Gene Summary

Gene:CYLD; CYLD lysine 63 deubiquitinase
Summary:This gene is encodes a cytoplasmic protein with three cytoskeletal-associated protein-glycine-conserved (CAP-GLY) domains that functions as a deubiquitinating enzyme. Mutations in this gene have been associated with cylindromatosis, multiple familial trichoepithelioma, and Brooke-Spiegler syndrome. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ubiquitin carboxyl-terminal hydrolase CYLD
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (26)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Molecular Sequence Data
  • Adolescents
  • Cancer Gene Expression Regulation
  • Childhood Cancer
  • MicroRNAs
  • Genetic Predisposition
  • Heterozygote
  • Neoplasm Proteins
  • Pedigree
  • Mutation
  • Codon, Nonsense
  • Multiple Primary Neoplasms
  • Apoptosis
  • Cell Proliferation
  • Chromosome 16
  • Tumor Suppressor Gene
  • Loss of Heterozygosity
  • Zinc Finger Protein GLI1
  • Hereditary Neoplastic Syndromes
  • Facial Neoplasms
  • Amino Acid Sequence
  • Skin Cancer
  • Salivary Gland Cancer
  • Adenoid Cystic Carcinoma
  • Basal Cell Carcinoma (BCC) - Skin
  • Neoplastic Cell Transformation
  • Western Blotting
  • Frameshift Mutation
  • Polymerase Chain Reaction
  • Neoplasms, Basal Cell
  • Germ-Line Mutation
  • NF-kappa B
  • Missense Mutation
  • Signal Transduction
  • DNA Mutational Analysis
  • Base Sequence
  • China
  • Phenotype
  • Carcinoma, Skin Appendage
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CYLD (cancer-related)

Yin L, Liu S, Li C, et al.
CYLD downregulates Livin and synergistically improves gemcitabine chemosensitivity and decreases migratory/invasive potential in bladder cancer: the effect is autophagy-associated.
Tumour Biol. 2016; 37(9):12731-12742 [PubMed] Related Publications
Although GC (gemcitabine and cisplatin) chemotherapy remains an effective method for treating bladder cancer (BCa), chemoresistance is a major obstacle in chemotherapy. In this study, we determined whether gemcitabine resistance correlates with migratory/invasive potential in BCa and whether this relationship is regulated by the cylindromatosis (CYLD)-Livin module. First, we independently investigated the correlation of CYLD/Livin and gemcitabine resistance with the potential for tumor migration and invasiveness. Second, we found that co-transfected CYLD and Livin dramatically improved sensitivity to gemcitabine chemotherapy and decreased migration/invasion potential. Next, we determined that CYLD may regulate Livin by the NF-κB-dependent pathway. We also found that CYLD overexpression and Livin knockdown might improve gemcitabine chemosensitivity by decreasing autophagy and increasing apoptosis in BCa cells. Finally, the effects of CYLD-Livin on tumor growth in vivo were evaluated. Our study demonstrates that CYLD-Livin might represent a potential therapeutic for chemoresistant BCa.

Kotantaki P, Mosialos G
The expression of tumor suppressor gene Cyld is upregulated by histone deacetylace inhibitors in human hepatocellular carcinoma cell lines.
Cell Biochem Funct. 2016; 34(7):465-468 [PubMed] Related Publications
CYLD is a deubiquitinating enzyme that exerts a tumor suppressive function. Its downregulation or inactivation has been associated with the development of several types of malignancies including hepatocellular carcinoma (HCC). HCC cells display significantly lower Cyld expression compared to primary human hepatocytes, and Cyld downregulation can contribute to apoptotic resistance of HCC cells. Little is known about the mechanism of Cyld downregulation in human HCC cells. In the present study we explored the possible regulation of Cyld expression by histone deacetylases (HDACs) in human HCC cell lines. We demonstrated that the HDAC inhibitors suberoylanilide hydroxamic acid, sodium butyrate, and trichostatin A induced the upregulation of both mRNA and protein levels of CYLD in two different HCC cell lines, HepG2 and Huh7. Our results demonstrate the involvement of HDACs in the downregulation of Cyld expression in HCC cells and support and may improve the use of HDAC inhibitors for the treatment for HCC.

