Gene Summary

Gene:ETV6; ETS variant 6
Aliases: TEL, THC5, TEL/ABL
Summary:This gene encodes an ETS family transcription factor. The product of this gene contains two functional domains: a N-terminal pointed (PNT) domain that is involved in protein-protein interactions with itself and other proteins, and a C-terminal DNA-binding domain. Gene knockout studies in mice suggest that it is required for hematopoiesis and maintenance of the developing vascular network. This gene is known to be involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. [provided by RefSeq, Sep 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcription factor ETV6
Source:NCBIAccessed: 10 March, 2017


What does this gene/protein do?
Show (7)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 10 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (13)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Acute Lymphocytic Leukemia (ALL), childt(12;21) in Childhood Acute Lymphoblastic Leukaemia
The t(12;21)(p13;q22), RUNX1-ETV6 (TEL-AML1) translocation, is observed in approximately 20-25% of childhood B-lineage acute lymphoblastic leukemia (ALL) cases in both Asian and Caucasian populations (Kobayashi et al, 1997). It is the most frequent known genetic abnormality in childhood B-cell ALL.
View Publications246
Acute Myeloid Leukaemia (AML)ETV6 and Acute Myeloid Leukaemia View Publications64
Acute Lymphocytic Leukaemia (ALL)t(12;21) in Adult Lyphocytic Leukaemia
The t(12;21)(p13;q22), RUNX1-ETV6 (TEL-AML1) translocation, is observed in aproximately 3% of adult acute lymphoblastic leukaemias (ALL) while it occurs in about a quarter of childhood B-cell ALL cases (Aguiar et al, 1996 and Kwong et al 1999).
View Publications38
Leukaemiat(9;12)(p24;p13) ETV6-JAK2 fusion in lymphoid and myeloid leukemia View Publications33
Salivary Gland CancerETV6 and Salivary Gland Cancer View Publications41
Acute Lymphocytic Leukaemia (ALL)t(1;12)(q25;p13) in Leukaemia (AML & ALL)
The ETV6 (TEL) gene is frequently rearranged to various translocation partners in human leukemias. In a small number of cases the ETV6 gene is translocated with the ABL2 gene. In a RT-PCR study of samples from 176 patients with acute lymphoblastic leukemia (Zhou et al, 2012) found 15 had ETV6 gene rearrangements and of these 2 were ETV6/ABL1 translocations.
View Publications23
Soft Tissue Sarcoma, Childhoodt(12;15)(p13;q25) ETV6-NTRK3 in Congenital Fibrosarcoma
The t(12;15)(p13;q25) fusing the ETV6 and NTRK3 genes has been reported in congenital (infantile) fibrosarcoma. In an RT-PCR study of paediatric tumours (Bourgeois, 2000), the ETV6-NTRK3 fusion transcripts were detected in 10/11 congenital fibrosarcomas compared to 0/13 other malignant spindle cell tumours and 0/38 benign spindle cell tumours. The authors suggest RT-PCR assays to detect the ETV6-NTRK3 gene fusion will be useful in the diagnosis of congenital fibrosarcoma and in particular to differentiation from more aggressive spindle cell sarcomas including adult-type fibrosarcoma.
View Publications20
Soft Tissue SarcomaETV6 and Soft Tissue Cancers View Publications17
-t(12;15)(p13;q25) ETV6-NTRK3 in congenital mesoblastic nephroma View Publications8
Breast Cancert(12;15)(p13;q25) ETV6-NTRK3 in Breast Cancer View Publications6
Testicular CancerETV6 and Testicular Cancer View Publications2
Leukaemiat(5;12)(q33;p13) in Chronic Myelomonocytic Leukemia
Chronic myelomonocytic leukaemia (CMML) is a myelodysplastic syndrome and is characterized dysplastic monocytosis, hypercellular bone marrow, splenomegaly, and progression to acute myelogenous leukemia (AML). A sub-set of CMMLs have a t(5;12)(q33;p13) balanced translocation involving the PDGFRB and ETV6 (TEL) genes.
View Publications1

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ETV6 (cancer-related)

Appiah-Kubi K, Lan T, Wang Y, et al.
Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies.
Crit Rev Oncol Hematol. 2017; 109:20-34 [PubMed] Related Publications
PURPOSE: To investigate oncogenic platelet-derived growth factor receptor(PDGFR) fusion genes involvement in hematological malignancies, the advances in the PDGFR fusion genes diagnosis and development of PDGFR fusions inhibitors.
METHODS: Literature search was done using terms "PDGFR and Fusion" or "PDGFR and Myeloid neoplasm" or 'PDGFR and Lymphoid neoplasm' or "PDGFR Fusion Diagnosis" or "PDGFR Fusion Targets" in databases including PubMed,, and Medscape.
RESULTS: Out of the 36 fusions detected, ETV6(TEL)-PDGFRB and FIP1L1-PDGFRA fusions were frequently detected, 33 are as a result of chromosomal translocation, FIP1L1-PDGFRA and EBF1-PDGFRB are the result of chromosomal deletion and CDK5RAP2- PDGFRΑ is the result of chromosomal insertion. Seven of the 34 rare fusions have detectable reciprocals.
CONCLUSION: RNA aptamers are promising therapeutic target of PDGFRs and diagnostic tools of PDGFRs fusion genes. Also, PDGFRs have variable prospective therapeutic strategies including small molecules, RNA aptamers, and interference therapeutics as well as development of adaptor protein Lnk mimetic drugs.

Ittel A, Zattara H, Chaix C, et al.
Molecular combing: A new tool in diagnosing leukemia.
Cancer Biomark. 2016; 17(4):405-409 [PubMed] Related Publications
BACKGROUND: According to the World Health Organization (WHO), recurrent cytogenetic abnormalities define many specific groups of hematopoietic tumors of acute myeloid and lymphoblastic leukemia, and these abnormalities are often strongly associated with prognosis and sometimes require specific treatments. These rearrangements are commonly detected by conventional and molecular cytogenetic techniques.
OBJECTIVE: Using an alternative method, we sought to highlight the presence of chromosomal rearrangements.
METHODS: We applied molecular combing to detect and directly visualize gene fusions associated with balanced translocations found in acute leukemia.
RESULTS: In patients harboring t(12;21)(p13;q22), we demonstrated the presence of the fusion using specific probes covering the ETV6 and RUNX1 genes, with a positive result occurring due to the hybridization of the two probes to the same DNA fiber. Thanks to molecular combing, we also showed the presence of different breakpoints using these same probes.
CONCLUSIONS: Using several probes that are specific to the most common genes involved in acute leukemia, molecular combing could be an interesting additional tool in acute leukemia diagnosis.

