Gene Summary

Gene:NTRK3; neurotrophic receptor tyrosine kinase 3
Aliases: TRKC, GP145-TrkC, gp145(trkC)
Summary:This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation and may play a role in the development of proprioceptive neurons that sense body position. Mutations in this gene have been associated with medulloblastomas, secretory breast carcinomas and other cancers. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:NT-3 growth factor receptor
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (20)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (9)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
MedulloblastomaNTRK3 expression in MedulloblastomaPrognostic View Publications46
NeuroblastomaNTRK3 expression in NeuroblastomaPrognostic View Publications42
Breast CancerNTRK3 and Breast Cancer View Publications37
Salivary Gland CancerNTRK3 and Salivary Gland Cancer View Publications40
Soft Tissue Sarcoma, Childhoodt(12;15)(p13;q25) ETV6-NTRK3 in Congenital Fibrosarcoma
The t(12;15)(p13;q25) fusing the ETV6 and NTRK3 genes has been reported in congenital (infantile) fibrosarcoma. In an RT-PCR study of paediatric tumours (Bourgeois, 2000), the ETV6-NTRK3 fusion transcripts were detected in 10/11 congenital fibrosarcomas compared to 0/13 other malignant spindle cell tumours and 0/38 benign spindle cell tumours. The authors suggest RT-PCR assays to detect the ETV6-NTRK3 gene fusion will be useful in the diagnosis of congenital fibrosarcoma and in particular to differentiation from more aggressive spindle cell sarcomas including adult-type fibrosarcoma.
View Publications20
-t(12;15)(p13;q25) ETV6-NTRK3 in congenital mesoblastic nephroma View Publications8
Breast Cancert(12;15)(p13;q25) ETV6-NTRK3 in Breast Cancer View Publications6
Wilms TumourNTRK3 and Wilms Tumour View Publications3
Stomach CancerNTRK3 and Stomach Cancer View Publications2

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NTRK3 (cancer-related)

Saleh AJ, Soltani BM, Dokanehiifard S, et al.
Experimental verification of a predicted novel microRNA located in human PIK3CA gene with a potential oncogenic function in colorectal cancer.
Tumour Biol. 2016; 37(10):14089-14101 [PubMed] Related Publications
PI3K/AKT signaling is involved in cell survival, proliferation, and migration. In this pathway, PI3Kα enzyme is composed of a regulatory protein encoded by p85 gene and a catalytic protein encoded by PIK3CA gene. Human PIK3CA locus is amplified in several cancers including lung and colorectal cancer (CRC). Therefore, microRNAs (miRNAs) that are encoded within the PIK3CA gene might have a role in cancer development. Here, we report a novel microRNA named PIK3CA-miR1 (EBI accession no. LN626315), which is located within PIK3CA gene. A DNA segment corresponding to PIK3CA-premir1 sequence was transfected in human cell lines that resulted in generation of mature exogenous PIK3CA-miR1. Following the overexpression of PIK3CA-miR1, its predicted target genes (APPL1 and TrkC) were significantly downregulated in the CRC-originated HCT116 and SW480 cell lines, detected by qRT-PCR. Then, dual luciferase assay supported the interaction of PIK3CA-miR1 with APPL1 and TrkC transcripts. Endogenous PIK3CA-miR1 expression was also detected in several cell lines (highly in HCT116 and SW480) and highly in CRC specimens. Consistently, overexpression of PIK3CA-premir1 in HCT116 and SW480 cells resulted in significant reduction of the sub-G1 cell distribution and apoptotic cell rate, as detected by flowcytometry, and resulted in increased cell proliferation, as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PIK3CA-miR1 overexpression also resulted in Wnt signaling upregulation detected by Top/Fop assay. Overall, accumulative evidences indicated the presence of a bona fide novel onco-miRNA encoded within the PIK3CA oncogene, which is highly expressed in colorectal cancer and has a survival effect in CRC-originated cells.

Brenca M, Rossi S, Polano M, et al.
Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST.
J Pathol. 2016; 238(4):543-9 [PubMed] Related Publications
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. The vast majority of GISTs are driven by oncogenic activation of KIT, PDGFRA or, less commonly, BRAF. Loss of succinate dehydrogenase complex activity has been identified in subsets of KIT/PDGFRA/BRAF-mutation negative tumours, yet a significant fraction of GISTs are devoid of any of such alterations. To address the pathobiology of these 'quadruple-negative' GISTs, we sought to explore the possible involvement of fusion genes. To this end we performed transcriptome sequencing on five KIT/PDGFRA/BRAF-mutation negative, SDH-proficient tumours. Intriguingly, the analysis unveiled the presence of an ETV6-NTRK3 gene fusion. The screening by FISH of 26 additional cases, including KIT/PDGFRA-mutated GISTs, failed to detect other ETV6 rearrangements beside the index case. This was a 'quadruple-negative' GIST located in the rectum, an uncommon primary site for GIST development (∼4% of all GISTs). The fusion transcript identified encompasses exon 4 of ETV6 and exon 14 of NTRK3 and therefore differs from the canonical ETV6-NTRK3 chimera of infantile fibrosarcomas. However, it retains the ability to induce IRS1 phosphorylation, activate the IGF1R downstream signalling pathway and to be targeted by IGF1R and ALK inhibitors. Thus, the ETV6-NTRK3 fusion might identify a subset of GISTs with peculiar clinicopathological characteristics which could be eligible for such therapies. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Okayama A, Miyagi Y, Oshita F, et al.
Identification of Tyrosine-Phosphorylated Proteins Upregulated during Epithelial-Mesenchymal Transition Induced with TGF-β.
J Proteome Res. 2015; 14(10):4127-36 [PubMed] Related Publications
The epithelial-to-mesenchymal transition (EMT) is a unique process for the phenotypic changes of tumor cells characterized by a transition from polarized rigid epithelial cells to migrant mesenchymal cells, thus conferring the ability of tumor invasion and metastasis. A major challenge in the treatment of lung adenocarcinoma is to identify early stage patients at a high risk of recurrence or metastasis, thereby permitting the best therapeutic strategy and prognosis. In this study, we used a transforming growth factor-β (TGF-β)-induced EMT model to quantitatively identify protein tyrosine phosphorylation during the course of EMT in relation to malignant characteristics of lung adenocarcinoma cells. We performed relative quantitation analysis of tyrosine-phosphorylated peptides in TGF-β-treated and -untreated lung adenocarcinoma cells and identified tyrosine-phosphorylated proteins that were upregulated in TGF-β-treated cells. These include tensin-1 (TNS1) phosphorylated on Y1404, hepatocyte growth factor receptor (c-Met) phosphorylated on Y1234, and NT-3 growth factor receptor (TrkC) phosphorylated on Y516. We also found that these protein phosphorylation profiles were specifically observed in tissue samples of patients with poor prognostic lung adenocarcinoma. Tyrosine phosphorylations of these proteins represent possible candidates of prognostic prediction markers for lung adenocarcinoma.

