Gene Summary

Gene:CXCR5; C-X-C motif chemokine receptor 5
Aliases: BLR1, CD185, MDR15
Summary:This gene encodes a multi-pass membrane protein that belongs to the CXC chemokine receptor family. It is expressed in mature B-cells and Burkitt's lymphoma. This cytokine receptor binds to B-lymphocyte chemoattractant (BLC), and is involved in B-cell migration into B-cell follicles of spleen and Peyer patches. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Aug 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-X-C chemokine receptor type 5
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Follicular Lymphoma
  • Apoptosis
  • Case-Control Studies
  • Membrane Glycoproteins
  • p53 Protein
  • Genotype
  • Transcription Factors
  • Chemokines, CXC
  • Neoplasm Proteins
  • Single Nucleotide Polymorphism
  • T-Lymphocytes, Helper-Inducer
  • Receptors, Chemokine
  • CD4-Positive T-Lymphocytes
  • TNF
  • Cell Movement
  • Receptors, Neurotransmitter
  • Cancer Gene Expression Regulation
  • Chemokine CXCL13
  • Chronic Lymphocytic Leukemia
  • B-Lymphocytes
  • B-Cell Lymphoma
  • Receptors, Cytokine
  • Staging
  • Up-Regulation
  • Breast Cancer
  • Mutation
  • Non-Hodgkin Lymphoma
  • Messenger RNA
  • Immunoenzyme Techniques
  • Chemotaxis
  • Gene Expression Profiling
  • CD Antigens
  • Risk Factors
  • Chromosome 11
  • Receptors, CXCR5
  • Lymph Nodes
  • Flow Cytometry
  • Chemokines
  • Cell Proliferation
  • Biomarkers, Tumor
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CXCR5 (cancer-related)

Krenács D, Bakos A, Török L, et al.
Neoplastic Cells of Primary Cutaneous CD4+ Small/Medium-sized Pleomorphic T-cell Lymphoma Lack the Expression of Follicular T-helper Cell Defining Chemokine Receptor CXCR5.
Acta Derm Venereol. 2016; 96(6):850-2 [PubMed] Related Publications
is missing (Short communication).

Yang L, Gao L, Chen Y, et al.
The Differential Expression and Function of the Inflammatory Chemokine Receptor CXCR5 in Benign Prostatic Hyperplasia and Prostate Cancer.
Int J Med Sci. 2015; 12(11):853-61 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chemokine and chemokine receptors could have played an important role in tumor angiogenesis and distant metastasis. The mechanism of inflammation, expression and function of chemokines and chemokine receptors in benign prostatic hyperplasia (BPH) and prostate cancer (PCa) remain unclear. The purpose of present study is to detect differential expression and function of chemokines and chemokine receptors (CCRs) in BPH and PCa.
METHODS: BPH-1 and peripheral blood mononuclear cells (PBMCs) were co-cultured in Transwell chambers, and human normal prostate (NP) tissues, BPH tissues and PCa tissues were collected. CCR gene-chips were used to analyze and compare the differential expression of CCRs in BPH-1 cells, BPH-1 cells co-cultured with PBMCs, and LNCaP cells. The differential expression of CCRs was detected and validated using real-time PCR, western blotting and immunofluorescence (IF). The proliferation of LNCaP cells was also investigated after the knockdown CXCR5.
RESULTS: RESULTS of gene-chips indicated that there was low or no expression of CCR10, CXCR1, CXCR3 and CXCR5 in BPH-1 cells, whereas the expression of these receptors in BPH-1 cells was increased by PBMCs, and the expression was high in LNCaP cells. Furthermore, real-time PCR and western blotting confirmed the above mentioned results. IF verified no or low expression of CXCR1, CXCR3 and CXCR5 in NP tissues, low or moderate expression in BPH and high expression in PCa. However, CCR10 was not expressed at detectable levels in the three groups. The growth and proliferation of LNCaP cells was markedly inhibited after down-regulation of CXCR5.
CONCLUSIONS: PCa cells expressed high levels of CCR10, CXCR1, CXCR3 and CXCR5. Although BPH cells did not express these factors, their expression was up-regulated when BPH-1 cells were incubated with inflammatory cells. Finally, down-regulation of CXCR5 inhibited the growth and proliferation of LNCaP cells.

Ding Y, Shen J, Zhang G, et al.
CD40 controls CXCR5-induced recruitment of myeloid-derived suppressor cells to gastric cancer.
Oncotarget. 2015; 6(36):38901-11 [PubMed] Free Access to Full Article Related Publications
To explore the mechanisms of MDSC trafficking and accumulation during tumor progression. In this study, we report significant CD40 upregulation in tumor-infiltrating MDSC when compared with splenic MDSC. Microarray analyses comparing CD40(high) and CD40l(ow) MDSC revealed 1872 differentially expressed genes, including CD83, CXCR5, BTLA, CXCL9, TLR1, FLT3, NOD2 and CXCL10. In vivo experiments comparing wild-type (WT) and CD40 knockout (KO) mice demonstrated that CD40 critically regulates CXCR5 expression. Consistently, the transwell analysis confirmed the essential role of CXCR5-CXCL13 crosstalk in the migration of CD40+ MDSC toward gastric cancer. Furthermore, more MDSC accumulated in the gastric cancers of WT mice when compared with KO mice, and the WT tumors mostly contained CD40+ cells. Functionally, tumors grew faster in WT than KO mice. In conclusion, we demonstrate that CD40 expression upregulates the chemokine receptor CXCR5 and promotes MDSC migration toward and accumulation within cancer. Therefore, this study provides preliminary evidence that CD40 may stimulate tumor growth by enabling immune evasion via MDSC recruitment and inhibition of T cell expansion.