Kjeldsen E
Characterization of a novel acquired der(1)del(1)(p13p31)t(1;15)(q42;q15) in a high risk t(12;21)-positive acute lymphoblastic leukemia.
Gene. 2016; 595(1):39-48 [PubMed] Related Publications
The t(12;21)(p13;q22) with ETV6-RUNX1 fusion occurs in 25% of cases of B-cell precursor acute lymphoblastic leukemia (BCP-ALL); and is generally associated with favorable prognosis. However, 15-20% of the t(12;21)-positive cases are associated with high-risk disease due to for example slow early responses to therapy. It is well-known that development of overt leukemia in t(12;21)-positive ALL requires secondary chromosomal aberrations although the full spectrum of these cytogenetic alterations is yet unsettled, and also, how they may be associated with disease outcome. This report describes the case of an adolescent male with t(12;21)-positive ALL who displayed a G-banded karyotype initially interpreted as del(1)(p22p13) and del(15)(q15). The patient was treated according to NOPHO standard risk protocol at diagnosis, but had minimal residual disease (MRD) at 6,4% on day 29 as determined by flow cytometric immunophenotyping. Because of MRD level>0.1% he was then assigned as a high risk patient and received intensified chemotherapy accordingly. Further molecular cytogenetic studies and oligo-based aCGH (oaCGH) analysis characterized the acquired complex structural rearrangements on chromosomes 1 and 15, which can be described as der(1)del(1)(p13.1p31.1)t(1;15)(q42;q15) with concurrent deletions at 1q31.2-q31.3, 1q42.12-q43, and 15q15.1-q15.3. The unbalanced complex rearrangements have not been described previously. Extended locus-specific FISH analyses showed that the three deletions were on the same chromosome 1 homologue that was involved in the t(1;15), and that the deletion on chromosome 15 also was on the same chromosome 15 homologue as involved in the t(1;15). Together these findings show the great importance of the combined usage of molecular cytogenetic analyses and oaCGH analysis to enhance characterization of apparently simple G-banded karyotypes, and to provide a more complete spectrum of secondary chromosomal aberrations in high risk t(12;21)-positive BCP-ALLs.

Akhter A, Mughal MK, Elyamany G, et al.
Multiplexed automated digital quantification of fusion transcripts: comparative study with fluorescent in-situ hybridization (FISH) technique in acute leukemia patients.
Diagn Pathol. 2016; 11(1):89 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The World Health Organization (WHO) classification system defines recurrent chromosomal translocations as the sole diagnostic and prognostic criteria for acute leukemia (AL). These fusion transcripts are pivotal in the pathogenesis of AL. Clinical laboratories universally employ conventional karyotype/FISH to detect these chromosomal translocations, which is complex, labour intensive and lacks multiplexing capacity. Hence, it is imperative to explore and evaluate some newer automated, cost-efficient multiplexed technologies to accommodate the expanding genetic landscape in AL.
METHODS: "nCounter® Leukemia fusion gene expression assay" by NanoString was employed to detect various fusion transcripts in a large set samples (n = 94) utilizing RNA from formalin fixed paraffin embedded (FFPE) diagnostic bone marrow biopsy specimens. This series included AL patients with various recurrent translocations (n = 49), normal karyotype (n = 19), or complex karyotype (n = 21), as well as normal bone marrow samples (n = 5). Fusion gene expression data were compared with results obtained by conventional karyotype and FISH technology to determine sensitivity/specificity, as well as positive /negative predictive values.
RESULTS: Junction probes for PML/RARA; RUNX1-RUNX1T1; BCR/ABL1 showed 100 % sensitivity/specificity. A high degree of correlation was noted for MLL/AF4 (85 sensitivity/100 specificity) and TCF3-PBX1 (75 % sensitivity/100 % specificity) probes. CBFB-MYH11 fusion probes showed moderate sensitivity (57 %) but high specificity (100 %). ETV6/RUNX1 displayed discordance between fusion transcript assay and FISH results as well as rare non-specific binding in AL samples with normal or complex cytogenetics.
CONCLUSIONS: Our study presents preliminary data with high correlation between fusion transcript detection by a throughput automated multiplexed platform, compared to conventional karyotype/FISH technique for detection of chromosomal translocations in AL patients. Our preliminary observations, mandates further vast validation studies to explore automated molecular platforms in diagnostic pathology.

Stevens TM, Parekh V
Mammary Analogue Secretory Carcinoma.
Arch Pathol Lab Med. 2016; 140(9):997-1001 [PubMed] Related Publications
Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined.

Din NU, Fatima S, Kayani N
Mammary analogue secretory carcinoma of salivary glands: a clinicopathologic study of 11 cases.
Ann Diagn Pathol. 2016; 22:49-53 [PubMed] Related Publications
Mammary analogue secretory carcinoma (MASC) is a recently described tumor sharing the histologic, immunohistochemical, and molecular profile of secretory carcinoma of breast. We aimed to evaluate the morphologic and histochemical features needed/required for the diagnosis of MASC without adjunct of molecular analysis. Six retrospective cases suspicious for MASC and 5 prospective cases reported as MASC were included in the study. Molecular analysis of ETV6 by fluorescence in situ hybridization was performed at the University of Pittsburg, USA. The ages of the patients ranged from 9 to 60 years (mean, 27.5 years). Histologically, all tumors showed mixed growth patterns including microcystic, macrocystic, papillary, tubular, and solid, papillary the being most common pattern. The tumor cells showed round to oval vesicular nuclei with small nucleoli, and eosinophilic to vacuolated cytoplasm. All cases demonstrated luminal and cytoplasmic mucin on periodic acid-Schiff with and without diastase digestion and alcian blue stain. ETV6 fusion gene rearrangement by fluorescence in situ hybridization was detected in 10 of 11 tumors. Recurrences occurred in 3 patients, and 1 patient died of disease 5 years after surgery. In conclusion, MASC is a relatively rare salivary gland malignancy exhibiting distinct histologic and histochemical features which can help to differentiate it from other mimics. Histologically, papillary-cystic and microcystic patterns are the main clues to diagnosis. The follicular pattern of acinic cell carcinoma might represent MASC, as 4 cases in our series had this pattern. Two patients in our series were 9 and 9½ years old respectively, which are the youngest ages ever recorded for MASC.