Yu M, Carter KT, Makar KW, et al.
MethyLight droplet digital PCR for detection and absolute quantification of infrequently methylated alleles.
Epigenetics. 2015; 10(9):803-9 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation is a common epigenetic alteration found in colorectal adenomas and cancers and plays a role in cancer initiation and progression. Aberrantly methylated DNA loci can also be found infrequently present in normal colon tissue, where they seem to have potential to be used as colorectal cancer (CRC) risk biomarkers. However, detection and precise quantification of the infrequent methylation events seen in normal colon is likely beyond the capability of commonly used PCR technologies. To determine the potential for methylated DNA loci as CRC risk biomarkers, we developed MethyLight droplet digital PCR (ddPCR) assays and compared their performance to the widely used conventional MethyLight PCR. Our analyses demonstrated the capacity of MethyLight ddPCR to detect a single methylated NTRK3 allele from among more than 3125 unmethylated alleles, 25-fold more sensitive than conventional MethyLight PCR. The MethyLight ddPCR assay detected as little as 19 and 38 haploid genome equivalents of methylated EVL and methylated NTRK3, respectively, which far exceeded conventional MethyLight PCR (379 haploid genome equivalents for both genes). When assessing methylated EVL levels in CRC tissue samples, MethyLight ddPCR reduced coefficients of variation (CV) to 6-65% of CVs seen with conventional MethyLight PCR. Importantly, we showed the ability of MethyLight ddPCR to detect infrequently methylated EVL alleles in normal colon mucosa samples that could not be detected by conventional MethyLight PCR. This study suggests that the sensitivity and precision of methylation detection by MethyLight ddPCR enhances the potential of methylated alleles for use as CRC risk biomarkers.

Vaishnavi A, Le AT, Doebele RC
TRKing down an old oncogene in a new era of targeted therapy.
Cancer Discov. 2015; 5(1):25-34 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: The use of high-throughput next-generation sequencing techniques in multiple tumor types during the last few years has identified NTRK1, 2, and 3 gene rearrangements encoding novel oncogenic fusions in 19 different tumor types to date. These recent developments have led us to revisit an old oncogene, Trk (originally identified as OncD), which encodes the TPM3-NTRK1 gene fusion and was one of the first transforming chromosomal rearrangements identified 32 years ago. However, no drug has yet been approved by the FDA for cancers harboring this oncogene. This review will discuss the biology of the TRK family of receptors, their role in human cancer, the types of oncogenic alterations, and drugs that are currently in development for this family of oncogene targets.
SIGNIFICANCE: Precision oncology approaches have accelerated recently due to advancements in our ability to detect oncogenic mutations in tumor samples. Oncogenic alterations, most commonly gene fusions, have now been detected for the genes encoding the TRKA, TRKB, and TRKC receptor tyrosine kinases across multiple tumor types. The scientific rationale for the targeting of the TRK oncogene family will be discussed here.

Majewska H, Skálová A, Stodulski D, et al.
Mammary analogue secretory carcinoma of salivary glands: a new entity associated with ETV6 gene rearrangement.
Virchows Arch. 2015; 466(3):245-54 [PubMed] Free Access to Full Article Related Publications
Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumour that harbours the recurrent ETV6-NTRK3 translocation. This is the first series of MASC cases identified in the historic cohort of carcinomas of salivary glands with clinical/pathological correlation and follow-up data. We reviewed 183 primary carcinomas of major and minor salivary glands resected at the Medical University of Gdańsk, Poland, between 1992 and 2012. Based on morphology and immunohistochemistry, cases suspicious for MASC were selected, and the diagnosis was confirmed by fluorescence in situ hybridization (FISH) for ETV6 rearrangement and by RT-PCR for the ETV6-NTRK3 fusion transcript. Seven carcinomas met the criteria of MASC, as they exhibited a typical appearance with solid/microcystic and papillary architecture and intraluminal secretions, and cells completely devoid of basophilic cytoplasmic zymogen granules indicative of true acinar differentiation. The only paediatric case was an unencapsulated tumour composed of macrocystic structures covered by a mostly single but, focally, double layer of cells with apocrine morphology. In all cases, the neoplastic cells revealed immunoreactivity for S100, mammaglobin, cytokeratin CK7, CK8, STAT5a and vimentin. FISH for ETV6 gene rearrangement was positive in six out of seven cases, and RT-PCR was positive in three cases. MASC is a new entity of malignant epithelial salivary gland tumours not included in the 2005 WHO Classification of Head and Neck Tumours. There is a growing body of evidence that it is not as rare as was assumed, as is also indicated by our series (3.8 %). In most cases, MASC shares some microscopic features with AciCC, adenocarcinoma/cystadenocarcinoma NOS and low-grade MEC. In rare cases, MASC with high-grade transformation may mimic the morphological appearances of high-grade salivary gland malignancies, such as salivary duct carcinoma.