Mensen A, Oh Y, Becker SC, et al.
Apoptosis Susceptibility Prolongs the Lack of Memory B Cells in Acute Leukemic Patients After Allogeneic Hematopoietic Stem Cell Transplantation.
Biol Blood Marrow Transplant. 2015; 21(11):1895-906 [PubMed] Related Publications
Long-term survival after allogeneic hematopoietic stem cell transplantation requires intact immunosurveillance, which is hampered by lymphoid organ damage associated with conditioning therapy, graft-versus-host disease, and immunosuppression. Our study aimed to identify the mechanisms contributing to sustained low memory B cell numbers after transplantation. Peripheral B and T cell subset recovery and functional marker expression were investigated in 35 acute leukemic patients up to 1 year after transplantation. Apoptosis of B cells after CD40/TLR-9, CD40/BCR, and CD40/BCR/TLR-9-dependent stimulation and drug efflux capacity were analyzed. One half of the patients suffered from infections after day 180. All patients had strongly diminished CD27(+) memory B cells despite already normalized total B cell numbers and fully recovered CD27(-)IgD(-) memory B cells, putatively of extra-follicular origin. Circulating memory follicular helper T cells were reduced in the majority of patients as well. Naïve B cells exhibited a decreased expression of CXCR5, which mediates follicular B cell entry. Additionally, a lower HLA-DR expression was found on naïve B cells, impairing antigen presentation. Upon CD40/TLR-9-dependent activation, B cells underwent significantly increased apoptosis paralleled by an aberrant up-regulation of Fas-L on activated T cells and Fas on resting B cells. Significantly increased B cell apoptosis was also observed after CD40/BCR and CD40/BCR/TLR-9-dependent activation. Drug efflux capacity of naïve B cells was diminished in cyclosporin A-treated patients, additionally contributing to an apoptosis-prone phenotype. We conclude that B cell survival and migration and T cell communication defects are contributing candidates for an impaired germinal center formation of memory B cells after allogeneic hematopoietic stem cell transplantation. Follow-up studies should evaluate effectiveness of revaccinations on the cellular level and should address the long-term sequelae of B cell defects after transplantation.

Mitkin NA, Hook CD, Schwartz AM, et al.
p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.
Sci Rep. 2015; 5:9330 [PubMed] Free Access to Full Article Related Publications
Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.

Yang ZZ, Grote DM, Ziesmer SC, et al.
PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival.
Blood Cancer J. 2015; 5:e281 [PubMed] Free Access to Full Article Related Publications
To determine the biological and clinical relevance of programmed death 1 (PD-1) in follicular lymphoma (FL), we characterized PD-1(+) T-cell subsets and assessed their biological function as well as potential clinical impact. We found that PD-1 is expressed on intratumoral CD4(+) T cells with both bright and dim intensity, representing two different sub-populations of cells. By immunohistochemistry, we found that CD4(+)PD-1(high) T cells predominantly reside in the lymph node follicles, while PD-1(low) T cells are mainly located in an interfollicular pattern. Intratumoral CD4(+)PD-1(high) T cells have a TFH cell phenotype, express CXCR5, secrete IL-21 and are BCL-6 positive with no TIM-3 expression. In contrast, CD4(+)PD-1(low) T cells have an exhausted phenotype, express TIM-3 and do not express BCL-6 and CXCR5. Functionally, CD4(+)PD-1(high) T cells actively supported B-cell growth, while CD4(+)PD-1(low) T cells displayed a reduced cytokine production and cell-signal transduction. Clinically, we observed that the numbers of CD4(+) or CD8(+)PD-1(low) T cells significantly correlate with a reduced overall survival in FL patients (P=0.007 and 0.04 respectively; n=32). In contrast, the number of CD4(+)PD-1(high) T cells was not associated with patient outcome. Taken together, these results indicated that PD-1 expression defines two sub-populations with distinct functions that differentially impact patient outcome in FL.

Pimenta EM, De S, Weiss R, et al.
IRF5 is a novel regulator of CXCL13 expression in breast cancer that regulates CXCR5(+) B- and T-cell trafficking to tumor-conditioned media.
Immunol Cell Biol. 2015 May-Jun; 93(5):486-99 [PubMed] Related Publications
Clinical studies using prognostic and predictive signatures have shown that an immune signal emanating from whole tumors reflects the level of immune cell infiltration--a high immune signal linked to improved outcome. Factors regulating immune cell trafficking to the tumor, however, are not known. Previous work has shown that expression of interferon regulatory factor 5 (IRF5), a critical immune regulator, is lost in ~80% of invasive ductal carcinomas examined. We postulated that IRF5-positive and -negative breast tumors would differentially regulate immune cell trafficking to the tumor. Using a focused tumor inflammatory array, differences in cytokine and chemokine expression were examined between IRF5-positive and -negative MDA-MB-231 cells grown in three-dimensional culture. A number of cytokines/chemokines were found to be dysregulated between cultures. CXCL13 was identified as a direct target of IRF5 resulting in the enhanced recruitment of B and T cells to IRF5-positive tumor-conditioned media. The ability of IRF5 to regulate mediators of cell migration was confirmed by enzyme-linked immunosorbent assay, chromatin immunoprecipitation assay, small interfering RNA knockdown and immunofluorescence staining of human breast tumor tissues. Analysis of primary immune cell subsets revealed that IRF5 specifically recruits CXCR5(+) B and T cells to the tumor; CXCR5 is the receptor for CXCL13. Analysis of primary breast tumor tissues revealed a significant correlation between IRF5 and CXCL13 expression providing clinical relevance to the study. Together, these data support that IRF5 directly regulates a network of genes that shapes a tumor immune response and may, in combination with CXCL13, serve as a novel prognostic marker for antitumor immunity.

Zhu Z, Zhang X, Guo H, et al.
CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/AKT pathway.
Mol Cell Biochem. 2015; 400(1-2):287-95 [PubMed] Related Publications
CXCL13, an inflammatory factor in the microenvironment, plays a vital role in the progression of inflammatory diseases and tumors. CXCL13 and its receptor CXCR5 have been reported to be associated with poor prognosis of advanced colon cancer. However, the molecular mechanisms of CXCL13-CXCR5 axis in colon cancer remain elusive. The aim of this study was to investigate the role of CXCR5-CXCL13 axis in the growth and invasion of colon cancer cells. Our results showed that CXCL13 promoted the growth, migration, and matrigel invasion of colon cancer cells. Furthermore, CXCL13 increased the expression and secretion of MMP-13, and stimulated the activation of PI3K/AKT pathway. After knockdown of CXCR5 by siRNA, the biological functions of colon cancer cells regulated by CXCL13 were significantly inhibited. In addition, inhibition of PI3K/AKT pathway by specific inhibitor LY294002 suppressed the CXCL13-mediated growth, migration, and invasion of colon cancer cells. Together, our findings suggest that CXCL13-CXCR5 axis promotes the growth, migration, and invasion of colon cancer cells, probably via PI3K/AKT pathway. Thus, CXCL13 may be a useful biomarker for the detection and treatment of colon cancer.