Moorman AV
New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia.
Haematologica. 2016; 101(4):407-16 [PubMed] Free Access to Full Article Related Publications
Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A(MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes -ABL1,ABL2,PDGFRB,CSF1R,CRLF2,JAK2 and EPOR in-vitro and in-vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL.

Chintakuntlawar AV, Shon W, Erickson-Johnson M, et al.
High-grade transformation of acinic cell carcinoma: an inadequately treated entity?
Oral Surg Oral Med Oral Pathol Oral Radiol. 2016; 121(5):542-549.e1 [PubMed] Related Publications
OBJECTIVE: Acinic cell carcinoma (AcCC) is an uncommon salivary gland malignancy. We aim to characterize the clinical and pathologic characteristics of AcCC with and without high-grade transformation (HGT). Importantly, cases of mammary analogue secretory carcinoma, a recently described histologic mimic of AcCC, have been excluded by using cytogenetics and molecular studies.
STUDY DESIGN: Archival surgical pathology material was obtained for patients diagnosed with AcCC at Mayo Clinic Rochester between 1990 and 2010. Tumors harboring the ETV6-NTRK3 fusion transcript were excluded from analysis by using cytogenetics and molecular studies. Tumors with HGT were characterized by areas with an infiltrative growth pattern, nuclear anaplasia, prominent nucleoli, brisk mitotic activity, geographic necrosis, and stromal desmoplasia. Demographic and clinical data were extracted from the medical records.
RESULTS: AcCC with HGT was seen in 8 of 48 cases (17%). Patients with AcCC with HGT were significantly older than patients without HGT (median 69 vs 54 years; P = .04). Angiolymphatic invasion was more common in AcCC with HGT (P = .02). Relapse-free survival and overall survival were significantly worse for cases of AcCC with HGT (hazard ratio 10.4 and 9.3, respectively; P < .0001 for both comparisons). Locoregional recurrence-free survival was not significantly different (P = .12), but distant metastases-free survival was significantly worse in patients with HGT compared with non-HGT patients (P < .0001).
CONCLUSIONS: Prognosis for overall survival and distant relapse for AcCC patients with HGT is significantly worse than that for patients without HGT.

Huang S, Liu Y, Su J, et al.
"Secretory" Carcinoma of the Skin Mimicking Secretory Carcinoma of the Breast: Case Report and Literature Review.
Am J Dermatopathol. 2016; 38(9):698-703 [PubMed] Related Publications
Secretory carcinoma is a unique kind of adenocarcinoma. It has distinct histological features and a special genetic change, that is, t (12; 15) (p13; q25) translocation which leads to the expression of the ETV6-NTRK3 fusion gene. Secretory carcinoma has been found to occur both in the breast and salivary gland. Here the authors present a case of 22-year-old woman with a unique cutaneous neoplasm located at the axilla. The tumor was characterized histologically with the formation of round to ovoid microcysts and papillary structure, which was similar to the secretory carcinoma of the breast and salivary gland. Furthermore, the gene sequence analysis of reverse-transcription polymerase chain reaction products demonstrated the expression of the ETV6-NTRK3 fusion gene. To the authors' knowledge, this is the first case of secretory carcinoma from the skin which has the same genetic change as those from the breast and salivary gland. Local excision was performed on this patient. She had been followed up for nearly 1 year. No recurrence or metastasis was found yet.

Farrar JE, Schuback HL, Ries RE, et al.
Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse.
Cancer Res. 2016; 76(8):2197-205 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The genomic and clinical information used to develop and implement therapeutic approaches for acute myelogenous leukemia (AML) originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative used whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML. One hundred forty-five somatic variants at diagnosis (median 6 mutations/patient) and 149 variants at relapse (median 6.5 mutations) were identified and verified by orthogonal methodologies. Recurrent somatic variants [in (greater than or equal to) 2 patients] were identified for 10 genes (FLT3, NRAS, PTPN11, WT1, TET2, DHX15, DHX30, KIT, ETV6, KRAS), with variable persistence at relapse. The variant allele fraction (VAF), used to measure the prevalence of somatic mutations, varied widely at diagnosis. Mutations that persisted from diagnosis to relapse had a significantly higher diagnostic VAF compared with those that resolved at relapse (median VAF 0.43 vs. 0.24, P < 0.001). Further analysis revealed that 90% of the diagnostic variants with VAF >0.4 persisted to relapse compared with 28% with VAF <0.2 (P < 0.001). This study demonstrates significant variability in the mutational profile and clonal evolution of pediatric AML from diagnosis to relapse. Furthermore, mutations with high VAF at diagnosis, representing variants shared across a leukemic clonal structure, may constrain the genomic landscape at relapse and help to define key pathways for therapeutic targeting. Cancer Res; 76(8); 2197-205. ©2016 AACR.

Stoskus M, Vaitkeviciene G, Eidukaite A, Griskevicius L
ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia.
Blood Cells Mol Dis. 2016; 57:30-4 [PubMed] Related Publications
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) is overexpressed in a subset of cancers and promotes cell cycle, migration and aggressive phenotype by regulating post-transcriptionally a number of key mRNAs (e. g, ACTB, CD44, CTNNB1, KRAS, MAPK4, MYC, PTEN and others). IGF2BP1 is also overexpressed in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia (ALL), but the biological significance of this phenomenon has not been addressed so far. We have identified leukemia fusion gene ETV6/RUNX1 mRNA to be highly enriched in immunoprecipitated fraction of endogenous IGF2BP1 from a model cell line REH and t(12;21)(p13;q22)-positive ALL samples. Furthermore, downregulation of IGF2BP1 by two-fold has resulted in a corresponding decrease of ETV6/RUNX1 mRNA validating this transcript as a target of IGF2BP1 protein in t(12;21)(p13;q22)-positive ALL. These data infer that IGF2BP1 is a potent regulator of ETV6/RUNX1 mRNA stability and potentially link this evolutionary-highly conserved protein to cell transformation events in ETV6/RUNX1-mediated leukemogenesis of t(12;21)(p13;q22)-positive ALL.

Kanderova V, Kuzilkova D, Stuchly J, et al.
High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells.
Mol Cell Proteomics. 2016; 15(4):1246-61 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients.To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p< 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation.In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study.