Kue CS, Kamkaew A, Lee HB, et al.
Targeted PDT agent eradicates TrkC expressing tumors via photodynamic therapy (PDT).
Mol Pharm. 2015; 12(1):212-22 [PubMed] Free Access to Full Article Related Publications
This contribution features a small molecule that binds TrkC (tropomyosin receptor kinase C) receptor that tends to be overexpressed in metastatic breast cancer cells but not in other breast cancer cells. A sensitizer for (1)O2 production conjugated to this structure gives 1-PDT for photodynamic therapy. Isomeric 2-PDT does not bind TrkC and was used as a control throughout; similarly, TrkC- cancer cells were used to calibrate enhanced killing of TrkC+ cells. Ex vivo, 1- and 2-PDT where only cytotoxic when illuminated, and 1-PDT, gave higher cell death for TrkC+ breast cancer cells. A 1 h administration-to-illumination delay gave optimal TrkC+/TrkC--photocytotoxicity, and distribution studies showed the same delay was appropriate in vivo. In Balb/c mice, a maximum tolerated dose of 20 mg/kg was determined for 1-PDT. 1- and 2-PDT (single, 2 or 10 mg/kg doses and one illumination, throughout) had similar effects on implanted TrkC- tumors, and like those of 2-PDT on TrkC+ tumors. In contrast, 1-PDT caused dramatic TrkC+ tumor volume reduction (96% from initial) relative to the TrkC- tumors or 2-PDT in TrkC+ models. Moreover, 71% of the mice treated with 10 mg/kg 1-PDT (n = 7) showed full tumor remission and survived until 90 days with no metastasis to key organs.

Nobusawa S, Hirato J, Yokoo H
Molecular genetics of ependymomas and pediatric diffuse gliomas: a short review.
Brain Tumor Pathol. 2014; 31(4):229-33 [PubMed] Related Publications
Here, we review the recent literature on molecular discoveries in ependymomas and pediatric diffuse gliomas. Ependymomas can now be categorized into three location-related subgroups according to their biological profile: posterior fossa ependymomas, group A (PFA) and B (PFB), and supratentorial ependymomas. Although no recurrently mutated genes were found throughout these groups of ependymomas, PFA exhibited a CpG island methylator phenotype, PFB was associated with extensive chromosomal aberrations, and the C11orf95-RELA fusion gene was frequently observed in supratentorial ependymomas. Meanwhile, it has now become apparent that pediatric diffuse gliomas have a distinct genetic status from their adult counterparts, even though they share an indistinguishable histology. In pediatric low-grade diffuse gliomas, an intragenic duplication of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB/MYBL1 were found recurrently and mutually exclusively. As for non-brainstem high-grade tumors, in addition to H3F3A, TP53, and ATRX mutations, which were frequently observed in older children, recurrent fusions involving NTRK1, NTRK2, and NTRK3 were reported in infants younger than 3 years of age. Moreover, in diffuse intrinsic pontine gliomas (DIPG), recurrent somatic mutations of ACVR1 were found in association with HIST1H3B mutations.

Mehlen P, Tauszig-Delamasure S
Dependence receptors and colorectal cancer.
Gut. 2014; 63(11):1821-9 [PubMed] Related Publications
The research on colorectal cancer (CRC) biology has been leading the oncology field since the early 1990s. The search for genetic alterations has allowed the identification of the main tumour suppressors or oncogenes. Recent work obtained in CRC has unexpectedly proposed the existence of novel category of tumour suppressors, the so-called 'dependence receptors'. These transmembrane receptors behave as Dr Jekyll and Mr Hyde with two opposite sides: they induce a positive signalling (survival, proliferation, differentiation) in presence of their ligand, but are not inactive in the absence of their ligand and rather trigger apoptosis when unbound. This trait confers them a conditional tumour suppressor activity: they eliminate cells that grow abnormally in an environment offering a limited quantity of ligand. This review will describe how receptors such as deleted in colorectal carcinoma (DCC), uncoordinated 5 (UNC5), rearranged during transfection (RET) or TrkC constrain CRC progression and how this dependence receptor paradigm may open up therapeutical perspectives.