Skibola CF, Berndt SI, Vijai J, et al.
Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region.
Am J Hum Genet. 2014; 95(4):462-71 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p = 5.79 × 10(-20)) near CXCR5; 11q24.3 (rs4937362, p = 6.76 × 10(-11)) near ETS1; 3q28 (rs6444305, p = 1.10 × 10(-10)) in LPP; 18q21.33 (rs17749561, p = 8.28 × 10(-10)) near BCL2; and 8q24.21 (rs13254990, p = 1.06 × 10(-8)) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRβ1 multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus = 4.20 × 10(-67) to 2.67 × 10(-70)). Additional independent signals included rs17203612 in HLA class II (odds ratio [OR(per-allele)] = 1.44; p = 4.59 × 10(-16)) and rs3130437 in HLA class I (OR(per-allele) = 1.23; p = 8.23 × 10(-9)). Our findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.

Singh R, Gupta P, Kloecker GH, et al.
Expression and clinical significance of CXCR5/CXCL13 in human non‑small cell lung carcinoma.
Int J Oncol. 2014; 45(6):2232-40 [PubMed] Free Access to Full Article Related Publications
CXCR5 and/or CXCL13 expression is elevated in certain carcinomas and lymphomas. To determine if these factors are involved in progression of non-small cell lung cancer (LuCa), we evaluated their expression in patients with various forms of this disease. Lung biopsies from patients with non-neoplastic cells (n=8), squamous cell carcinoma (SCC; n=24), or adenocarcinoma (AC; n=54) were stained for CXCR5. Histopathological analysis of these samples showed significantly higher expression of CXCR5 (p<0.001) in carcinomas (i.e., SCCs and ACs) relative to non‑neoplastic lung tissue. Nuclear and membrane CXCR5 intensities were highest in ACs, with median values of 185 and 130, respectively, followed by SCCs with median values of 170 and 110, respectively. The lowest nuclear and membrane expressions of CXCR5 were found in non-neoplastic tissues, having median values of 142 and 90, respectively. Sera from SCC patients (n=17), AC patients (n=14), and healthy controls (n=9) were tested for the presence of CXCL13. Serum CXCL13 levels in LuCa patients were higher than in healthy controls. CXCR5 expression in cell lines of human non-small cell lung carcinoma (NCI-H1915) and small cell lung carcinoma (SW-1271) were evaluated by flow cytometry. CXCR5 expression was higher in NCI-H1915 cells relative to SW-1271 cells. The functional significance of CXCR5 expression was tested in a migration assay. In response to CXCL13, more NCI-H1915 cells migrated than SW-1271 cells. These findings suggest that the CXCR5‑CXCL13 axis influences LuCa progression. After validation in larger patient groups, CXCR5 and CXCL13 may prove useful as biomarkers for LuCa. Correspondingly, blockade of this axis could serve as an effective therapy for LuCa.

Xing J, Li X, Sui J, et al.
C-X-C chemokine receptor type 5 gene polymorphism affects gene expression in CD4+ T cells and is associated with increased risk of colorectal cancer.
Tumour Biol. 2014; 35(8):7929-34 [PubMed] Related Publications
Dysregulation of the immune system may play important roles in the development of colorectal cancer (CRC). The C-X-C chemokine receptor type 5 (CXCR5) is one of the principal regulators for targeting T cells, B cells, and dendritic cells into secondary lymphoid organs. The current study investigated the association between CXCR5 gene polymorphisms and the risk of CRC, and the potential effect of these polymorphisms on different immune cells. Two polymorphisms in CXCR5 gene, rs6421571C/T and rs80202369G/A, were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 302 cases and 316 controls. Results showed that individuals with the rs6421571CT and TT genotypes had a strong correlation with the incidence of CRC (odds ratio (OR) = 1.46; 95 % confidence interval (CI), 1.02-2.09; p = 0.041 and OR = 2.62; 95 % CI, 1.50-4.95; p < 0.001, respectively). Also, rs80202369AA genotype revealed significantly higher distribution in CRC patients than in controls (p = 0.002). We further investigated the possible effects of the polymorphisms by assessing messenger RNA (mRNA) and protein levels of CXCR5 in peripheral blood mononuclear cells (PBMCs), CD4+ T cells, CD8+ T cells, and B cells. Data presented that healthy controls with rs6421571CT and TT genotypes had higher mRNA and protein levels of CXCR5 than those with wild-type CC genotype specifically in CD4+ T cells. These findings suggest novel risk factors of CRC and indicate a potential mechanism of CXCR5 gene polymorphism.

Ahearne MJ, Allchin RL, Fox CP, Wagner SD
Follicular helper T-cells: expanding roles in T-cell lymphoma and targets for treatment.
Br J Haematol. 2014; 166(3):326-35 [PubMed] Related Publications
Follicular helper T-cells (Tfh cells) are a subset of CD4(+) T-cells that are essential for normal production of high affinity antibodies. Tfh cells characteristically produce IL21 and IL4 and show high expression of surface markers CXCR5, ICOS, PDCD1 (PD-1) and the chemokine CXCL13. In this review we will focus on the emerging links between Tfh cells and subtypes of T-cell non-Hodgkin lymphoma: angioimmunoblastic T-cell lymphoma (AITL) and ~20% of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) have surface marker features of Tfh cells and share a spectrum of genetic abnormalities. The recurrent genetic abnormalities associated with AITL include mutations in epigenetic modifiers such as TET2 and DNMT3A and the motility and adhesion gene, RHOA, is mutated in up to 70% of cases. ~20% of PTCL-NOS demonstrate RHOA mutations and have other characteristics suggesting an origin in Tfh cells. The recognition that specific genetic and surface markers are associated with malignant Tfh cells suggests that the next few years will bring major changes in diagnostic and treatment possibilities. For example, antibodies against IL21, PDCD1 and ICOS are already in clinical trials for autoimmune disease or other malignancies and antibodies against CXCL13 are in pre-clinical development.

