in conjunction with 22 nucleotide TG-associated sequence (TGAS). The five lncRNA B4GALT1-AS1 transcripts showed significant complementarity with B4GALT1 mRNA. In contrast, the rest of B4GALT genes showed fewer lncRNAs, and all lacked the (TG)18 and TGAS. Our results are strongly supported by the FANTOM5 study which showed tissue-specific variations in transcript origination sites for this gene. We suggest that the unique expression patterns for the B4GALT1 in normal and malignant tissues are controlled by a differential usage of 5'-B4GALT1 regulatory units along with a post-transcriptional regulation by the antisense RNA, which in turn govern the cell-matrix interactions, neoplastic progression, anticancer drug sensitivity, and could be utilized in personalized therapy.

Pugacheva EM, Rivero-Hinojosa S, Espinoza CA, et al.
Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.
Genome Biol. 2015; 16:161 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.
RESULTS: Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells.
CONCLUSIONS: We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells.

Vicente C, Schwab C, Broux M, et al.
Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.
Haematologica. 2015; 100(10):1301-10 [PubMed] Free Access to Full Article Related Publications
T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.

Velázquez-Hernández N, Reyes-Romero MA, Barragán-Hernández M, et al.
BORIS and CTCF are overexpressed in squamous intraepithelial lesions and cervical cancer.
Genet Mol Res. 2015; 14(2):6094-100 [PubMed] Related Publications
We investigated the expression of Brother of Regulator of Imprinted Sites (BORIS) and CCCTC-binding factor (CTCF) in squamous intraepithelial lesions and cervical cancer. To analyze BORIS and CTCF expression, an endocervical cytobrush sample was taken for total RNA isolation. CTCF and BORIS mRNA was quantified from total RNA using quantitative reverse transcription-polymerase chain reaction. A total of 71 samples were collected and classified according to the Bethesda Classification of squamous intraepithelial lesions. BORIS expression was observed in 9 (12.7%) samples; of these, 5.3, 5.9, 14.8, and 37.5% in the groups that were cytology negative for intraepithelial lesion or malignancy, low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), and invasive cervical carcinoma, respectively. The expression level of BORIS was significantly higher in the group with invasive cervical carcinoma as compared with the groups negative for intraepithelial lesion or malignancy, LSIL, and HSIL (P < 0.0005). CTCF mRNA was expressed in all samples. CTCF expression was significantly higher in carcinoma groups compared with LSIL, HSIL, and negative for intraepithelial lesion or malignancy groups. We found that BORIS and CTCF expressions in the LSIL and invasive cervical carcinoma groups were higher than expression in cytological normal samples. Additional studies should be conducted to examine the function of transcription factors during different stages of the transformation of cervical cancer cells.

Wei L, Xie X, Li J, et al.
Disruption of human vigilin impairs chromosome condensation and segregation.
Cell Biol Int. 2015; 39(11):1234-41 [PubMed] Related Publications
Appropriate packaging and condensation are critical for eukaryotic chromatin's accommodation and separation during cell division. Human vigilin, a multi-KH-domain nucleic acid-binding protein, is associated with alpha satellites of centromeres. DDP1, a vigilin's homolog, is implicated with chromatin condensation and segregation. The expression of vigilin was previously reported to elevate in highly proliferating tissues and increased in a subset of hepatocellular carcinoma patients. Other studies showed that vigilin interacts with CTCF, contributes to regulation of imprinted genes Igf2/H19, and colocalizes with HP1α on heterochromatic satellite 2 and β-satellite repeats. These studies indicate that human vigilin might be involved in chromatin remodeling and regular cell growth. To investigate the potential role of human vigilin in cell cycle, the correlations between vigilin and chromosomal condensation and segregation were studied. Depletion of human vigilin by RNA interference in HepG2 cells resulted in chromosome undercondensation and various chromosomal defects during mitotic phase, including chromosome misalignments, lagging chromosomes, and chromosome bridges. Aberrant polyploid nucleus in telophase was also observed. Unlike the abnormal staining pattern of chromosomes, the shape of spindle was normal. Furthermore, the chromatin showed a greater sensitivity to MNase digestion. Collectively, our findings show that human vigilin apparently participates in chromatin condensation and segregation.

Luo Z, Li Y, Liu X, et al.
Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes.
BMC Med Genomics. 2015; 8:13 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A novel class of transcripts, long non-coding RNAs (lncRNAs), has recently emerged as a key player in several biological processes, and important roles for these molecules have been reported in a number of complex human diseases, such as autoimmune diseases, neurological disorders, and various cancers. However, the aberrant lncRNAs implicated in myasthenia gravis (MG) remain unknown. The aim of the present study was to explore the abnormal expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) and examine mRNA regulatory relationship networks among MG patients with or without thymoma.
METHODS: Microarray assays were performed, and the outstanding differences between lncRNAs or mRNA expression were verified through RT-PCR. The lncRNAs functions were annotated for the target genes using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The potential regulatory relationships between the lncRNAs and target genes were analyzed using the 'cis' and 'trans' model. Outstanding lncRNAs were organized to generate a TF-lncRNA-gene network using Cytoscape software.
RESULTS: The lncRNA and mRNA expression profile analysis revealed subsets of differentially expressed genes in MG patients with or without thymoma. A total of 12 outstanding dysregulated expression lncRNAs, such as lncRNA oebiotech_11933, were verified through real-time PCR. Several GO terms including the cellular response to interferon-γ, platelet degranulation, chemokine receptor binding and cytokine interactions were very important in MG pathogenesis. The chromosome locations of some lncRNAs and associated co-expression genes were demonstrated using 'cis' analysis. The results of the 'trans' analysis revealed that some TFs (i.e., CTCF, TAF1and MYC) regulate lncRNA and gene expression. The outstanding lncRNAs in each group were implicated in the regulation of the TF-lncRNA-target gene network.
CONCLUSION: The results of the present study provide a perspective on lncRNA expression in MG. We identify a subset of aberrant lncRNAs and mRNAs as potential biomarkers for the diagnosis of MG. The GO and KEGG pathway analysis provides an annotation to determine the functions of these lncRNAs. The results of the 'cis' and 'trans' analyses provide information concerning the modular regulation of lncRNAs.