Chen J, Zhang X, Cai H, et al.
Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: Preparation and in vitro evaluation.
Colloids Surf B Biointerfaces. 2016; 147:397-407 [PubMed] Related Publications
The aim of this study was to prepare nanocomposites of carboxylated graphene oxide (GO-COOH) sheets decorated with zinc oxide (ZnO) nanoparticles (NPs) and investigate their advantages in the field of bone tissue engineering. First, ZnO/GO-COOH nanocomposites were synthesized by facile reactions, including the carboxylation of graphene oxide (GO) and the nucleation of ZnO on GO-COOH sheets. The synthesized ZnO/GO-COOH nanocomposites were then characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, and transmission electron microscopy (TEM). The biocompatibility, osteogenic activity and antibacterial effect of ZnO/GO-COOH nanocomposites were further investigated. In the nanocomposites, ZnO nanoparticles with a size of approximately 12nm were uniformly decorated on GO-COOH sheets. Compared with GO-COOH and the control group, ZnO/GO-COOH nanocomposites significantly enhanced ALP activity, osteocalcin production and extracellular matrix mineralization as well as up-regulated osteogenic-related genes (ALP, OCN, and Runx2) in MG63 osteoblast-like cells. Moreover, ZnO/GO-COOH nanocomposites had an antibacterial effect against Streptococcus mutans. These results indicated that ZnO/GO-COOH nanocomposites exhibited both osteogenic activity and antibacterial effect and had great potential for designing new biomaterials in the field of bone tissue engineering.

Wo L, Lu D, Gu X
Knockdown of miR-182 promotes apoptosis via regulating RIP1 deubiquitination in TNF-α-treated triple-negative breast cancer cells.
Tumour Biol. 2016; 37(10):13733-13742 [PubMed] Related Publications
Overexpression of microRNA-182 (miR-182) is found in multiple cancers, but the association of miR-182 expression with the sensitivity of triple-negative breast cancer (TNBC) cells to tumor necrosis factor-alpha (TNF-α) remains unknown. In this study, up-regulation of miR-182 was validated in TNBC patients and cell lines. Knockdown of miR-182 was observed to hinder the proliferation of BT-549 cells. More importantly, knockdown of miR-182 significantly promoted the apoptosis induced by TNF-α treatment in BT-549. JC-1 staining and western blot assays revealed that the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed and the outer mitochondrial membrane potential (MMP) and permeability was altered upon combination of TNF-α with anti-miR-182. We then demonstrated that knockdown of miR-182 up-regulated the expression of cylindromatosis (CYLD) deubiquitinase, which promoted the formation of death-inducing signaling complex (DISC) and subsequent caspase-8 activation in TNF-α-treated BT-549 cells. Collectively, the results of the present study improve our understanding of the role of miR-182 in TNBC, knockdown of which facilitates the degradation of ubiquitin chains on RIP1, leading to the caspase-8 activation and apoptosis in TNF-α-treated TNBC cells. This may be valuable for the development of cancer therapy.

Hemmatzadeh M, Mohammadi H, Karimi M, et al.
Differential role of microRNAs in the pathogenesis and treatment of Esophageal cancer.
Biomed Pharmacother. 2016; 82:509-19 [PubMed] Related Publications
Esophageal cancer (EC) is the most invasive disease associated with inclusive poor prognosis. EC usually is found as either adenocarcinoma (EAC) or squamous cell carcinomas (ESCC). ESCC forms in squamous cells and highly occurs in the upper third of the esophagus. EAC appears in glandular cells and ordinarily develops in the lower one third of the esophagus near the stomach. Barrett's esophagus (BE) is a metaplastic precursor of EAC. There is a persistent need for improving our understanding of the molecular basis of this disease. MicroRNAs (miRNAs) demonstrate an uncovered class of small, non-coding RNAs that can negatively regulate the protein coding gene, and are associated with approximately all known physiological and pathological processes, especially cancer. MiRNAs can affect cancer pathogenesis, playing a crucial role as either oncogenes or tumor suppressors. The recent emergence of observations on the role of miRNAs in cancer and their functions has induced many investigations to examine their relevance to esophageal cancer. In esophageal cancer, miRNA dysregulation plays a crucial role in cancer prognosis and in patients' responsiveness to neo-adjuvant and adjuvant therapies. In this review, the oncogenic, tumor suppressive, and drug resistance related roles of miRNAs, and their involvement in the pathogenesis and treatment of esophageal cancer were summarized.