Palani M, Arunkumar R, Vanisree AJ
Methylation and expression patterns of tropomyosin-related kinase genes in different grades of glioma.
Neuromolecular Med. 2014; 16(3):529-39 [PubMed] Related Publications
Tropomyosin-related kinase family (NTRK1, NTRK2 and NTRK3) is well known to play an important role in the pathogenesis of brain tumour, which exhibit heterogeneity in its biological and clinical behaviour. However, the mechanism that regulates NTRKs in glioma is not well understood. The present study investigates the epigenetic status (methylation) of NTRKs and their expression in different grades of glioma. Promoter methylation and structural relationship of NTRKs was assessed using methylation-specific PCR followed by chromatin immunoprecipitation in brain tissue samples from 220 subjects with different grades of glioma. Control brain samples were also assessed similarly. Reverse transcriptase PCR was performed to analyse the expressions of NTRK mRNAs in the grades of glioma. In addition, the expression level of p75(NTR) protein was analysed using immunofluorescent technique in all of the samples. The overall percentage of NTRK3 gene methylation frequency with subsequent loss of mRNA expression was significantly higher in glioma compared with control samples (p < 0.05). No such significance was observed in other NTRK1 and NTRK2 genes. Further, mRNA expression pattern of NTRK1 and NTRK2 genes was found to be significantly higher in low grades as compared with high grades (HG) and control samples (p < 0.05). Survival rate of HG patients with negative expressions of NTRK1 and NTRK2 was poor than those with the positive expressions of both NTRK1 and NTRK2. Further, a significant correlation was observed with reduced expression of p75(NTR) and the expression pattern of NTRK family in glioma as compared with the control samples (p < 0.05). There exists a correlation between the expression of NTRK family and different grades of glioma with a significant suggestion that the promoter methylation does not play role in the regulation of these genes in glioma. Further, poor survival could be associated with NTRK mRNAs 1 and 2. Hence, NTRKs are potential probes for assessing the behaviour of different grades of glioma, which could also function as significant prognostic factors and thus deserve wider attention for an effective management of the grades.

Wu G, Diaz AK, Paugh BS, et al.
The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.
Nat Genet. 2014; 46(5):444-50 [PubMed] Free Access to Full Article Related Publications
Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase-RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.

Forsyth PA, Krishna N, Lawn S, et al.
p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.
J Biol Chem. 2014; 289(12):8067-85 [PubMed] Free Access to Full Article Related Publications
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

Leeman-Neill RJ, Kelly LM, Liu P, et al.
ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer.
Cancer. 2014; 120(6):799-807 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In their previous analysis of papillary thyroid carcinomas (PTCs) from an Ukrainian-American cohort that was exposed to iodine-131 ((131) I) from the Chernobyl accident, the authors identified RET/PTC rearrangements and other driver mutations in 60% of tumors.
METHODS: In this study, the remaining mutation-negative tumors from that cohort were analyzed using RNA sequencing (RNA-Seq) and reverse transcriptase-polymerase chain reaction to identify novel chromosomal rearrangements and to characterize their relation with radiation dose.
RESULTS: The ETS variant gene 6 (ETV6)-neurotrophin receptor 3 (NTRK3) rearrangement (ETV6-NTRK3) was identified by RNA-Seq in a tumor from a patient who received a high (131) I dose. Overall, the rearrangement was detected in 9 of 62 (14.5%) post-Chernobyl PTCs and in 3 of 151 (2%) sporadic PTCs (P = .019). The most common fusion type was between exon 4 of ETV6 and exon 14 of NTRK3. The prevalence of ETV6-NTRK3 rearrangement in post-Chernobyl PTCs was associated with increasing (131) I dose, albeit at borderline significance (P = .126). The group of rearrangement-positive PTCs (ETV6-NTRK3, RET/PTC, PAX8-PPARγ) was associated with significantly higher dose response compared with the group of PTCs with point mutations (BRAF, RAS; P < .001). In vitro exposure of human thyroid cells to 1 gray of (131) I and γ-radiation resulted in the formation of ETV6-NTRK3 rearrangement at a rate of 7.9 × 10(-6) cells and 3.0 × 10(-6) cells, respectively.
CONCLUSIONS: The authors report the occurrence of ETV6-NTRK3 rearrangements in thyroid cancer and demonstrate that this rearrangement is significantly more common in tumors associated with exposure to (131) I and has a borderline significant dose response. Moreover, ETV6-NTRK3 rearrangement can be directly induced in thyroid cells by ionizing radiation in vitro and, thus, may represent a novel mechanism of radiation-induced carcinogenesis.

Ricarte-Filho JC, Li S, Garcia-Rendueles ME, et al.
Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers.
J Clin Invest. 2013; 123(11):4935-44 [PubMed] Free Access to Full Article Related Publications
Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program.

Luo Y, Kaz AM, Kanngurn S, et al.
NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer.
PLoS Genet. 2013; 9(7):e1003552 [PubMed] Free Access to Full Article Related Publications
NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.

Peng WM, Maintz L, Allam JP, et al.
Increased circulating levels of neurotrophins and elevated expression of their high-affinity receptors on skin and gut mast cells in mastocytosis.
Blood. 2013; 122(10):1779-88 [PubMed] Related Publications
Mastocytosis is a rare heterogeneous disease characterized by increase of mast cells (MCs) in different organs. Neurotrophins (NTs) have been shown to promote differentiation and survival of MCs, which in turn represent a major source of NTs. Thus, a contribution of NTs to mastocytosis seems highly conceivable but has not yet been investigated. We could demonstrate expression of high-affinity NT receptors tropomyosin-related kinase A (TrkA) for nerve growth factor (NGF)-β, TrkB for brain-derived neurotrophic factor, and NT-4 and TrkC for NT-3 on skin MCs; and of TrkA and TrkC on intestinal MCs of patients with mastocytosis. Moreover, increased expression of NGF-β; NT-3; TrkA, TrkB, and TrkC; and isoforms truncated TrkB-T1 and truncated TrkC were observed on skin MCs. Patients with mastocytosis featured elevated serum levels of NGF, NT-3, and NT-4. Levels of NGF-β and NT-4 correlated with tryptase levels, suggesting a link between MC load and blood levels of NGF and NT-4. Migration of CD117+ progenitor cells from the blood was enhanced toward NGF-β gradient in both mastocytosis and controls. Together with enhanced NT levels, the elevated expression of modified Trk receptors on skin and gut MCs might contribute to the pathophysiology of mastocytosis in autocrine and paracrine loops.