Jin Y, Wang X, Hu S, et al.
Determination of ETV6-RUNX1 genomic breakpoint by next-generation sequencing.
Cancer Med. 2016; 5(2):337-51 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The t(12;21)(p13;q22) ETV6-RUNX1 gene fusion is one of the most common chromosomal translocation in childhood acute lymphoblastic leukemia (ALL). It is associated with favorable prognosis. The identification of the genomic sequence of the breakpoint flanking regions of the ETV6-RUNX1 translocation should be the best strategy to monitor minimal residual disease (MRD) in patients with ETV6-RUNX1-positive ALL. In this study, the ETV6-RUNX1 translocation was sequenced by next-generation sequencing (NGS) in 26 patients with ETV6-RUNX1-positive ALL and re-sequenced by using the Sanger method. Interestingly, the three-way translocation, including ETV6-RUNX1, was detected in five patients. Four of them relapsed during or after therapy, while 21 patients without the three-way translocation were still in remission (P < 0.0001). The three-way translocation pattern was identical between the diagnosis and relapse samples in three patients, excluding one patient (SCMC-001245). The relapse samples retained the translocation of ETV6-RUNX1 relative to the three-way translocation t(8;12;21) at diagnosis, suggesting that the three-way translocation might be an important risk factor for relapse in patients with ETV6-RUNX1-positive ALL and should be further studied.

Babushok DV, Bessler M, Olson TS
Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults.
Leuk Lymphoma. 2016; 57(3):520-36 [PubMed] Free Access to Full Article Related Publications
Myelodysplastic syndrome (MDS) is a clonal blood disorder characterized by ineffective hematopoiesis, cytopenias, dysplasia and an increased risk of acute myeloid leukemia (AML). With the growing availability of clinical genetic testing, there is an increasing appreciation that a number of genetic predisposition syndromes may underlie apparent de novo presentations of MDS/AML, particularly in children and young adults. Recent findings of clonal hematopoiesis in acquired aplastic anemia add another facet to our understanding of the mechanisms of MDS/AML predisposition. As more predisposition syndromes are recognized, it is becoming increasingly important for hematologists and oncologists to have familiarity with the common as well as emerging syndromes, and to have a systematic approach to diagnosis and screening of at risk patient populations. Here, we provide a practical algorithm for approaching a patient with a suspected MDS/AML predisposition, and provide an in-depth review of the established and emerging familial MDS/AML syndromes caused by mutations in the ANKRD26, CEBPA, DDX41, ETV6, GATA2, RUNX1, SRP72 genes. Finally, we discuss recent data on the role of somatic mutations in malignant transformation in acquired aplastic anemia, and review the practical aspects of MDS/AML management in patients and families with predisposition syndromes.

Hechtman JF, Zehir A, Yaeger R, et al.
Identification of Targetable Kinase Alterations in Patients with Colorectal Carcinoma That are Preferentially Associated with Wild-Type RAS/RAF.
Mol Cancer Res. 2016; 14(3):296-301 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Targeted therapy for metastatic colorectal carcinoma consists of anti-EGFR therapy for patients with RAS/RAF wild-type tumors. However, the response rate remains low, suggesting the presence of alternative drivers possibly also representing potential therapeutic targets. We investigated receptor tyrosine kinase (RTK) alterations and MAP2K1 (MEK1) mutations in a large cohort of colorectal carcinoma patients studied by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and The Cancer Genome Atlas, focusing on amplifications, fusions, and hotspot mutations in RTK genes and MAP2K1. RTK gene amplifications were confirmed with FISH and immunohistochemical (IHC) staining. Among 751 colorectal carcinoma cases with next-generation sequencing data, 7% and 1% of colorectal carcinoma harbored RTK alterations and MAP2K1 hotspot mutations (n = 7), respectively. RTK-altered cases had fewer concurrent RAS/RAF mutations (P = 0.003) than RTK/MAP2K1 wild-type colorectal carcinoma. MAP2K1-mutated colorectal carcinoma showed no RAS/RAF mutations. ERBB2 (n = 32) and EGFR (n = 13) were the most frequently altered RTKs, both activated by amplification and/or hotspot mutations. Three RTK fusions were identified: NCOA4-RET, ERBB2-GRB7, and ETV6-NTRK3. Only 1 of 6 patients with an RTK or MAP2K1 alteration who received anti-EGFR and/or anti-ERBB2 therapy demonstrated stable disease; the rest progressed immediately. Overall, RTK alterations and MAP2K1 mutations occur in approximately 8% of colorectal carcinoma. In spite of the usual absence of RAS/RAF mutations, response to anti-EGFR and/or anti-ERBB2 therapy was poor in this limited group. Larger studies are warranted to further define these kinase alterations as novel therapeutic targets in colorectal carcinoma and as negative predictors of response to anti-EGFR therapy.
IMPLICATIONS: Targetable kinase alterations were identified in a subset of advanced colorectal carcinoma patients, preferentially associated with wild-type RAS/RAF, and may predict poor response to standard anti-EGFR therapy.

Hoff AM, Alagaratnam S, Zhao S, et al.
Identification of Novel Fusion Genes in Testicular Germ Cell Tumors.
Cancer Res. 2016; 76(1):108-16 [PubMed] Free Access to Full Article Related Publications
Testicular germ cell tumors (TGCT) are the most frequently diagnosed solid tumors in young men ages 15 to 44 years. Embryonal carcinomas (EC) comprise a subset of TGCTs that exhibit pluripotent characteristics similar to embryonic stem (ES) cells, but the genetic drivers underlying malignant transformation of ECs are unknown. To elucidate the abnormal genetic events potentially contributing to TGCT malignancy, such as the existence of fusion genes or aberrant fusion transcript expression, we performed RNA sequencing of EC cell lines and their nonmalignant ES cell line counterparts. We identified eight novel fusion transcripts and one gene with alternative promoter usage, ETV6. Four out of nine transcripts were found recurrently expressed in an extended panel of primary TGCTs and additional EC cell lines, but not in normal parenchyma of the testis, implying tumor-specific expression. Two of the recurrent transcripts involved an intrachromosomal fusion between RCC1 and HENMT1 located 80 Mbp apart and an interchromosomal fusion between RCC1 and ABHD12B. RCC1-ABHD12B and the ETV6 transcript variant were found to be preferentially expressed in the more undifferentiated TGCT subtypes. In vitro differentiation of the NTERA2 EC cell line resulted in significantly reduced expression of both fusion transcripts involving RCC1 and the ETV6 transcript variant, indicating that they are markers of pluripotency in a malignant setting. In conclusion, we identified eight novel fusion transcripts that, to our knowledge, are the first fusion genes described in TGCT and may therefore potentially serve as genomic biomarkers of malignant progression.