Biswas S, Sengupta S, Roy Chowdhury S, et al.
CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis.
Breast Cancer Res Treat. 2014; 143(2):265-76 [PubMed] Related Publications
We investigated the expression of -CXC chemokine ligand 13 (CXCL13) and its receptor -CXC chemokine receptor 5 (CXCR5) in 98 breast cancer (BC) patients with infiltrating duct carcinoma, out of which 56 were found lymph node metastasis (LNM) positive. Interestingly, co-expression of CXCL13 and CXCR5 showed a significant correlation with LNM. Since, epithelial to mesenchymal transition (EMT) is highly associated with metastasis we investigated EMT-inducing potential of CXCL13 in BC cell lines. In CXCL13-stimulated BC cells, expression of various mesenchymal markers (Vimentin, N-cadherin), EMT regulators (Snail, Slug), and matrix metalloproteinase-9 (MMP9) was increased, whereas the expression of epithelial marker E-cadherin was found to be decreased. In addition, expression of receptor activator of nuclear factor kappa-B ligand (RANKL), which is known to regulate MMP9 expression via Src activation, was also significantly increased after CXCL13 stimulation. Using specific protein kinase inhibitors, we confirmed that CXCL13 stimulated EMT and MMP9 expression via RANKL-Src axis in BC cell lines. To further validate this observation, we examined gene expression patterns in primary breast tumors and detected significantly higher expression of various mesenchymal markers and regulators in CXCL13-CXCR5 co-expressing patients. Therefore, this study showed the EMT-inducing potential of CXCL13 as well as demonstrated the prognostic value of CXCL13-CXCR5 co-expression in primary BC. Moreover, CXCL13-CXCR5-RANKL-Src axis may present a therapeutic target in LNM positive BC patients.

Pascutti MF, Jak M, Tromp JM, et al.
IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells.
Blood. 2013; 122(17):3010-9 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) cells multiply in secondary lymphoid tissue, but the mechanisms leading to their proliferation are still uncertain. In addition to B-cell receptor (BCR)-triggered signals, other microenvironmental factors might well be involved. In proliferation centers, leukemic B cells are in close contact with CD4(+)CD40L(+) T cells. Therefore, we here dissected the signals provided by autologous activated T cells (Tact) to CLL cells. Although the gene expression profile induced by Tact was highly similar to that induced by sole CD40 signaling, an obvious difference was that Tact induced proliferation of CLL cells. We determined that stimulation with only CD40L+IL-21 was sufficient to induce robust proliferation in CLL cells. We then defined an interleukin (IL)-21-induced gene signature in CLL, containing components of Janus kinase/signal transducer and activator of transcription and apoptosis pathways, and this signature could be detected in lymph node (LN) samples from patients. Finally, we could detect IL-21 RNA and protein in LN, and IL-21 production ex vivo by LN CD4(+)CXCR5(+) follicular helper T cells. These results indicate that in addition to BCR signaling, activated T cells might contribute to CLL cell proliferation via CD40 and IL-21. Targeting these signaling pathways might offer new venues for treatment of CLL.

Cha Z, Zang Y, Guo H, et al.
Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia.
Tumour Biol. 2013; 34(6):3579-85 [PubMed] Related Publications
Accumulating evidences indicate that immune dysregulation plays a key role in both lymphomagenesis and patient outcome of chronic lymphocytic leukemia (CLL). Peripheral blood CD4+ CXCR5+ T cells, known as circulating follicular helper T cells (Tfh), can induce B cell activation and production of specific antibody responses. The aim of the study was to investigate changes of circulating Tfh in CLL. Tfh and it subtypes were tested by measuring CD4, CXCR5, CXCR3, and CCR6 in 72 CLL cases and 86 healthy controls using flow cytometry. Data showed that the percentage of Tfh in the peripheral CD4+ T cells was significantly increased in CLL (25.1%) than in controls (8.4%) (p < 0.001). Further analysis revealed that the upregulation of Tfh was contributed by Tfh-th2 subtype and Tfh-th17 subtype. Investigating staging of the cases demonstrated that the prevalence of Tfh was significantly elevated in cases with Binet stage C (37.3%) than those with stage A (20.1 %) or stage B (23.9 %). In addition, we analyzed Tfh in patients with immunoglobulin variable heavy chain (IGHV) gene mutational status. Results presented that Tfh-th17 subtype had clearly higher frequency in patients with IGHV mutation compared to the unmutated cases (p = 0.035). This study suggested the involvement of Tfh in the pathogenesis and progression of CLL, and provided a potential target for treating this disease.

Razmkhah M, Jaberipour M, Safaei A, et al.
Chemokine and chemokine receptors: a comparative study between metastatic and nonmetastatic lymph nodes in breast cancer patients.
Eur Cytokine Netw. 2012 Jul-Sep; 23(3):72-7 [PubMed] Related Publications
BACKGROUND: Lymph nodes (LNs) are among the first sites of tumor metastasis. The expression of chemokines and chemokine receptors in LNs are involved in cancer prognosis and are considered to be good predictors of tumor progression. The main aim of this study was to assess the expression of important, tumor-promoting chemokines and chemokine receptors in LNs of breast cancer patients. LNs were isolated from eighteen women diagnosed with breast cancer. Data were compared between positive and negative LNs. Expression of chemokines and chemokine receptors were determined by quantitative real-time PCR (qRT-PCR) and flow cytometry.
RESULTS: Results of qRT-PCR showed that all chemokines, in particular MCP-1, IL-8, SDF-1 and CXCL13, and chemokine receptors CXCR3, CXCR4 and CCR5 showed greater mRNA expression in LN(+) compared to LN(-) samples. However, these differences were not statistically significant. IL-8 and CXCR5 gene transcripts had significantly higher expression in LN(+ )patients with stage III compared to those with stage II tumors (P value = 0.04). Results of flow cytometry analysis showed a higher, significant presence of CD69(+), CCR5(+) and CD3(+)CCR5(+) cells in LN of LN(+) compared to LN(- )breast cancer patients (P value<0.05). Expression of MCP-1 was higher in LN(+) patients, which was near significance (P value = 0.07).
CONCLUSIONS: Our findings provide additional information on the expression of essential chemokines and chemokine receptors in LN and on their relationships to important prognostic factors in breast cancer. These findings have important implications for immunotherapeutic interventions in the treatment of breast cancer.