Abozeid SM, Hathout RM, Abou-Aisha K
Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7.
Colloids Surf B Biointerfaces. 2016; 145:607-16 [PubMed] Related Publications
Cholamine surface-modified gelatin nanoparticles prepared by the double desolvation method using acetone as a dehydrating agent were selected and potentially evaluated as non viral vectors of siRNA targeting a metastatic gene AEG-1 in MCF-7 breast carcinoma cells. The ability of modified gelatin nanoparticle to complex and deliver siRNA for gene silencing was investigated. Hence, Particle size, surface charge (zeta potential) and morphology of siRNA/Gelatin nanoparticles (siGNPs) were characterized via dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, the nanoparticles cytotoxicity, loading efficiency and interaction with MCF-7 human breast carcinoma cells were evaluated. Cationized GNPs of mean size range of 174nm and PDI of 0.101 were produced. The loading efficiency of siGNPs at a Nitrogen/Phosphate (N/P) ratio (w/w) of 200:1 was approximately 96%. Cellular uptake was evaluated after FITC conjugation where the particles produced high transfection efficiency. Finally, ELISA analysis of AEG-1/MTDH expression demonstrated the gene silencing effect of siGNPs, as more than 75% MTDH protein were inhibited. Our data indicate that cholamine modified GNPs pose a promising non-viral siRNA carrier for altering gene expression in MCF-7 breast cancer cells with many advantages such as relatively high gene transfection efficiency and efficient silencing ability.

Wang HY, Zhang JJ, Zheng XY, et al.
Association between IL-6 Gene (-174 & -572 G/C) Polymorphisms and Endometrial Adenocarcinoma Risk.
Pathol Oncol Res. 2016; 22(4):825-9 [PubMed] Related Publications
We aimed to evaluate the association of IL-6 gene polymorphisms at positions of -174 and -572 and predisposition of endometrial adenocarcinoma (EAC) in a Chinese population. EAC patients have remarkably higher frequency of IL-6 -174 CC genotype [odds ratio (OR) =1.56, 95 % confidence interval (CI) =1.07-2.23; P = 0.03], IL-6 -572 CC genotype (OR =1.93, 95%CI =1.17-3.15; P = 0.01) and IL-6 -174 C allele (OR =1.22, 95 % CI =1.03-1.46; P = 0.04) compared with healthy controls. When stratified with FIGO stage, patients with III-IV EAC have a significantly higher frequency of IL-6 -174 CC genotype (OR =1.66, 95% CI =1.06-2.58; P = 0.02) than healthy controls. The CC genotype of IL-6 gene polymorphisms at positions of -174 and -572 may denote potential high risk of EAC.

Fukui S, Watari J, Tomita T, et al.
Localization of specialized intestinal metaplasia and the molecular alterations in Barrett esophagus in a Japanese population: an analysis of biopsy samples based on the "Seattle" biopsy protocol.
Hum Pathol. 2016; 51:32-40 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
It remains unclear why Barrett esophagus (BE)-associated adenocarcinoma (EAC) frequently occurs in the 0 to 3 o'clock area of the BE. The aims of this study were to clarify the localization of specialized intestinal metaplasia (SIM) as a precancerous lesion and of molecular alterations among different locations using 4-quadrant biopsies based on the "Seattle" protocol. We prospectively evaluated microsatellite instability; methylation status at the APC, CDKN2A, hMLH1, RUNX3, and MGMT genes; the immunoreactivity of the monoclonal antibody Das-1 for the colonic phenotype; and Ki-67 staining in 10 early EACs and 128 biopsy samples from 32 BE patients. Among the molecular changes, only APC gene hypermethylation was an independent predictive marker of EAC (odds ratio, 24.4; P = .01). SIM was more frequently identified in the 0 to 3 o'clock quadrant than in the 6 to 9 o'clock quadrant (P = .08). The Ki-67 index was higher in SIM than in the columnar-lined epithelium (CLE) without goblet cells (P < .0001) and in both SIM and CLE with Das-1 reactivity than in those without (P = .04 and P = .06, respectively). Furthermore, the index was relatively higher in the 0 to 3 o'clock quadrant than in the 6 to 9 o'clock quadrant in cases with Das-1 reactivity. RUNX3 methylation was more frequently found in SIM than in CLE (P = .04), whereas the incidence of the other biomarkers did not show a significant difference between the 0 to 3 o'clock and 6 to 9 o'clock areas, nor between SIM and CLE. SIM with Das-1 reactivity, but not molecular alterations, in the 0 to 3 o'clock quadrant may have higher proliferative activity compared to the other areas of the BE.