Aljamaan K, Aljumah TK, Aloraibi S, et al.
Low Frequency of ETV6-RUNX1 (t 12; 21) in Saudi Arabian Pediatric Acute Lymphoblastic Leukemia Patients: Association with Clinical Parameters and Early Remission.
Asian Pac J Cancer Prev. 2015; 16(17):7523-7 [PubMed] Related Publications
BACKGROUND: Pediatric acute lymphoblastic leukemia (pALL) patients at King Abdulaziz Medical City represent a pure Saudi Arabian population. ETV6-RUNX1 positive pALL patients have good prognosis as compared to ETV6-RUNX1 negative counterparts. Therefore, frequencies of these two patient groups have a huge consideration in treatment strategies of pALL in a given population. Different geographical locations have been reported to have different frequencies of ETV6-RUNX1 ranging from 10% in Southeast Asia to 30% in Australia.
AIM: Therefore, the objective of this study was to establish the ETV6-RUNX1 status of Saudi Arabian pALL patients and its association with clinical parameters and early remission.
MATERIALS AND METHODS: Clinical parameters and ETV6-RUNX1 status (using FISH technique) of pALL patients attending the Pediatric Oncology Clinic, King Abdulaziz Medical City, Riyadh from 2006 to 2011 were studied. Comparisons between ETV6-RUNX1 positive and negative groups were accomplished using chi-square test or Fisher's exact test. All statistical analyses were performed using SAS version 9.2 (SAS Institute, Inc., Cary, NC).
RESULTS: Out of 54 patients, 33 were male and 21 were females (ratio 1.57:1). B- and T-cell lineages were found in 47 (87%) and 7 (13%) patients respectively. Only 5 (9.3%) patients were ETV6-RUNX1 positive while 49(80.7%) were ETV6-RUNX1 negative. All ETV6-RUNX1 patients (100%) were of B-cell lineage and 80% (4/5) were in the 3-7 year age group. None of the ETV6-RUNX11 patients had ≥ 5% blasts (no remission) at day 14 as compared with 9% in the ETV6-RUNX1 negative group (Figure 1).
CONCLUSIONS: Frequency of ETV6-RUNX1 positive patients (less than 10%) in our pALL patients is much lower than reported for most European countries, North America, Australia and Japan while it is in accordance with ETV6-RUNX1 frequencies from Egypt (11.6%), Pakistan (10%), Spain (2%) and India (5-7%). This shows ethnic differences in genetics of pALL as well as higher frequencies of ETV6-RUNX1 positive pALL mostly in more industrialized countries, probably due to some industrial pollutants or westernized lifestyle.

Brenca M, Rossi S, Polano M, et al.
Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST.
J Pathol. 2016; 238(4):543-9 [PubMed] Related Publications
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. The vast majority of GISTs are driven by oncogenic activation of KIT, PDGFRA or, less commonly, BRAF. Loss of succinate dehydrogenase complex activity has been identified in subsets of KIT/PDGFRA/BRAF-mutation negative tumours, yet a significant fraction of GISTs are devoid of any of such alterations. To address the pathobiology of these 'quadruple-negative' GISTs, we sought to explore the possible involvement of fusion genes. To this end we performed transcriptome sequencing on five KIT/PDGFRA/BRAF-mutation negative, SDH-proficient tumours. Intriguingly, the analysis unveiled the presence of an ETV6-NTRK3 gene fusion. The screening by FISH of 26 additional cases, including KIT/PDGFRA-mutated GISTs, failed to detect other ETV6 rearrangements beside the index case. This was a 'quadruple-negative' GIST located in the rectum, an uncommon primary site for GIST development (∼4% of all GISTs). The fusion transcript identified encompasses exon 4 of ETV6 and exon 14 of NTRK3 and therefore differs from the canonical ETV6-NTRK3 chimera of infantile fibrosarcomas. However, it retains the ability to induce IRS1 phosphorylation, activate the IGF1R downstream signalling pathway and to be targeted by IGF1R and ALK inhibitors. Thus, the ETV6-NTRK3 fusion might identify a subset of GISTs with peculiar clinicopathological characteristics which could be eligible for such therapies. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Campregher PV, Pereira WO, Lisboa B, et al.
Identification of ANLN as ETV6 partner gene in recurrent t(7;12)(p15;p13): a possible role of deregulated ANLN expression in leukemogenesis.
Mol Cancer. 2015; 14:197 [PubMed] Free Access to Full Article Related Publications
The ETV6 gene encodes an ETS family transcription factor that is involved in a myriad of chromosomal rearrangements found in hematological malignancies and other neoplasms. A recurrent ETV6 translocation, previously described in patients with acute myeloid leukemia (AML) (Genes Chromosomes Cancer 51:328-337,2012, Leuk Res 35:e212-214, 2011), whose partner has not been identified is t(7;12)(p15;p13). We herein report that the t(7;12)(p15;p13) fuses ETV6 to ANLN, a gene not previously implicated in the pathogenesis of hematological malignancies, and we demonstrate that this translocation leads to high expression of the fusion transcript in the myeloid and lymphoid lineages.

Mitsutake N, Fukushima T, Matsuse M, et al.
BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl.
Sci Rep. 2015; 5:16976 [PubMed] Free Access to Full Article Related Publications
After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0-18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAF(V600E) in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAF(V600E) was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAF(V600E) may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs.

Yang YL, Yen CT, Pai CH, et al.
A Double Negative Loop Comprising ETV6/RUNX1 and MIR181A1 Contributes to Differentiation Block in t(12;21)-Positive Acute Lymphoblastic Leukemia.
PLoS One. 2015; 10(11):e0142863 [PubMed] Free Access to Full Article Related Publications
Childhood acute lymphoblastic leukemia (ALL) with t(12;21), which results in expression of the ETV6/RUNX1 fusion gene, is the most common chromosomal lesion in precursor-B (pre-B) ALL. We identified 17 microRNAs that were downregulated in ETV6/RUNX1+ compared with ETV6/RUNX1- clinical samples. Among these microRNAs, miR-181a-1 was the most significantly reduced (by ~75%; P < 0.001). Using chromatin immunoprecipitation, we demonstrated that ETV6/RUNX1 directly binds the regulatory region of MIR181A1, and knockdown of ETV6/RUNX1 increased miR-181a-1 level. We further showed that miR-181a (functional counterpart of miR-181a-1) could target ETV6/RUNX1 and cause a reduction in the level of the oncoprotein ETV6/RUNX1, cell growth arrest, an increase in apoptosis, and induction of cell differentiation in ETV6/RUNX1+ cell line. Moreover, ectopic expression of miR-181a also resulted in decreased CD10 hyperexpression in ETV6/RUNX1+ primary patient samples. Taken together, our results demonstrate that MIR181A1 and ETV6/RUNX1 regulate each other, and we propose that a double negative loop involving MIR181A1 and ETV6/RUNX1 may contribute to ETV6/RUNX1-driven arrest of differentiation in pre-B ALL.