Song H, Tong D, Cha Z, Bai J
C-X-C chemokine receptor type 5 gene polymorphisms are associated with non-Hodgkin lymphoma.
Mol Biol Rep. 2012; 39(9):8629-35 [PubMed] Related Publications
The C-X-C chemokine receptor type 5 (CXCR5) is one of the principal regulators for targeting T cells, B cells and dendritic cells into secondary lymphoid organs. Polymorphism studies of CXCR5 gene remain extremely scarce. The aim of this study was to examine the effect of polymorphisms in the CXCR5 gene on the development of non-Hodgkin lymphoma (NHL) in the Chinese population. Four polymorphisms in CXCR5 gene, rs148351692C/G, rs6421571C/T, rs80202369G/A and rs78440425G/A, were tested by polymerase chain reaction-restriction fragment length polymorphism in 404 NHL cases and 456 age-matched healthy controls. Data were analyzed using the χ(2) test. Results showed that individuals with the rs6421571 CT, rs6421571 TT and rs80202369 AA genotype had significantly increased susceptibility to NHL [Odd ratio (OR) = 1.41, 95 % confidence interval (CI): 1.04-1.92, p = 0.028; OR = 2.30, 95 % CI: 1.44-3.65, p < 0.001; and OR = 3.24, 95 % CI: 1.26-8.32, p = 0.010, respectively]. When analyzing the haplotypes of these polymorphisms, the prevalence of the TGG (rs6421571, rs80202369, and rs78440425) haplotype was significantly higher in NHL cases than in controls (OR = 1.59, 95 % CI: 1.25-2.03, p < 0.001). In addition, numbers of rs6421571 TT genotype and T allele were significantly increased in NHL patients with high Ann Arbor stages (p < 0.03) or NHL with B cell subtype (p < 0.02). These data indicate that CXCR5 gene polymorphisms may be new risk factors for NHL. The finding that the adjacent SNPs, rs6421571C/T and rs80202369G/A, are both associated with NHL suggests that the 87 bp region carrying these 2 polymorphisms may have important functional significance.

Razis E, Kalogeras KT, Kotoula V, et al.
Improved outcome of high-risk early HER2 positive breast cancer with high CXCL13-CXCR5 messenger RNA expression.
Clin Breast Cancer. 2012; 12(3):183-93 [PubMed] Related Publications
UNLABELLED: The CXCL13-CXCR5 is a chemokine axis that is activated in some breast cancers. A total of 321 tissue blocks from a group of patients who received adjuvant, dose-dense chemotherapy for high-risk early breast cancer were examined. Activation of this axis was found to be associated with determinants of poor prognosis but also with improved outcome in the human epidermal growth factor receptor 2 overexpressing subpopulation.
BACKGROUND: Chemokines are important in cell migration and are thought to play a key role in metastasis. We explored the prognostic significance of C-X-C ligand-motif (CXCL) 12, CXCL13, and receptor (CXCR) 5 on disease-free survival (DFS) and overall survival (OS) in early breast cancer.
METHODS: A total of 595 patients with high risk, [corrected] early breast cancer were treated in a 2-arm trial (HE10/97) with dose-dense sequential epirubicin followed by cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) with or without paclitaxel. RNA was extracted from 321 formalin-fixed paraffin-embedded primary tumor tissue samples and quantitative reverse-transcriptase polymerase chain reaction was used to assess messenger RNA (mRNA) expression of CXCL12, CXCL13, and CXCR5; estrogen receptor; progesterone receptor (PgR); microtubule-associated protein tau and human epidermal growth factor receptor 2 (HER2).
RESULTS: CXCL13 and CXCR5 were found to be negatively associated with estrogen receptor and microtubule-associated protein tau mRNA expression and with dense lymphocytic infiltration, and were positively associated with nuclear grade. Only CXCL13 was positively associated with HER2. Multivariate analysis revealed an association between high CXCL13 mRNA expression and improved DFS (hazard ratio [HR] 0.48 [95% CI, 0.25-0.90]; Wald, P = .023) but not OS; whereas high CXCL12 expression was significantly associated with increased OS (HR 0.53 [95% CI, 0.33-0.85]; Wald, P = .009). In the HER2 mRNA overexpressing subgroup, high CXCL13 mRNA expression was associated with improved DFS (P < .001), whereas high CXCR5 was associated with increased DFS and OS (P = .004 and P = .049, respectively).
CONCLUSIONS: The CXCL13-CXCR5 axis is associated with classic determinants of poor prognosis, such as high grade, hormone receptor negativity, and axillary node involvement. Interestingly, this chemokine axis seems to be strongly associated with improved outcome in patients with HER2(+) disease.