Kang JY, Song SH, Yun J, et al.
Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression.
Oncogene. 2015; 34(45):5677-84 [PubMed] Related Publications
The CCCTC-binding factor (CTCF)/cohesin complex regulates gene transcription via high-order chromatin organization of the genome. De novo methylation of CpG islands in the promoter region is an epigenetic hallmark of gene silencing in cancer. Although the CTCF/cohesin complex preferentially targets hypomethylated DNA, it remains unclear whether the CTCF/cohesin-mediated high-order chromatin structure is affected by DNA methylation during tumorigenesis. We found that DNA methylation downregulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), which is an inducible, rate-limiting enzyme for prostaglandin synthesis, by disrupting CTCF/cohesin-mediated chromatin looping. We show that the CTCF/cohesin complex is enriched near a CpG island associated with PTGS2 and that the PTGS2 locus forms chromatin loops through methylation-sensitive binding of the CTCF/cohesin complex. DNA methylation abolishes the association of the CTCF/cohesin complex with the PTGS2 CpG island. Disruption of chromatin looping by DNA methylation abrogates the enrichment of transcriptional components, such as positive elongation factor b, at the transcriptional start site of the PTGS2 locus. These alterations result in the downregulation of PTGS2. Our results provide evidence that CTCF/cohesin-mediated chromatin looping of the PTGS2 locus is dynamically influenced by the DNA methylation status.

Qin F, Song Z, Babiceanu M, et al.
Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells.
PLoS Genet. 2015; 11(2):e1005001 [PubMed] Free Access to Full Article Related Publications
Genes or their encoded products are not expected to mingle with each other unless in some disease situations. In cancer, a frequent mechanism that can produce gene fusions is chromosomal rearrangement. However, recent discoveries of RNA trans-splicing and cis-splicing between adjacent genes (cis-SAGe) support for other mechanisms in generating fusion RNAs. In our transcriptome analyses of 28 prostate normal and cancer samples, 30% fusion RNAs on average are the transcripts that contain exons belonging to same-strand neighboring genes. These fusion RNAs may be the products of cis-SAGe, which was previously thought to be rare. To validate this finding and to better understand the phenomenon, we used LNCaP, a prostate cell line as a model, and identified 16 additional cis-SAGe events by silencing transcription factor CTCF and paired-end RNA sequencing. About half of the fusions are expressed at a significant level compared to their parental genes. Silencing one of the in-frame fusions resulted in reduced cell motility. Most out-of-frame fusions are likely to function as non-coding RNAs. The majority of the 16 fusions are also detected in other prostate cell lines, as well as in the 14 clinical prostate normal and cancer pairs. By studying the features associated with these fusions, we developed a set of rules: 1) the parental genes are same-strand-neighboring genes; 2) the distance between the genes is within 30kb; 3) the 5' genes are actively transcribing; and 4) the chimeras tend to have the second-to-last exon in the 5' genes joined to the second exon in the 3' genes. We then randomly selected 20 neighboring genes in the genome, and detected four fusion events using these rules in prostate cancer and non-cancerous cells. These results suggest that splicing between neighboring gene transcripts is a rather frequent phenomenon, and it is not a feature unique to cancer cells.

Guerra-Calderas L, González-Barrios R, Herrera LA, et al.
The role of the histone demethylase KDM4A in cancer.
Cancer Genet. 2015; 208(5):215-24 [PubMed] Related Publications
Histone posttranslational modifications are important components of epigenetic regulation. One extensively studied modification is the methylation of lysine residues. These modifications were thought to be irreversible. However, several proteins with histone lysine demethylase functions have been discovered and characterized. Among these proteins, KDM4A is the first histone lysine demethylase shown to demethylate trimethylated residues. This enzyme plays an important role in gene expression, cellular differentiation, and animal development. Recently, it has also been shown to be involved in cancer. In this review, we focus on describing the structure, mechanisms, and function of KDM4A. We primarily discuss the role of KDM4A in cancer development and the importance of KDM4A as a potential therapeutic target.

Zhou X, Tolstov Y, Arslan A, et al.
Harnessing the p53-PUMA axis to overcome DNA damage resistance in renal cell carcinoma.
Neoplasia. 2014; 16(12):1028-35 [PubMed] Free Access to Full Article Related Publications
Resistance to DNA damage-induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC). This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage-induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA). We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF) but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage-induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTCF, Cancer Genetics Web: http://www.cancer-genetics.org/CTCF.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999