Ge WL, Xu JF, Hu J
Regulation of Oral Squamous Cell Carcinoma Proliferation Through Crosstalk Between SMAD7 and CYLD.
Cell Physiol Biochem. 2016; 38(3):1209-17 [PubMed] Related Publications
BACKGROUND/AIMS: SMAD7 is a key inhibitor of transforming growth factor β (TGFβ) receptor signaling, which regulates the alteration of cancer cell invasiveness through epithelial-mesenchymal cell conversion. Dysfunction of protein ubiquitination plays a critical role in carcinogenesis, whereas the involvement a deubiquitinating enzyme, cylindromatosis gene (CYLD), in the tumor invasion of oral squamous cell carcinoma (OSCC) is unknown.
METHODS: Here, we studied the role of CYLD in regulation of OSCC cell invasion, using clinic specimens and cell lines. We modified SMAD7 levels in OSCC cells, and examined its effects on CYLD mRNA and protein levels by RT-qPCR and by Western blot, respectively. We also modified CYLD levels in OSCC cells, and examined its effects on SMAD7 mRNA and protein levels by RT-qPCR and by Western blot, respectively. Then, we examined the cell invasiveness in CYLD and/or SMAD7-modified OSCC cells in a transwell cell invasion assay.
RESULTS: We found that the levels of CYLD and SMAD7 were significantly decreased in OSCC specimens, compared to the paired normal tissue. Metastatic OSCC appeared to contained lower levels of CYLD and SMAD7. Moreover, CYLD and SMAD7 levels strongly correlated in OSCC specimens. Low CYLD levels were associated with poor patients' survival. Moreover, SMAD did not regulate CYLD, but CYLD regulated the levels of SMAD7 in OSCC cells. Furthermore, CYLD overexpression inhibited SMAD7-mediated cell invasion, while CYLD depletion increased SMAD7-mediated cell invasion in OSCC cells.
CONCLUSION: Suppression of CYLD in OSCC cells may promote SMAD7-mediated cancer invasion. Thus, CYLD appears to be an intriguing therapeutic target to prevent OSCC metastases.

Kazakov DV
Brooke-Spiegler Syndrome and Phenotypic Variants: An Update.
Head Neck Pathol. 2016; 10(2):125-30 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms most commonly spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma. Multiple familial trichoepithelioma (MFT) is a phenotypic variant of the disease characterized by the development of numerous trichoepitheliomas (cribriform trichoblastoma) only. Malignant tumors arise in association with preexisting benign cutaneous neoplasms in about 5-10% of the patients . Apart from the skin, major and minor salivary glands have been rarely involved in BSS patients. Extremely rare is the occurrence of breast tumors (cylindroma). The gene implicated in the pathogenesis of the disease is the CYLD gene, a tumor suppressor gene located on chromosome 16q12-q13. Germline CYLD mutations are detected in about 80-85% of patients with the classical BSS phenotype and in about 40-50% of the individuals with the MFT phenotype using a PCR based approach with analysis of exonic sequences and exon-intron junctions of the CYLD gene. There appears to be no genotype-phenotype correlations with respect to the severity of the disease, the possibility of malignant transformation, and development of extracutaneous lesions.

Zhao X, Xu L, Zheng L, et al.
Potent effects of dioscin against gastric cancer in vitro and in vivo.
Phytomedicine. 2016; 23(3):274-82 [PubMed] Related Publications
BACKGROUND: We previously reported the effect of dioscin on human gastric carcinoma SGC-7901 cells, but its effects on other gastric cancers are still unknown.
PURPOSE: The present paper aimed to demonstrate the activity of dioscin against human gastric carcinoma MGC-803 and MKN-45.
STUDY DESIGN: In our study, MGC-803 and MKN-45 cells were used to examine the effects of dioscin on human gastric carcinoma in vitro. The effects of dioscin against human gastric carcinoma in vivo were accomplished by the xenografts of MGC-803 cells in BALB/c nude mice.
METHODS: AO/EB and DAPI staining, TEM, single cell gel electrophoresis and flow cytometry assays were used in cell experiments. Then, an iTRAQ-based proteomics approach, DNA and siRNA transfection experiments were carried out for mechanism investigation.
RESULTS: In MGC-803 cells, dioscin caused DNA damage and mitochondrial change, induced ROS generation, Ca(2+) release and cell apoptosis, and blocked cell cycle at S phase. In vivo results showed that dioscin significantly suppressed the tumor growth of MGC-803 cell xenografts in nude mice. In addition, dioscin markedly inhibited cell migration, caused Cytochrome c release and adjusted mitochondrial signal pathway. Then, an iTRAQ-based proteomics approach was carried out and 121 differentially expressed proteins were found, in which five biomarkers associated with cell cycle, apoptosis and migration were evaluated. Dioscin significantly up-regulated the levels of GALR-2 and RBM-3, and down-regulated CAP-1, Tribbles-2 and CliC-3. Furthermore, overexpressed DNA transfection of CAP-1 enhanced cell migration and invasion, which was decreased by dioscin. SiRNA to Tribbles-2 affected the protein levels of Bcl-2, Bax and MAPKs, suggesting that dioscin decreased Tribbles-2 level leading to cell apoptosis.
CONCLUSION: Our works confirmed the activity of dioscin against gastric cancer. In addition, this work also provided that dioscin is a new potent candidate for treating gastric cancer in the future.