Kim MS, Kim GM, Choi YJ, et al.
TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1.
Mol Cells. 2013; 36(2):177-84 [PubMed] Free Access to Full Article Related Publications
It has been suggested that activation of receptor PTKs is important for leukemogenesis and leukemia cell response to targeted therapy in hematological malignancies including leukemia. PTKs induce activation of the PI3K/Akt/mTOR pathway, which can result in prevention of apoptosis. Here, we describe an important role of the TrkC-associated molecular network in the process of leukemogenesis. TrkC was found to be frequently overexpressed in human leukemia cells and leukemia subtypes. In U937 human leukemia cells, blockade of TrkC using small hairpin RNA (shRNA) specific to TrkC or K562a, a specific inhibitor of TrkC, resulted in a significant decrease in growth and survival of the cells, which was closely associated with reduced mTOR level and Akt activity. In addition, TrkC enhances the survival and proliferation of leukemia, which is correlated with activation of the PI3K/Akt pathway. Moreover, TrkC significantly inhibits apoptosis via induction of the expression of PLK-1 and Twist-1 through activation of AKT/mTor pathway; therefore, it plays a key role in leukemogenesis. These findings reveal an unexpected physiological role for TrkC in the pathogenesis of leukemia and have important implications for understanding various hematological malignancies.

Genevois AL, Ichim G, Coissieux MM, et al.
Dependence receptor TrkC is a putative colon cancer tumor suppressor.
Proc Natl Acad Sci U S A. 2013; 110(8):3017-22 [PubMed] Free Access to Full Article Related Publications
The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a proto-oncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-of-proapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor.

Sasahira T, Ueda N, Kurihara M, et al.
Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma.
Hum Pathol. 2013; 44(6):1098-106 [PubMed] Related Publications
Members of the tropomyosin receptor kinase (Trk) family have a high affinity for neurotrophins and regulate neuronal survival. The role of Trks in cancer is still controversial. The expression and role of TrkB and TrkC were examined in colorectal cancer (CRC). Immunohistochemical analysis of TrkB and TrkC was performed in 133 patients with CRC. Using human CRC cell lines, expression of vascular endothelial growth factor (VEGF) and transforming growth factor β, cell growth, invasion, and apoptosis were examined by knockdown methods. Immunohistochemistry showed positive results of TrkB and TrkC (23.3% and 12.8%, respectively). TrkB expression was associated with local progression (P = .0284), clinical stage (P = .0026), nodal metastasis (P = .0068), and peritoneal metastasis (P = .0026). TrkC expression was only related to liver metastasis (P = .0001). Coexpression of TrkB or TrkC and their ligands was found in 80.6% and 82.4% of cases, respectively. In vitro analysis using human CRC cells showed that TrkB positively regulated gene expression of VEGF-A (P < .05) and VEGF-C (P < .05), whereas TrkC suppressed transforming growth factor β expression (P < .05). TrkB and TrkC induced cell growth (P < .05) and invasion (P < .05), respectively. Both TrkB and TrkC showed antiapoptotic effect (P < .05). These results suggest that TrkB and TrkC have a tumor progressive function and may be a useful diagnostic and therapeutic target in CRC.

Zalatimo O, Zoccoli CM, Patel A, et al.
Impact of genetic targets on primary brain tumor therapy: what's ready for prime time?
Adv Exp Med Biol. 2013; 779:267-89 [PubMed] Related Publications
Primary brain tumors constitute a substantial public health problem with 66,290 cases diagnosed in the US in 2012, and 13,700 deaths recorded. With discovery of genetic factors associated with specific brain tumor subtypes, the goal of therapy is changing from treating a class of tumors to developing individualized therapies catering to the molecular composition of the actual tumor. For oligodendrogliomas, the loss of 1p/19q due to an unbalanced translocation improves both survival and the response to therapy, and is thus both a prognostic and a predictive marker. Several additional genetic alterations such as EGFR amplification, MGMT methylation, PDGFR activation, and 9p and 10q loss, have improved our understanding of the characteristics of these tumors and may help guide therapy in the future. For astrocytic tumors, MGMT is associated with a better prognosis and an improved response to temozolomide, and for all glial tumors, mutations in the IDH1 gene are possibly the most potent of good prognostic markers. Three of these markers - 1p/19q deletions, MGMT methylation status, and mutations in the IDH1 gene - are so potent that a new brain tumor subtype, the "triple negative" glioma (1p/19q intact, MGMT unmethylated, IDH1 non-mutated) has entered common parlance. Newer markers, such as CD 133, require additional investigation to determine their prognostic and predictive utility. In medulloblastomas, markers of WNT activation, MYCC/MCYN amplification, and TrkC expression levels are reliable prognostic indicators, but do not yet drive specific treatment selection. Many other proposed markers, such as 17q gain, TP53 mutations, and hMOF protein expression show promise, but are not yet ready for prime time. In this chapter, we focus on the markers that have shown convincing prognostic, predictive, and diagnostic value, and discuss potential markers that are being currently being intensively investigated. We also discuss serum profiling of tumors in an effort to discover additional potential markers.