Nael A, Wu WW, Shane L, et al.
Primitive Spindle Cell Neoplasm of Ileum with Extensive Heterotopic Cartilage, Presenting as Acute Abdomen in a 6-Day-Old Neonate.
Pediatr Dev Pathol. 2016 Jul-Aug; 19(4):338-44 [PubMed] Related Publications
Neonatal intestinal masses with spindle cell morphology have broad differential diagnoses and require a multidisciplinary approach to make the final diagnosis. Spindle cell masses with heterotopic cartilage in the gastrointestinal tract are very rare, and, to our knowledge, have not previously been reported in the neonate. Here we present a case of intestinal primitive spindle cell neoplasm with extensive heterotopic cartilage that manifested initially as acute abdomen in a 6-day-old term infant. Plain radiography demonstrated pneumoperitoneum, prompting diagnostic laparotomy that identified a perforated mass involving the midileum. Histologic and immunohistochemical examination demonstrated an infiltrative spindle cell tumor most compatible with infantile fibrosarcoma (IFS) by a process of exclusion, with nodules of mature heterotopic cartilage. Additional staging studies did not reveal any evidence of residual or metastatic disease. Recognition of this rare variant of IFS will aid in differentiation from other neonatal intestinal mesenchymal tumors.

Abe A, Yamamoto Y, Iba S, et al.
ETV6-LPXN fusion transcript generated by t(11;12)(q12.1;p13) in a patient with relapsing acute myeloid leukemia with NUP98-HOXA9.
Genes Chromosomes Cancer. 2016; 55(3):242-50 [PubMed] Related Publications
ETV6, which encodes an ETS family transcription factor, is frequently rearranged in human leukemias. We show here that a patient with acute myeloid leukemia with t(7;11)(p15;p15) gained, at the time of relapse, t(11;12)(q12.1;p13) with a split ETV6 FISH signal. Using 3'-RACE PCR analysis, we found that ETV6 was fused to LPXN at 11q12.1, which encodes leupaxin. ETV6-LPXN, an in-frame fusion between exon 4 of ETV6 and exon 2 of LPXN, did not transform the interleukin-3-dependent 32D myeloid cell line to cytokine independence; however, an enhanced proliferative response was observed when these cells were treated with G-CSF without inhibition of granulocytic differentiation. The 32D and human leukemia cell lines each transduced with ETV6-LPXN showed enhanced migration towards the chemokine CXCL12. We show here for the first time that LPXN is a fusion partner of ETV6 and present evidence indicating that ETV6-LPXN plays a crucial role in leukemia progression through enhancing the response to G-CSF and CXCL12.

Moriyama T, Metzger ML, Wu G, et al.
Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study.
Lancet Oncol. 2015; 16(16):1659-66 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hereditary predisposition is rarely suspected for childhood acute lymphoblastic leukaemia (ALL). Recent reports of germline ETV6 variations associated with substantial familial clustering of haematological malignancies indicated that this gene is a potentially important genetic determinant for ALL susceptibility. Our aims in this study were to comprehensively identify ALL predisposition variants in ETV6 and to determine the extent to which they contributed to the overall risk of childhood ALL.
METHODS: Whole-exome sequencing of an index family with several cases of ALL was done to identify causal variants for ALL predisposition. Targeted sequencing of ETV6 was done in children from the Children's Oncology Group and St Jude Children's Research Hospital front-line ALL trials. Patients were included in this study on the basis of their enrolment in these clinical trials and the availability of germline DNA. ETV6 variant genotypes were compared with non-ALL controls to define ALL-related germline risk variants. ETV6 variant function was characterised bioinformatically and correlated with clinical and demographic features in children with ALL.
FINDINGS: We identified a novel non-sense ETV6 variant (p.Arg359X) with a high penetrance in an index family. Subsequent targeted sequencing of ETV6 in 4405 childhood ALL cases identified 31 exonic variants (four non-sense, 21 missense, one splice site, and five frameshift variants) that were potentially related to ALL risk in 35 cases (1%). 15 (48%) of 31 ALL-related ETV6 variants clustered in the erythroblast transformation specific domain and were predicted to be highly deleterious. Children with ALL-related ETV6 variants were significantly older at leukaemia diagnosis than those without (10·2 years [IQR 5·3-13·8] vs 4·7 years [3·0-8·7]; p=0·017). The hyperdiploid leukaemia karyotype was highly over-represented in ALL cases harbouring germline ETV6 risk variants compared with the wild-type group (nine [64%] of 14 cases vs 538 [27%] of 2007 cases; p=0·0050).
INTERPRETATION: Our findings indicated germline ETV6 variations as the basis of a novel genetic syndrome associated with predisposition to childhood ALL. The development of recommendations for clinical interventions and surveillance for individuals harbouring ALL-related ETV6 variants are needed.
FUNDING: US National Institutes of Health and American Lebanese Syrian Associated Charities.

Janczar K, Janczar S, Pastorczak A, et al.
Preserved global histone H4 acetylation linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with favorable outcome in pediatric B-cell progenitor acute lymphoblastic leukemia.
Leuk Res. 2015; 39(12):1455-61 [PubMed] Related Publications
Epigenetic dysregulation is a hallmark of cancer executed by a number of complex processes the most important of which converge on DNA methylation and histone protein modifications. Epigenetic marks are potentially reversible and thus promising drug targets. In the setting of acute lymphoblastic leukemia (ALL) they have been associated with clinicopathological features including risk of relapse or molecular subgroups of the disease. Here, using immunocytochemistry of bone marrow smears from diagnosis, we studied global histone H4 acetylation, whose loss was previously linked to treatment failure in adults with ALL, in pediatric patients. We demonstrate that preserved global histone H4 acetylation is significantly associated with favorable outcome (RFS, EFS, OS) in children with B cell progenitor (BCP) ALL, recapitulating the findings from adult populations. Further, for the first time we demonstrate differential histone H4 acetylation in molecular subclasses of BCP-ALL including cases with ETV6-RUNX1 fusion gene or PAX5 deletion or deletions in genes linked to B cell development. We conclude global histone H4 acetylation is a prognostic marker and a potential therapeutic target in ALL.