Amé-Thomas P, Le Priol J, Yssel H, et al.
Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells.
Leukemia. 2012; 26(5):1053-63 [PubMed] Free Access to Full Article Related Publications
Accumulating evidences indicate that the cellular and molecular microenvironment of follicular lymphoma (FL) has a key role in both lymphomagenesis and patient outcome. Malignant FL B cells are found admixed to specific stromal and immune cell subsets, in particular CD4(pos) T cells displaying phenotypic features of follicular helper T cells (T(FH)). The goal of our study was to functionally characterize intratumoral CD4(pos) T cells. We showed that CXCR5(hi)ICOS(hi)CD4(pos) T cells sorted from FL biopsies comprise at least two separate cell populations with distinct genetic and functional features: (i) CD25(pos) follicular regulatory T cells (T(FR)), and (ii) CD25(neg) T(FH) displaying a FL-B cell supportive activity without regulatory functions. Furthermore, despite their strong similarities with tonsil-derived T(FH), purified FL-derived T(FH) displayed a specific gene expression profile including an overexpression of several genes potentially involved directly or indirectly in lymphomagenesis, in particular TNF, LTA, IL4 or CD40LG. Interestingly, we further demonstrated that these two last signals efficiently rescued malignant B cells from spontaneous and rituximab-induced apoptosis. Altogether, our study demonstrates that tumor-infiltrating CD4(pos) T cells are more heterogeneous than previously presumed, and underlines for the first time the crucial role of T(FH) in the complex set of cellular interactions within FL microenvironment.

Calpe E, Codony C, Baptista MJ, et al.
ZAP-70 enhances migration of malignant B lymphocytes toward CCL21 by inducing CCR7 expression via IgM-ERK1/2 activation.
Blood. 2011; 118(16):4401-10 [PubMed] Related Publications
ZAP-70 in chronic lymphocytic leukemia (CLL) has been associated with enhanced B-cell receptor (BCR) signaling, survival, and migration. We investigated whether ZAP-70 can directly govern migration and the underlying mechanisms. In the ZAP-70 stably transfected Ramos cell line, IgM stimulation, but no IgD, enhanced phosphorylation of ERK1/2, Akt and Syk, and delayed IgM and CD79b internalization. In contrast, in the Raji cell line, where ZAP-70 was constitutively phosphorylated, ERK1/2, but not Akt, was phosphorylated, suggesting that MAPK pathway mediates ZAP-70 effects. BCR stimulation modulated the expression of CCR7, CXCR4, CXCR5, CD44, CD49d, and CD62L, which were up-regulated in ZAP-70-positive CLL primary subclones. The most dramatic change after BCR engagement in ZAP-70-transfected cells was CCR7 up-regulation, this being impaired by ERK1/2 inhibition and translating into both increased signaling and migration toward CCL21. Primary CLL subclones with high ZAP-70 expression showed increased migration toward CCL21. In conclusion, ZAP-70 ectopic expression led to enhanced BCR signaling after IgM stimulation and increased the expression of CCR7 predominantly via ERK1/2, increasing the response and migration toward CCL21. In primary CLL samples, cellular subsets with high ZAP-70 expression had increased expression of adhesion molecules and chemokine receptors in addition to an enhanced ability to migrate toward CCL21.

Hilchey SP, Rosenberg AF, Hyrien O, et al.
Follicular lymphoma tumor-infiltrating T-helper (T(H)) cells have the same polyfunctional potential as normal nodal T(H) cells despite skewed differentiation.
Blood. 2011; 118(13):3591-602 [PubMed] Free Access to Full Article Related Publications
The follicular lymphoma (FL) T-cell microenvironment plays a critical role in the biology of this disease. We therefore determined the lineage, differentiation state, and functional potential of FL-infiltrating CD4(+) T-helper cells (T(H)) compared with reactive and normal lymph node (NLN) T(H) cells. Relative to NLNs, FL cells have decreased proportions of naive and central memory but increased proportions of effector memory T(H) cells. We further show differences in the distribution and anatomical localization of CXCR5(+) T(H) populations that, on the basis of transcription factor analysis, include both regulatory and follicular helper T cells. On Staphylococcus enterotoxin-B stimulation, which stimulates T cells through the T-cell receptor, requires no processing by APCs, and can overcome regulator T cell-mediated suppression, the proportion of uncommitted primed precursor cells, as well as T(H)2 and T(H)17 cells is higher in FL cells than in reactive lymph nodes or NLNs. However, the proportion of T(H)1 and polyfunctional T(H) cells (producing multiple cytokines simultaneously) is similar in FL cells and NLNs. These data suggest that, although T(H)-cell differentiation in FL is skewed compared with NLNs, FL T(H) cells should have the same intrinsic ability to elicit antitumor effector responses as NLN T(H) cells when tumor suppressive mechanisms are attenuated.

Zabel BA, Lewén S, Berahovich RD, et al.
The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells.
Mol Cancer. 2011; 10:73 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Migration of metastatic tumor cells from the bloodstream into lymph nodes is thought to be facilitated by expression of the chemokine receptors CCR7, CXCR4 and, for B cell-derived tumors, CXCR5. Expression of their respective chemokine ligands (CCL19, CCL21, CXCL12 and CXCL13) by endothelial cells inside the lymph nodes facilitates the trans-endothelial migration (TEM) of these cells through high endothelial venules into the lymph node parenchyma. It is known that CXCR7, a second CXCL12 receptor, regulates TEM of CXCR4+CXCR7+ tumor cells towards a CXCL12 source. In this study, we set out to assess the potential stimulation by CXCL12 of tumor cell TEM towards other chemokines and whether CXCR7 might be able to regulate such effects.
METHODS: The human Burkitt's lymphoma cell line NC-37, which expresses CXCR4, CXCR5, CXCR7 and CCR7, was selected as a model system. TEM of these cells through a human HUVEC endothelial cell monolayer was used as the main model system for these studies. Regulation of their TEM behavior by various concentrations of the various cognate chemokines for the above-mentioned receptors, placed in either the source or target wells of modified Boyden chamber migration plates, was assessed by quantifying the number of cells migrated under each experimental condition.
RESULTS: Exposure of CXCR4⁺CXCR7⁺ cancer cells to CXCL12 greatly potentiated their TEM towards the chemokines CCL19 and CXCL13. This CXCL12-potentiated TEM was inhibited by the second CXCR7 chemokine ligand, CXCL11, as well as CXCR7-specific small molecule antagonists and antibodies. In contrast, the CXCR4 antagonist AMD3100 was less effective at inhibiting CXCL12-potentiated TEM. Thus, CXCR7 antagonists may be effective therapeutic agents for blocking CXCL12-mediated migration of CXCR4⁺CXCR7⁺ tumor cells into lymph nodes, regardless of whether the cancer cells follow a CXCL12 gradient or whether serum CXCL12 stimulates their migration towards CCR7 and CXCR5 chemokines in the lymph nodes.