Ivanov SV, Panaccione A, Brown B, et al.
TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior.
Oncogene. 2013; 32(32):3698-710 [PubMed] Related Publications
Treatment options for adenoid cystic carcinoma (ACC) of the salivary gland, a slowly growing tumor with propensity for neuroinvasion and late recurrence, are limited to surgery and radiotherapy. Based on expression analysis performed on clinical specimens of salivary cancers, we identified in ACC expression of the neurotrophin-3 receptor TrkC/NTRK3, neural crest marker SOX10, and other neurologic genes. Here, we characterize TrkC as a novel ACC marker, which was highly expressed in 17 out of 18 ACC primary-tumor specimens, but not in mucoepidermoid salivary carcinomas or head and neck squamous cell carcinoma. Expression of the TrkC ligand NT-3 and Tyr-phosphorylation of TrkC detected in our study suggested the existence of an autocrine signaling loop in ACC with potential therapeutic significance. NT-3 stimulation of U2OS cells with ectopic TrkC expression triggered TrkC phosphorylation and resulted in Ras, Erk 1/2 and Akt activation, as well as VEGFR1 phosphorylation. Without NT-3, TrkC remained unphosphorylated, stimulated accumulation of phospho-p53 and had opposite effects on p-Akt and p-Erk 1/2. NT-3 promoted motility, migration, invasion, soft-agar colony growth and cytoskeleton restructuring in TrkC-expressing U2OS cells. Immunohistochemical analysis demonstrated that TrkC-positive ACC specimens also show high expression of Bcl2, a Trk target regulated via Erk 1/2, in agreement with activation of the TrkC pathway in real tumors. In normal salivary gland tissue, both TrkC and Bcl2 were expressed in myoepithelial cells, suggesting a principal role for this cell lineage in the ACC origin and progression. Sub-micromolar concentrations of a novel potent Trk inhibitor AZD7451 completely blocked TrkC activation and associated tumorigenic behaviors. Pre-clinical studies on ACC tumors engrafted in mice showed efficacy and low toxicity of AZD7451, validating our in vitro data and stimulating more research into its clinical application. In summary, we describe in ACC a previously unrecognized pro-survival neurotrophin signaling pathway and link it with cancer progression.

Sasahira T, Ueda N, Yamamoto K, et al.
Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma.
Clin Exp Metastasis. 2013; 30(2):165-76 [PubMed] Related Publications
The function of tropomyosin receptor kinase (Trk) family including TrkA, TrkB, and TrkC in cancer remains unknown. The role of Trks in oral squamous cell carcinoma (OSCC) was examined. Knockdown of Trks provided inhibition of growth or invasion and decrease of apoptosis in OSCC cells, which expressed Trks at high levels. VEGF expression was associated with TrkA and TrkB expression; a decrease of VEGF-C and VEGF-D was observed in OSCC cells with TrkB knockdown. TrkC did not affect the expression of VEGF family. An immunohistochemical analysis of 102 OSCCs showed that TrkB expression was related to microvessel density (MVD), lymph vessel density (LVD), and poor prognosis. TrkC expression was correlated with clinical stage, lymph node metastasis, MVD, LVD, and poor prognosis. TrkA expression was associated with VEGF expression, whereas TrkB expression was associated with the expressions of VEGF, VEGF-C and VEGF-D. No significant association was found between the expression of TrkC and genes of the VEGF family. Expression of Trks was not associated with RUNX3 silencing by methylation in OSCC cells. Trks expression was inversely correlated with RUNX3 expression in the OSCC cases. These results suggested that Trks enhances progression of OSCC through angiogenesis and lymphangiogenesis.

Friedrich RE, Holstein AF, Middendorff R, Davidoff MS
Vascular wall cells contribute to tumourigenesis in cutaneous neurofibromas of patients with neurofibromatosis type 1. A comparative histological, ultrastructural and immunohistochemical study.
Anticancer Res. 2012; 32(5):2139-58 [PubMed] Related Publications
UNLABELLED: Neurofibromas are benign nerve sheath tumours. They occur sporadically, singly or few in number, and in neurofibromatosis type 1 (NF1), an autosomal inherited disease. These tumours are composed of different cell types, e.g. nerve cells (axons and axon sheaths), Schwann cells, mast cells, and fibroblasts. The local control of tumour growth in NF1 is poorly understood. Identification of cell markers could provide new information on the processes that are involved in tumour growth.
MATERIALS AND METHODS: NF1 patients were diagnosed according to the revised NF1 diagnostic criteria proposed by the US National Institute of Health. Fifteen cutaneous neurofibromas from eight patients (origin: trunk and face) were excised, immediately immersion-fixed in Bouin's fixative and embedded in paraffin. Six micrometre thin sections were incubated with a variety of neuronal markers, connective tissue and glial cell markers, neurotrophic factors and their receptors. In addition, material was fixed, embedded and further processed for light and electron microscopic studies.
RESULTS: The tumours were composed of different cell types, e.g. nerve cells (axons and axon sheaths), Schwann cells, mast cells, compartmentalising cells and fibroblasts. Neuronal markers were identified in axons (neuron-specific protein gene product 9.5, PGP9.5), in several cell types (neurofilament protein-200 kDa, NF-200) and glial cells (protein S-100, S-100). In glial cells the immunoreactivity for fibroblast surface protein (FSP) was scanty, low for cyclic 2,3-nucleotide 3'-phosphodiesterase (CNPase), strong for glucose transporter 1 (Glut-1) but lacking for glial fibrillary acidic protein (GFAP). Schwann cells and so-called compartmentalising cells exhibited immunoreactivity for neurotrophin receptor protein TrkA (TrkA) and glial cell-derived neurotrophic factor (GDNF). GDNF receptor α-1 (GFR-α1) exhibited distinct immunoreactivity in single axons, in Schwann cells, and with lower intensity in some perineurial sheet cells. No immunoreactivity was observed for the low-affinity neurotrophin receptor protein p75(NTR), high-affinity receptor protein TrkB (TrkB), high-affinity receptor protein TrkC (TrkC), the neurotrophin 3 (NT-3), and the brain-derived neurotrophic factor (BDNF).
CONCLUSION: Human cutaneous neurofibromas displayed a pattern of neurotrophic factors and their receptor immunoreactivity, which is characteristic of differentiated non-malignant tumours, and exhibited some differences from that established in developing and differentiated control Schwann cells (probably involved in the pathogenesis of the neurofibromas), as well as tumour cells in the process of differentiation. Neurofibromas are highly vascularized tumours and possess activated endothelial cells and pericytes. We presume that most of the hyperplastic structural components of a neurofibroma are generated from activated pericytes and smooth muscle cells of the small tumour vessels which possess qualities of adult stem cells.