Skálová A, Vanecek T, Simpson RH, et al.
Mammary Analogue Secretory Carcinoma of Salivary Glands: Molecular Analysis of 25 ETV6 Gene Rearranged Tumors With Lack of Detection of Classical ETV6-NTRK3 Fusion Transcript by Standard RT-PCR: Report of 4 Cases Harboring ETV6-X Gene Fusion.
Am J Surg Pathol. 2016; 40(1):3-13 [PubMed] Related Publications
ETV6 gene abnormalities are well described in tumor pathology. Many fusion partners of ETV6 have been reported in a variety of epithelial and hematological malignancies. In salivary gland tumor pathology, however, the ETV6-NTRK3 translocation is specific for mammary analogue secretory carcinoma (MASC), and has not been documented in any other salivary tumor type. The present study comprised a clinical and molecular analysis of 25 cases morphologically and immunohistochemically typical of MASC. They all also displayed the ETV6 rearrangement as visualized by fluorescent in situ hybridization but lacked the classical ETV6-NTRK3 fusion transcript by standard reverse-transcriptase-polymerase chain reaction. In 4 cases, the classical fusion transcript was found by more sensitive, nested reverse-transcription-polymerase chain reaction. Five other cases harbored atypical fusion transcripts as detected by both standard and nested reverse-transcription-polymerase chain reaction. In addition, fluorescent in situ hybridization with an NTRK3 break-apart probe was also performed; rearrangement of NTRK3 gene was detected in 16 of 25 cases. In 3 other cases, the tissue was not analyzable, and in 2 further cases analysis could not be performed because of a lack of appropriate tissue material. Finally, in the 4 remaining cases whose profile was NTRK3 split-negative and ETV6 split-positive, unknown (non-NTRK) genes appeared to fuse with ETV6 (ETV6-X fusion). In looking for possible fusion partners, analysis of rearrangement of other kinase genes known to fuse with ETV6 was also performed, but without positive results. Although numbers were small, correlating the clinico-pathologic features of the 4 ETV6-X fusion tumors and 5 MASC cases with atypical fusion transcripts raises the possibility of that they may behave more aggressively.

Pelish HE, Liau BB, Nitulescu II, et al.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
Nature. 2015; 526(7572):273-6 [PubMed] Free Access to Full Article Related Publications
Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6 (refs 6-8). The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML.

Zhang R, Kim YM, Wang X, et al.
Genomic Copy Number Variations in the Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients with del(5q) and/or -7/del(7q).
Int J Med Sci. 2015; 12(9):719-26 [PubMed] Free Access to Full Article Related Publications
The most common chromosomal abnormalities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are -5/del(5q) and -7/del(7q). When -5/del(5q) and -7/del(7q) coexist in patients, a poor prognosis is typically associated. Given that -5/del(5q) and/or -7/del(7q) often are accompanied with additional recurrent chromosomal alterations, genetic change(s) on the accompanying chromosome(s) other than chromosomes 5 and 7 may be important factor(s) affecting leukemogenesis and disease prognosis. Using an integrated analysis of karyotype, FISH and array CGH results in this study, we evaluated the smallest region of overlap (SRO) of chromosomes 5 and 7 as well as copy number alterations (CNAs) on the other chromosomes. Moreover, the relationship between the CNAs and del(5q) and -7/del(7q) was investigated by categorizing the cases into three groups based on the abnormalities of chromosomes 5 and 7 [group I: cases only with del(5q), group II: cases only with -7/del(7q) and group III: concurrent del(5q) and del(7q) cases]. The overlapping SRO of chromosome 5 from groups I and III was 5q31.1-33.1 and of chromosome 7 from groups II and III was 7q31.31-q36.1. A total of 318 CNAs were observed; ~ 78.3% of them were identified on chromosomes other than chromosomes 5 and 7, which were defined as 'other CNAs'. Group III was a distinctive group carrying the most high number (HN) CNAs, cryptic CNAs and 'other CNAs'. The loss of TP53 was highly associated with del(5q). The loss of ETV6 was specifically associated with group III. These CNAs or genes may play a secondary role in disease progression and should be further evaluated for their clinical significance and influence on therapeutic approaches in patients with MDS/AML carrying del(5q) and/or -7/del(7q) in large-scale, patient population study.

Picarsic JL, Buryk MA, Ozolek J, et al.
Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay.
Pediatr Dev Pathol. 2016 Mar-Apr; 19(2):115-22 [PubMed] Related Publications
The aim of this study was to test the hypothesis that our 60-gene DNA/RNA ThyroSeq v2 next-generation sequence (NGS) assay would identify additional genetic markers, including gene fusions in sporadic pediatric differentiated thyroid carcinomas (DTC) that had no known molecular alterations. Sporadic pediatric DTCs with informative molecular testing (n=18) were studied. We previously tested 15 cases by our standard 7-gene (BRAF, NRAS, HRAS, KRAS, RET/PTC1, RET/PTC3, PAX8/PPARg) mutation panel. Three cases were not tested previously. The standard 7-gene panel identified molecular alterations in 9 of 15 tumors (60%). Cases analyzed by ThyroSeq v2 NGS included the six previously negative cases by the standard 7-gene panel and three cases not previously tested. The NGS assay revealed new gene fusions in four of six previously negative cases (67%). These gene fusions included ETV6/NTRK3 (n=3) and TPR/NTRK1 (n=1). A point mutation (BRAF-V600E) was detected in one of three untested cases. While standard testing could identify only molecular alterations in 60% of cases, with the addition of the ThyroSeq v2 NGS, this increased to 87% (n=13/15). Some cases with chromosomal rearrangements, including ETV6/NTRK3, appear to be associated with an aggressive histopathologic phenotype, but had no documented history of radiation exposure. Additional work is needed to investigate if pediatric DTCs could benefit from a reclassification based on molecular subtypes, which may better reflect their underlying biologic potential. Our data support the use of broad gene panels for the molecular diagnostics of pediatric thyroid nodules to aid future classification, treatment, and clinical management recommendations.