Rai G, Mishra S, Suman S, Shukla Y
Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: A mechanistic insight.
Phytomedicine. 2016; 23(3):233-42 [PubMed] Related Publications
BACKGROUND: Resveratrol (RSVL), a well known dietary compound and in combination with doxorubicin (DOX) has gained a global importance for cancer prevention. However, mechanism of action by this combination is not well understood till date.
HYPOTHESIS: The synergistic combination of RSVL and DOX might be more effective in anti-cancer activity by modulating the diverse cancer signaling pathways as compared to their alone treatments.
METHODS: The cytotoxicity of alone and combination doses of RSVL and DOX were analyzed by colorimetric MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) cell proliferation assay. The migration and colony forming abilities were evaluated by wound healing and clonogenic assays. Apoptosis was detected by Annexin V/PI and DAPI stainings. The cell cycle and intracellular reactive oxygen species (ROS) generation were measured by flow cytometry. The differential expression of genes and proteins were measured by qRT-PCR and western blotting analyses. Finally, in-vivo studies were performed in Ehrlich ascitic carcinoma (EAC) mouse model.
RESULTS: The synergistic combination of DOX (IC20) and RSVL (IC30) was selected based on the combination index values in MCF-7 and MDA-MB-231 cell lines. This combination showed potent growth inhibition with ∼2.5 fold of dose advantage and also significantly decreased the wound healing and clonogenic potential of breast cancer cells. The combination treatment was also found to inhibit the inflammatory response (NF-kB, COX-2), autophagic flux (LC3, Beclin-1), redox regulation (Nrf2) and induces apoptosis (BAX: BCL-2 ratio and Caspase-9) in breast cancer cells. Further, combined dosages of DOX (5 mg/kg b.wt) and RSVL (10 mg/kg b.wt) inhibited tumor volume with increased life span (139%, p value<0.05) in Ehrlich ascitic carcinoma (EAC) cells bearing mice.
CONCLUSION: In brief, our results suggested that resveratrol chemosensitizes doxorubicin in combination, through inhibiting breast cancer cells proliferation and invasion, and inducing apoptosis via suppression of chronic inflammation and autophagy.

Su Z, Wang K, Li R, et al.
Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells.
World J Surg Oncol. 2016; 14:57 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
BACKGROUND: Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells' growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells.
METHODS: Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts.
RESULTS: Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and chemosensitivity in A549 cells. Furthermore, we successfully established the lung adenocarcinoma animal model using A549 cells. Overexpression of RBM5 enhanced the LC-3, LAMP1, and Beclin1 expression in the A549 xenografts.
CONCLUSIONS: Our findings showed for the first time that RBM5 overexpression induced autophagy in human lung adenocarcinoma cells, which might be driven by upregulation of Beclin1, NF-κB/P65, and downregulation of Bcl-2. RBM5-enhanced autophagy acts in a cytoprotective way and inhibition of autophagy may improve the anti-tumor efficacy of RBM5 in lung cancer.

Krause L, Nones K, Loffler KA, et al.
Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma.
Carcinogenesis. 2016; 37(4):356-65 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival.