Parsi S, Soltani BM, Hosseini E, et al.
Experimental verification of a predicted intronic microRNA in human NGFR gene with a potential pro-apoptotic function.
PLoS One. 2012; 7(4):e35561 [PubMed] Free Access to Full Article Related Publications
Neurotrophins (NTs) are a family of secreted growth factor proteins primarily involved in the regulation of survival and appropriate development of neural cells, functioning by binding to their specific (TrkA, TtkB, and TrkC) and/or common NGFR receptor. NGFR is the common receptor of NTs, binding with low-affinity to all members of the family. Among different functions assigned to NGFR, it is also involved in apoptosis induction and tumorigenesis processes. Interestingly, some of the functions of NGFR appear to be ligand-independent, suggesting a probable involvement of non-coding RNA residing within the sequence of the gene. Here, we are reporting the existence of a conserved putative microRNA, named Hsa-mir-6165 [EBI accession#: FR873488]. Transfection of a DNA segment corresponding to the pre-mir-6165 sequence in Hela cell line caused the generation of mature exogenous mir-6165 (a ∼200,000 fold overexpression). Furthermore, using specific primers, we succeeded to detect the endogenous expression of mir-6165 in several glioma cell lines and glioma primary tumors known to express NGFR. Similar to the pro-apoptotic role of NGFR in some cell types, overexpression of pre-mir-6165 in U87 cell line resulted in an elevated rate of apoptosis. Moreover, coordinated with the increased level of mir-6165 in the transfected U87 cell line, two of its predicted target genes (Pkd1 and DAGLA) were significantly down-regulated. The latter findings suggest that some of the previously attributed functions of NGFR could be explained indirectly by co-transcription of mir-6165 in the cells.

Gadd S, Beezhold P, Jennings L, et al.
Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children's Oncology Group study.
J Pathol. 2012; 228(1):119-30 [PubMed] Related Publications
Infantile fibrosarcoma (IFS; also known as cellular congenital mesoblastic nephroma, CMN, when in the kidney) is a rare, undifferentiated tumour often characterized by the ETV6-NTRK3 fusion transcript. Our goal was to identify downstream pathways, diagnostic markers and potential therapeutic targets for IFS/CMN. Global gene expression, reverse-phase protein array and ETV6-NTRK3 fusion analyses were performed on 14 IFS/CMN and compared with 41 other paediatric renal tumours. These analyses confirm significant receptor tyrosine kinase (RTK) activation, with evidence of PI3-Akt, MAPK and SRC activation. In particular, GAB2 docking protein, STAT5-pTyr-694, STAT3-pSer-729 and YAP-pSer-127 were elevated, and TAZ-pSer-89 was decreased. This provides mRNA and proteomic evidence that GAB2, STAT activation and phosphorylation of the Hippo pathway transcription co-activators YAP and TAZ contribute to the RTK signal transduction in IFS/CMN. All IFS/CMN tumours displayed a distinctive gene expression pattern that may be diagnostically useful. Unexpectedly, abundant ETV6-NTRK3 transcript copies were present in only 7/14 IFS, with very low copy number in 3/14. An additional 4/14 were negative by RT-PCR and absence of ETV6-NTRK3 was confirmed by FISH for both ETV6 and NTRK3. Therefore, molecular mechanisms other than ETV6-NTRK3 fusion are responsible for the development of some IFS/CMNs and the absence of ETV6-NTRK3 fusion products should not exclude IFS/CMN as a diagnosis.

Fung W, Hasan MY, Loh AH, et al.
Gene expression of TRK neurotrophin receptors in advanced neuroblastomas in Singapore--a pilot study.
Pediatr Hematol Oncol. 2011; 28(7):571-8 [PubMed] Related Publications
The clinical hallmark of neuroblastoma is heterogeneity. Biologically, ploidy and N-Myc amplification are currently the only 2 features used to define risk group and to determine therapy. Tyrosine kinase neurotrophin receptors (Trks, including TrkA, TrkB, and TrkC) are important in the clinical and biological behavior of neuroblastomas. The authors aim to study Trks gene expression in their local population of advanced neuroblastoma patients. Multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) assay on the expression of TrkA, TrkB, TrkB-truncated, and TrkC was performed on a total of 19 advanced neuroblastoma archival tumors, diagnosed in KK Women's and Children's Hospital between 2003 and 2007. Of the 19 tumors investigated, Trks expression was present in 14 (73.6%) cases. Of these cases, 8 (42.1%), 10 (52.6%), 7 (36.8%), and 6 (31.6%) expressed TrkA, TrkB, TrkB-truncated, and TrkC receptor mRNAs, respectively. Subsequently, the authors compared Trks expression with N-Myc amplification status of the 19 patients. N-Myc was amplified in 5 (26.3%) of the cases. Within the non-N-Myc-amplified group, Trks expression was present in 9 (64%) of the 14 cases. The significant expression of Trk isoforms among advanced neuroblastoma cases as evident from this study support their role as possible risk assessment tools alongside N-Myc amplification status.