Grausenburger R, Bastelberger S, Eckert C, et al.
Genetic alterations in glucocorticoid signaling pathway components are associated with adverse prognosis in children with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia.
Leuk Lymphoma. 2016; 57(5):1163-73 [PubMed] Related Publications
The ETV6/RUNX1 gene fusion defines the largest genetic subgroup of childhood ALL with overall rapid treatment response. However, up to 15% of cases relapse. Because an impaired glucocorticoid pathway is implicated in disease recurrence we studied the impact of genetic alterations by SNP array analysis in 31 relapsed cases. In 58% of samples, we found deletions in various glucocorticoid signaling pathway-associated genes, but only NR3C1 and ETV6 deletions prevailed in minimal residual disease poor responding and subsequently relapsing cases (p<0.05). To prove the necessity of a functional glucocorticoid receptor, we reconstituted wild-type NR3C1 expression in mutant, glucocorticoid-resistant REH cells and studied the glucocorticoid response in vitro and in a xenograft mouse model. While these results prove that glucocorticoid receptor defects are crucial for glucocorticoid resistance in an experimental setting, they do not address the essential clinical situation where glucocorticoid resistance at relapse is rather part of a global drug resistance.

Further References

Kobayashi H, Satake N, Kaneko Y
Detection of the Der (21)t(12;21) chromosome forming the TEL-AML1 fusion gene in childhood acute lymphoblastic leukemia.
Leuk Lymphoma. 1997; 28(1-2):43-50 [PubMed] Related Publications
The t(12;21) (p13;q22) is observed in approximately 20-25% of childhood B-lineage acute lymphoblastic leukemia (ALL) cases in both Asian and Caucasian populations. This translocation results in the fusion of TEL, a recently described ETS-like gene on 12p13, and AML1, which was shown to be involved in the formation of fusion genes with ETO and EVI1 in myeloid leukemias. Fluorescence in situ hybridization (FISH) and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis are useful in detecting this translocation which is not readily identified with routine cytogenetic techniques. The t(12;21) is associated with a distinct subgroup of patients characterized by an age between 1 and 10 years, an early B immunophenotype, and a good prognosis. A high incidence of the deletion of non-translocated TEL is another characteristic of leukemic cells with this translocation. TEL-AML1 hybrid protein thought to be critical in leukemogenesis possesses the HLH domain of TEL fused to almost the entire AML1 protein, although the detailed mechanisms of leukemogenesis remain obscure. RT-PCR combined with FISH analysis of posttreatment samples appears to be useful in detecting early relapse or minimal residual disease and thus, is expected to optimize the treatment strategy for patients with t(12;21).

Aguiar RC, Sohal J, van Rhee F, et al.
TEL-AML1 fusion in acute lymphoblastic leukaemia of adults. M.R.C. Adult Leukaemia Working Party.
Br J Haematol. 1996; 95(4):673-7 [PubMed] Related Publications
A number of fusion genes have been identified by study of acquired chromosomal translocations. Their detailed characterization has provided insights into mechanisms of leukaemogenesis and has enabled the development of molecular methods to assist in the diagnosis and monitoring of residual disease after treatment. The TEL-AML1 fusion gene is associated with a cryptic t(12:21)(p12:q22) translocation, and is the commonest known genetic abnormality in childhood B-cell precursor acute lymphoblastic leukaemia (ALL), occurring in about 25% of cases. We have used RT-PCR, followed by Southern blotting and direct sequencing, to establish the incidence of TEL-AML1 rearrangement in 131 adults with acute leukaemia (101 with ALL and 30 with chronic myeloid leukaemia in blastic crisis). Three patients were positive for TEL-AML1 transcripts. All three had common-ALL. All other patients were negative for TEL-AML1. We conclude that the TEL-AML1 fusion gene is found in adult ALL, though less commonly than in children.

Kwong YL, Wong KF
Low frequency of TEL/AML1 in adult acute lymphoblastic leukemia.
Cancer Genet Cytogenet. 1997; 98(2):137-8 [PubMed] Related Publications
Translocation (12;21)(p13;q22) is a recently characterized aberration in acute lymphoblastic leukemia, and results in the fusion of the TEL and the AML1 genes. It is the most common translocation in pediatric acute lymphoblastic leukemia (ALL), occurring in about one third of the cases. To determine the frequency of TEL/AML1 in adult ALL, we studied 4 cases of T lineage ALL and 26 cases of B lineage ALL. Only one positive case was identified, giving a very low frequency of 3.3%. In this patient, TEL/AML1 was still detectable in complete hematologic remission. The apparent age predilection of t(12;21) warrants further investigations.

Zhou MH, Gao L, Jing Y, et al.
Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia.
Ann Hematol. 2012; 91(8):1235-43 [PubMed] Related Publications
ETV6 is an important hematopoietic regulatory factor and ETV6 gene rearrangement is involved in a wide variety of hematological malignancies. In this study, we sought to investigate the incidence of ETV6-associated fusion genes in B- and T-lineage acute lymphoblastic leukemia (ALL) by multiplex-nested reverse transcription-polymerase chain reaction (RT-PCR) in 176 adult ALL patients. Total RNA was extracted from bone marrow samples of ALL patients including 136 B- and 40 T-lineage ALL, and ETV6 fusion genes were detected by multiplex-nested RT-PCR. Changes of ETV6 fusion gene mRNA transcript levels were examined by real-time RT-PCR. We detected a total of 15 ETV6 gene rearrangements with a positive rate of 8.5%, involving seven ETV6-associated fusion genes in 13 B-ALL (13/136, 9.6%) and 2 T-ALL patients (2/40, 5.0%). ETV6-RUNX1 were observed in six cases (3.4%), ETV6-JAK2 in three cases (1.7%), ETV6-ABL1 in two cases (1.1%), and ETV6-ABL2, ETV6-NCOA2, ETV6-SYK, and PAX5-ETV6 each in one case (0.6%). ETV6-JAK2 was found in both B-ALL and T-ALL patients. Furthermore, real-time quantitative RT-PCR assays showed that the ETV6-RUNX1 mRNA transcript levels decreased during conventional chemotherapy or hematopoietic stem cell transplantation. This study shows that multiplex-nested RT-PCR is an effective and accurate tool to identify ETV6 rearrangements in adult ALL, which provides some clues into the diagnosis and prognosis of ALL but also molecular markers for the detection of minimal residual disease in adult ALL.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ETV6 (TEL), Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 10 March, 2017     Cancer Genetics Web, Established 1999