Kamel AM, El-Sharkawy NM, Osman RA, et al.
Adhesion molecules expression in CLL: Potential impact on clinical and hematological parameters.
J Egypt Natl Canc Inst. 2016; 28(1):31-7 [PubMed] Related Publications
BACKGROUND: B-cell chronic lymphocytic leukemia (CLL) is marked by the accumulation of CD5+ B lymphocytes within the blood, bone marrow (BM), and secondary lymphoid tissues. Abnormalities in the expression and function of cell adhesion molecules may account for the patterns of intra-nodal growth and hematogenous spread of the malignant cells. Chemokines and integrin-mediated adhesion and trans-endothelial migration (TEM) are central aspects in trafficking and retention of hematopoietic cells in the BM and lymphoid organs.
AIM OF THE WORK: This work was conducted to study adhesion molecules status in CLL and its potential impact on both hematological and clinical parameters.
PATIENTS AND METHODS: The study included 78 newly diagnosed CLL patients. Immunophenotyping was performed on peripheral blood using the chronic lymphoid panel. Adhesion molecules (CD11a, CD11b, CD49d, CD49C, CD29 and CD38) were tested using monoclonal antibodies and analyzed by Flow Cytometry.
RESULTS: Positive correlation was encountered between adhesion molecules: CD38 with CD49d (r=0.25, p=0.028), CD11a with CD11b, CD49d and CD29 (r=0.394, p=0.001; r=0.441, p=<0.01 and r=0.446, p<0.01 respectively) and CD29 with CD49c and CD49d (r=0.437, p<0.01; r=0.674, p<0.01 respectively). CD49c showed negative correlation with Rai staging (r=-0.269, p=0.033). CD11a and CD29 showed a significant relation with splenomegaly (p=0.04 and 0.03 respectively) and CD49d showed a significant relation with lymphadenopathy (p=0.02).
CONCLUSION: The level of different adhesion molecules expression in CLL is apparently reflected on the potential migratory behavior of the leukemic cells to different organs.

Li M, Long C, Yang G, et al.
MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation.
Biochem Biophys Res Commun. 2016; 471(3):361-7 [PubMed] Related Publications
Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study found that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells.

Farkas K, Deák BK, Sánchez LC, et al.
The CYLD p.R758X worldwide recurrent nonsense mutation detected in patients with multiple familial trichoepithelioma type 1, Brooke-Spiegler syndrome and familial cylindromatosis represents a mutational hotspot in the gene.
BMC Genet. 2016; 17:36 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
BACKGROUND: Multiple familial trichoepithelioma type 1 (MFT1; MIM 601606), a rare monogenic skin disease with autosomal dominant inheritance, is characterized by the development of multiple skin-colored papules on the central area of the face, frequently occurring in the nasolabial area. The disease is associated with various mutations in the cylindromatosis (CYLD; MIM 605018) gene that are also responsible for familial cylindromatosis (FC) and Brooke-Spiegler syndrome (BSS).
METHODS: Recently we have identified a Spanish MFT1 pedigree with two affected family members (father and daughter). Direct sequencing of the CYLD gene revealed a worldwide recurrent heterozygous nonsense mutation (c.2272C/T, p.R758X) in the patients.
RESULTS: This mutation has already been detected in patients with all three clinical variants - BSS, FC and MFT1 - of the CYLD-mutation spectrum. Haplotype analysis was performed for the Spanish patients with MFT1, Dutch patients with FC and an Austrian patient with BSS, all of whom carry the same heterozygous nonsense p.R758X CYLD mutation.
CONCLUSIONS: Our results indicate that this position is a mutational hotspot on the gene and that patients carrying the mutation exhibit high phenotypic diversity.

Sachdev A, Matai I, Gopinath P
Carbon dots incorporated polymeric hydrogels as multifunctional platform for imaging and induction of apoptosis in lung cancer cells.
Colloids Surf B Biointerfaces. 2016; 141:242-52 [PubMed] Related Publications
Multifunctional hydrogels offer a seemingly efficient system for delivery of drugs and bioimaging modalities. The present study deals with the facile development of chitosan-based hydrogel formulation composed of highly fluorescent carbon dots (CDs) and loaded with a model anticancer drug, 5-Fluorouracil (5-FU). Herein, CDs were embedded firmly within the hydrogel matrices (CD-HY) via non-covalent interactions during the ionic cross-linking reaction. Furthermore, these hydrogels could effectively encapsulate 5-FU through hydrophobic interactions to form 5-FU@CD-HY. In this way, it was possible to combine the merits of both CDs and 5-FU on a common platform for monitoring the cellular uptake as well as therapeutic effects. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) illustrated the porous nature and formation of 5-FU@CD-HY. Besides, functional characteristics of 5-FU@CD-HY such as surface area, mechanical strength, swelling behavior and drug release were investigated. In vitro studies revealed the multifunctional aspects of 5-FU@CD-HY in monitoring the cellular uptake and inflicting apoptosis in A549 cells. Green fluorescence of CDs in 5-FU@CD-HY aided the qualitative and quantitative assessment of cellular uptake. In addition to this, the fluorescence of CDs could be used to detect apoptosis instigated by 5-FU, eliminating the need for multiplex dyes. Induction of apoptosis in 5-FU@CD-HY treated cells was evidenced by changes in cell cycle distributions and visualization of characteristic apoptotic bodies through FE-SEM. Apoptotic gene expression studies further elucidate the molecular mechanism involved in eliciting apoptosis. Thus, hydrogels mediated integration of fluorescent CDs with chemotherapeutic agents provides a new dimension for the potential use of hydrogels in cancer theranostics.