Del Grosso F, Coco S, Scaruffi P, et al.
Role of CXCL13-CXCR5 crosstalk between malignant neuroblastoma cells and Schwannian stromal cells in neuroblastic tumors.
Mol Cancer Res. 2011; 9(7):815-23 [PubMed] Related Publications
Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1-5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor.

Tsaur I, Noack A, Waaga-Gasser AM, et al.
Chemokines involved in tumor promotion and dissemination in patients with renal cell cancer.
Cancer Biomark. 2011; 10(5):195-204 [PubMed] Related Publications
BACKGROUND: Chemokines play a critical role in tumor initiation, progression, and metastasis and have been associated with poor prognosis in diverse malignancies. The prognostic impact of chemokines for renal cell cancer (RCC) remains to be defined.
METHODS: Patients diagnosed with RCC and operated between 07/07 and 05/11 were differentially assessed for expression profiles of a series of chemokines and their receptors by RT-qPCR and Western Blot analysis (tumor and adjacent normal tissue, n=37) and by Luminex for corresponding serum expression levels. Results were statistically correlated with clinicopathologic parameters.
RESULTS: Gene expression of CCL2, CCR7, CXCL12, CXCR3, CXCR5 and CX3CL1 chemokines was significantly down-regulated in tumor compared to normal tissue. The gene profile for CCR6 was positively correlated with tumor size and stage. A positive linear correlation was found between CXCL12 and tumor stage as well as between CX3CR1 and C-reactive protein. In contrast to clear cell RCCs those of a chromophobe type showed a significantly down-regulated gene expression for CCR6, CCL20, and CXCL12. The CXCR7 serum level was significantly increased in patients with tumor-related mortality during postoperative follow-up.
CONCLUSIONS: Chemokines may serve as novel diagnostic and prognostic biomarkers for RCC. Studies on larger collectives are required for further assessment of potential clinical application.

Fishel ML, Colvin ES, Luo M, et al.
Inhibition of the redox function of APE1/Ref-1 in myeloid leukemia cell lines results in a hypersensitive response to retinoic acid-induced differentiation and apoptosis.
Exp Hematol. 2010; 38(12):1178-88 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: The standard of care for promyelocytic leukemia includes use of the differentiating agent all-trans retinoic acid (RA) and chemotherapy. RA induces cell differentiation through retinoic acid receptor (RAR) transcription factors. Because redox mechanisms influence how readily transcription factors bind to DNA response elements (RARE), the impact of small molecule (E3330) inhibition of the redox regulatory protein, apurinic-apyrimidinic endonuclease/redox effector factor (APE1/Ref-1) on RAR DNA binding and function in RA-induced myeloid leukemia cell differentiation and apoptosis was investigated.
MATERIALS AND METHODS: The redox function of APE1 was studied using the small molecule inhibitor E3330 in HL-60 and PLB acute myeloid leukemia cells. Electrophoretic mobility shift assays were employed to determine effect of inhibitor on APE1/Ref-1 redox signaling function. Trypan blue assays, Annexin-V/propidium iodide and CD11b staining, and real-time polymerase chain reaction analyses were employed to determine survival, apoptosis, and differentiation status of cells in culture.
RESULTS: RARα binds to its RARE in a redox-dependent manner mediated by APE1/Ref-1 redox regulation. Redox-dependent RAR-RARE binding is blocked by E3330, a small molecule redox inhibitor of APE1/Ref-1. Combination treatment of RA + E3330 results in a profound hypersensitivity of myeloid leukemia cells to RA-induced differentiation and apoptosis. Additionally, redox inhibition by E3330 results in enhanced RAR target gene, BLR-1, expression in myeloid leukemia cells.
CONCLUSIONS: The redox function of APE1/Ref-1 regulates RAR binding to its DNA RAREs influencing the response of myeloid leukemia cells to RA-induced differentiation. Targeting of APE1/Ref-1 redox function may allow manipulation of the retinoid response with therapeutic implications.

Savage KJ, Ferreri AJ, Zinzani PL, Pileri SA
Peripheral T-cell lymphoma--not otherwise specified.
Crit Rev Oncol Hematol. 2011; 79(3):321-9 [PubMed] Related Publications
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) does correspond to a heterogeneous group of nodal and extranodal mature T-cell lymphomas, with a low prevalence in Western countries. PTCL-NOS accounts for about 25% of all PTCL, which represent over 15% of all lymphomas. In the lymph node, PTCL-NOS shows paracortical or diffuse infiltrates with effacement of the normal architecture, with a broad cytological spectrum and a frequently observed inflammatory background. Some morphological variants include: lymphoepithelioid or Lennert's type, T-zone, and follicular. PTCL-NOS is characterized by an aberrant T-cell phenotype, with frequent loss of CD5 and CD7. A CD4+/CD8- phenotype predominates in nodal cases. CD4/CD8 +/+ or -/- is at times seen, as is CD8, CD56 and cytotoxic granule expression. Ki-67 rate is typically high. TCR β-chain is usually expressed; TCR genes are most often clonally rearranged. PTCL-NOS typically occurs in adults (median age 55-60 years), with a higher prevalence in males. It presents more often as disseminated disease, occasionally with eosinophilia, pruritis or hemophagocytic syndrome. Patients often have B symptoms, generalized lymphadenopathy, bone marrow infiltration, and extranodal involvement, with high or high-intermediate IPI score in 50-70% of cases. Prognosis is poor, with a 5-year OS of 20-30%. Some variables, like ST2(L), CXCR5, CXCR3, EBV infection, cytotoxic granule expression, high proliferative index, NF-κB expression, were proposed as prognostic indicators, but the IPI score, and its variant called PIT, remains the most effective prognostic factor. Patients with PTCL-NOS should be treated with anthracycline-containing chemotherapy, followed by radiotherapy in cases of stage I-II disease. This strategy is associated with an overall response rate higher than 60%, but the 5-year overall survival is only 20-30%. Upfront high-dose chemotherapy supported by autologous or allogeneic SCT is an investigational approach, with a 4-year overall survival of about 40%. Patients with chemosensitive relapse respond favorably to high-dose chemotherapy and ASCT, with long-term survival rates of 35-45%. Graft-versus-lymphoma effect following allogeneic SCT has been observed; and reduced intensity conditioning emerges as an attractive strategy for frail patients. Most patients with PTCL-NOS are enrolled in prospective trials to explore new approaches, and new agents, like gemcitabine, alemtuzumab and pralatrexate, are being investigated.