Shinwari Z, Al-Hindi H, Al-Shail E, et al.
Response of medulloblastoma cells to vincristine and lomustine: role of TRKC, CTNNB1 and STK15.
Anticancer Res. 2011; 31(5):1721-33 [PubMed] Related Publications
BACKGROUND: Vincristine and lomustine are two important chemotherapeutic drugs used for the treatment of different types of neoplasms, including medulloblastomas.
MATERIALS AND METHODS: We investigated the effects of vincristine and lomustine on 12 primary medulloblastoma cell cultures and the DAOY cell line using the annexinV-flow cytometry and immunoblotting techniques, following treatment of cells for different periods of time.
RESULTS: Both drugs triggered apoptosis and cell cycle delay at the G(2)/M phase and also up-regulated p16. Furthermore, the expression of 8 different cancer-related genes were assessed and their mRNA and protein levels were found to be highly heterogeneous and did not correlate in several medulloblastoma cultures. Importantly, there was significant correlation between the level of cadherin-associated protein beta 1 (CTNNB1) and Aurora kinase A (STK15) proteins and neurotrophic tyrosine kinase receptor type 3 (TRKC) mRNA and the proportion of apoptosis induced by vincristine, the combination of both drugs, and lomustine, respectively.
CONCLUSION: These genes could be of great importance as therapeutic biomarkers during the treatment of medulloblastoma patients with vincristine and lomustine.

Rajan N, Elliott R, Clewes O, et al.
Dysregulated TRK signalling is a therapeutic target in CYLD defective tumours.
Oncogene. 2011; 30(41):4243-60 [PubMed] Free Access to Full Article Related Publications
Individuals with germline mutations in the tumour-suppressor gene CYLD are at high risk of developing disfiguring cutaneous appendageal tumours, the defining tumour being the highly organised cylindroma. Here, we analysed CYLD mutant tumour genomes by array comparative genomic hybridisation and gene expression microarray analysis. CYLD mutant tumours were characterised by an absence of copy-number aberrations apart from LOH chromosome 16q, the genomic location of the CYLD gene. Gene expression profiling of CYLD mutant tumours showed dysregulated tropomyosin kinase (TRK) signalling, with overexpression of TRKB and TRKC in tumours when compared with perilesional skin. Immunohistochemical analysis of a tumour microarray showed strong membranous TRKB and TRKC staining in cylindromas, as well as elevated levels of ERK phosphorylation and BCL2 expression. Membranous TRKC overexpression was also observed in 70% of sporadic BCCs. RNA interference-mediated silencing of TRKB and TRKC, as well as treatment with the small-molecule TRK inhibitor lestaurtinib, reduced colony formation and proliferation in 3D primary cell cultures established from CYLD mutant tumours. These results suggest that TRK inhibition could be used as a strategy to treat tumours with loss of functional CYLD.

Vanhecke E, Adriaenssens E, Verbeke S, et al.
Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival.
Clin Cancer Res. 2011; 17(7):1741-52 [PubMed] Related Publications
PURPOSE: Given that nerve growth factor has previously been shown to be involved in breast cancer progression, we have tested here the hypothesis that the other neurotrophins (NT) are expressed and have an influence in breast tumor growth.
EXPERIMENTAL DESIGN: The expression of brain-derived neurotrophic factor (BDNF), NT-3 and NT-4/5, as well as the neurotrophin receptor p75(NTR), TrkB, and TrkC, was studied by RT-PCR, Western blotting, and immunohistochemistry in cell lines and tumor biopsies. The biological impacts of neurotrophins, and associated mechanisms, were analyzed in cell cultures and xenografted mice.
RESULTS: BDNF and NT-4/5 were expressed and secreted by breast cancer cells, and the use of blocking antibodies suggested an autocrine loop mediating cell resistance to apoptosis. The corresponding tyrosine kinase receptor TrkB was only rarely observed at full length, whereas the expression of TrkB-T1, lacking the kinase domain, as well as p75(NTR), were detected in all tested breast cancer cell lines and tumor biopsies. In contrast, NT-3 and TrkC were not detected. SiRNA against p75(NTR) and TrkB-T1 abolished the antiapoptotic effect of BDNF and NT-4/5, whereas the pharmacological inhibitors K252a and PD98059 had no effect, suggesting the involvement of p75(NTR) and TrkB-T1, but not kinase activities from Trks and MAPK. In xenografted mice, anti-BDNF, anti-NT-4/5, anti-p75(NTR), or anti-TrkB-T1 treatments resulted in tumor growth inhibition, characterized by an increase in cell apoptosis, but with no change in proliferation.
CONCLUSION: BDNF and NT-4/5 contribute to breast cancer cell survival and can serve as prospective targets in attempts to inhibit tumor growth.

Jin W, Lee JJ, Kim MS, et al.
DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma.
Biochem Biophys Res Commun. 2011; 406(1):89-95 [PubMed] Related Publications
The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NTRK3, Cancer Genetics Web: http://www.cancer-genetics.org/NTRK3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999