Wu L, Yao C, Xiong Z, et al.
The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models.
Gynecol Oncol. 2016; 141(1):175-81 [PubMed] Related Publications
OBJECTIVE: The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models.
METHODS: Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR).
RESULTS: PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time.
CONCLUSION: PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors.

Zaidi AH, Kelly LA, Kreft RE, et al.
Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma.
BMC Cancer. 2016; 16:52 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
BACKGROUND: Toll-like receptors (TLRs) recognize known molecules from microbes and have an established role in tumorigenesis. Using a rat model of esophageal adenocarcinoma, and human clinical samples, we investigated genes central to TLR-mediated signal transduction and characterized the esophageal microbiome across the spectrum of esophageal adenocarcinoma carcinogenesis.
METHODS: We surgically induced bile/acid reflux in rats and their esophagi were harvested at 40 weeks post-surgery. Tissue samples from the model were selected for gene expression profiling. Additionally, for rat and human samples microbiome analysis was performed using PCR-ESI-MS-TOF technology with validation by fluorescence in situ hybridization.
RESULTS: Gene expression results in the rat model indicated a significant upregulation of TLRs 1-3, 6, 7 and 9 in EAC compared to normal epithelium. PCR-ESI-MS-TOF analysis revealed a prevalence of Escherichia coli in Barrett's esophagus (60%) and esophageal adenocarcinoma (100%), which was validated by fluorescence in situ hybridization. In the human clinical samples, Streptococcus pneumonia was detected in high abundance in gastroesophageal reflux disease and Barrett's esophagus (50-70%) in comparison to tumor adjacent normal epithelium, dysplasia, and esophageal adenocarcinoma (20-30%). E. coli was detected in the Barrett's esophagus and esophageal adenocarcinoma groups but was absent in the tumor adjacent normal epithelium, dysplasia, and the gastroesophageal reflux disease groups.
CONCLUSIONS: We demonstrated an association between the TLR signaling pathway and E. coli hinting towards possible early molecular changes being mediated by microbes in the rat model of esophageal adenocarcinoma carcinogenesis. Studies on human clinical samples also corroborate results to some extent; however, a study with larger sample size is needed to further explore this association.

Li S, Qiang Q, Shan H, et al.
MiR-20a and miR-20b negatively regulate autophagy by targeting RB1CC1/FIP200 in breast cancer cells.
Life Sci. 2016; 147:143-52 [PubMed] Related Publications
AIMS: RB1CC1/FIP200 was essential for autophagosome formation. Therefore, RB1CC1/FIP200 cellular levels are critical for the activation of the autophagy pathways. Following the screen of miRNAs affecting RB1CC1/FIP200 level and rapamycin-induced autophagy, we discovered miR-20a and miR-20b could regulate autophagy by targeting RB1CC1/FIP200.
MAIN METHODS: Inhibitory effect of miR-20a and 20b on basal and rapamycin-stimulated autophagy was demonstrated using various autophagic tests including GFP-LC3 puncta analysis, LC3II/LC3I gel shift and TEM observation.
KEY FINDINGS: We discovered RB1CC1/FIP200 as cellular targets of miR-20a and miR-20b. Upon miR-20a and miR-20b overexpression, both mRNA and protein levels of RB1CC1/FIP200 decreased. miR-20a and miR-20b target sequences present in the 3' UTR of RB1CC1/FIP200 mRNAs and introduction of mutations abolished the miR-20a and miR-20b responsiveness. In MCF7 and MDA-MB-231 breast cancer cells, miR-20a and miR-20b over-expression attenuated basal and rapamycin-induced autophagy; while suppression of miR-20a or miR-20b by specific antagomir showed normal rapamycin-induced autophagic activity.
SIGNIFICANCE: To our knowledge, this is the first study showing the significance of miR-20a and miR-20b regulating autophagy by targeting RB1CC1/FIP200.