Tripodo C, Gri G, Piccaluga PP, et al.
Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma.
Am J Pathol. 2010; 177(2):792-802 [PubMed] Free Access to Full Article Related Publications
Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity.

Pandruvada SN, Yuvaraj S, Liu X, et al.
Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice.
Int J Cancer. 2010; 126(10):2319-29 [PubMed] Free Access to Full Article Related Publications
Oral squamous cell carcinomas (OSCC) are malignant tumors with a potent activity of local bone invasion; however, the molecular mechanisms of tumor osteolysis are unclear. In this study, we identified high level expression of chemokine ligand, CXCL13 and RANK ligand (RANKL) in OSCC cells (SCC1, SCC12 and SCC14a). OSCC cell-conditioned media (20%) induced osteoclast differentiation which was inhibited by OPG in peripheral blood monocyte cultures indicating that OSCC cells produce soluble RANKL. Recombinant hCXCL13 (10 ng/ml) significantly enhanced RANKL-stimulated osteoclast differentiation in these cultures. Trans-well migration assay identified that CXCL13 induces chemotaxis of peripheral blood monocytes in vitro which was inhibited by addition of anti-CXCR5 receptor antibody. Zymogram analysis of conditioned media from OSCC cells revealed matrix metalloproteinase-9 (MMP-9) activity. Interestingly, CXCL13 treatment to OSCC cells induced CXCR5 and MMP-9 expression suggesting an autocrine regulatory function in OSCC cells. To examine the OSCC tumor cell bone invasion/osteolysis, we established an in vivo model for OSCC by subcutaneous injection of OSCC cells onto the surface of calvaria in NCr-nu/nu athymic mice, which developed tumors in 4-5 weeks. muCT analysis revealed numerous osteolytic lesions in calvaria from OSCC tumor-bearing mice. Histochemical staining of calvarial sections from these mice revealed a significant increase in the numbers of TRAP-positive osteoclasts at the tumor-bone interface. Immunohistochemical analysis confirmed CXCL13 and MMP-9 expression in tumor cells. Thus, our data implicate a functional role for CXCL13 in bone invasion and may be a potential therapeutic target to prevent osteolysis associated with OSCC tumors in vivo.

Yuvaraj S, Griffin AC, Sundaram K, et al.
A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells.
Mol Cancer Res. 2009; 7(8):1399-407 [PubMed] Related Publications
Oral squamous cell carcinomas (OSCC) are malignant tumors with a potent activity of local bone invasion/osteolysis. The chemokine ligand, CXCL13, has been identified as a prognostic marker for OSCC development and progression. Here in, we show that recombinant hCXCL13 treatment of OSCC cells stimulates (5-fold) RANK ligand (RANKL), a critical bone resorbing osteoclastogenic factor expression. Anti-CXCR5 chemokine receptor antibody abrogates CXCL13-induced RANKL expression in these cells. Also, CXCL13 stimulated (3.0-fold) hRANKL gene promoter activity in SCC14a cells. SuperArray screening for transcription factors by real-time RT-PCR identified significant increase in the levels of c-Jun and NFATc3 mRNA expression in CXCL13-stimulated OSCC cells. CXCL13 treatment significantly increased (3.5-fold) phospho-c-Jun levels in these cells and a c-Jun-NH(2)-kinase inhibitor abolished CXCL13-stimulated RANKL expression. Furthermore, we show that CXCL13 stimulation induced nuclear translocation of NFATc3 in OSCC cells. Chromatin-immune precipitation assay confirmed NFATc3 binding to the RANKL promoter region. We also show that overexpression of NFATc3 stimulates RANKL expression/promoter activity and that siRNA suppression of NFATc3 abolished CXCL13-stimulated RANKL expression. Thus, our results suggest that NFATc3 is a downstream target of the CXCL13/CXCR5 axis to stimulate RANKL expression in OSCC cells and implicates CXCL13 as a potential therapeutic target to prevent OSCC bone invasion/osteolysis.

Feng LY, Ou ZL, Wu FY, et al.
Involvement of a novel chemokine decoy receptor CCX-CKR in breast cancer growth, metastasis and patient survival.
Clin Cancer Res. 2009; 15(9):2962-70 [PubMed] Related Publications
PURPOSE: The biological axes of chemokines and chemokine receptors, such as CXCR4/CXCL12, CCR7/CCL19 (CCL21), CCR9/CCL25, and CXCR5/CXCL13, are involved in cancer growth and metastasis. This study is aimed at the potential regulatory role of atypical chemokine binder CCX-CKR, as a scavenger of CCL19, CCL21, CCL25, and CXCL13, in human breast cancer.
EXPERIMENTAL DESIGN: The role of CCX-CKR in human breast cancer was investigated in cell lines, animal models, and clinical samples.
RESULTS: Overexpression of CCX-CKR inhibited cancer cell proliferation and invasion in vitro and attenuated xenograft tumor growth and lung metastasis in vivo. CCX-CKR can be regulated by cytokines such as interleukin-1beta, tumor necrosis factor-alpha, and IFN-gamma. Lack or low expression of CCX-CKR correlated with a poor survival rate in the breast cancer patients. A significant correlation between CCX-CKR and lymph node metastasis was observed in human breast cancer tissues. CCX-CKR status was an independent prognostic factor for disease-free survival in breast cancer patients.
CONCLUSION: We showed for the first time that CCX-CKR is a negative regulator of growth and metastasis in breast cancer mainly by sequestration of homeostatic chemokines and subsequent inhibition of intratumoral neovascularity. This finding may lead to a new therapeutic strategy against breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CXCR5, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999