Zhou Y, Deng X, Ma X, et al.
Cellular transcriptomics: gelsolin negatively regulates the expression of apoptosis-associated genes and inhibits apoptosis in hepatocarcinoma cells.
Int J Clin Exp Pathol. 2015; 8(11):13871-85 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
Gelsolin (GSN), which is a Ca(2+)-dependent actin filament severing and capping protein, plays a critical role in the cancer progress and has the potential for providing a novel thread for cancer therapy. In current study, we demonstrate the roles of GSN on anti-apoptosis of hepatocarcinoma cells by transcriptome RNA-seq method. Then flow cytometry (FCM), in-cell immunoblotting and transmission electron microscopy (TEM) were used to examine the GSN regulatory cell apoptosis. The results revealed GSN significantly suppresses apoptosis-associated functional categories through down-regulating apoptosis-associated genes in 5 apoptosis terms and 6 relevant KEGG pathways. FCM showed a significant lower apoptotic rate in GSN-SMMC7721 (P<0.05). In-cell immunoblotting detected discrepant expression of the apoptosis factors among GSN expressed/shRNA transfectants (P<0.05). TEM observed the discernible apoptosis morphology. Above results suggest a negative relationship between GSN expression and hepatocarcinoma cell apoptosis. GSN overexpression suppresses apoptosis while down-regulated GSN promotes apoptosis. The possible mechanism could be associated with the regulation of GSN on the apoptosis-associated pathways and the apoptosis factors caspase 3 and bcl-2.

Jun-Hao ET, Gupta RR, Shyh-Chang N
Lin28 and let-7 in the Metabolic Physiology of Aging.
Trends Endocrinol Metab. 2016; 27(3):132-41 [PubMed] Related Publications
The Lin28/let-7 molecular switch has emerged as a central regulator of growth signaling pathways and metabolic enzymes. Initially discovered to regulate developmental timing in the nematode, the Lin28/let-7 pathway of RNA regulation has gained prominence for its role in mammalian stem cells, cancer cells, tissue development, and aging. By regulating RNAs, the pathway coordinates cellular growth and cellular metabolism to influence metabolic physiology. Here, we review this regulatory mechanism and its impact on cancers, which reactivate Lin28, cardiovascular diseases, which implicate let-7, human genome-wide association studies (GWAS) of growth, and metabolic diseases, which implicate the Lin28/let-7 pathway. We also highlight questions relating to Barker's Hypothesis and the potential actions of the Lin28/let-7 pathway on programming long-lasting epigenetic effects.

Bansal A, Gupta V, Wang K
MicroRNA Expression Signatures During Malignant Progression From Barrett's Esophagus.
J Cell Biochem. 2016; 117(6):1288-95 [PubMed] Related Publications
The rapid increase and poor survival of esophageal adenocarcinoma (EAC) have led to significant efforts to promote early detection. Given that the premalignant lesion of Barrett's esophagus (BE) is the major known risk factor for EAC, multiple investigators have studied biomarker signatures that can predict malignant progression of BE to EAC. MicroRNAs, a novel class of gene regulators, are small non-coding RNAs and have been associated with carcinogenesis. MicroRNAs are ideal biomarkers because of their remarkable stability in fixed tissues, a common method for collection of clinical specimens, and in blood either within exosomes or as microRNA-protein complexes. Multiple studies show potential of microRNAs as tissue and blood biomarkers for diagnosis and prognosis of EAC but the results need confirmation in prospective studies. Although head-to-head comparisons are lacking, microRNA panels require less genes than messenger RNA panels for diagnosis of EAC in BE. MicroRNA diagnostic panels will need to be compared for accuracy against global measures of genome instability that were recently shown to be good predictors of progression but require sophisticated analytic techniques. Early studies on blood microRNA panels are promising but have found microRNA markers to be inconsistent among studies. MicroRNA expression in blood is different between various microRNA sub-compartments such as exosomes and microRNA-protein complexes and could affect blood microRNA measurements. Further standardization is needed to yield consistent results. We have summarized the current understanding of the tissue and blood microRNA signatures that may predict the development and progression of EAC.

Lalli E, Barhanin J, Zennaro MC, Warth R
Local Control of Aldosterone Production and Primary Aldosteronism.
Trends Endocrinol Metab. 2016; 27(3):123-31 [PubMed] Related Publications
Primary aldosteronism (PA) is caused by excessive production of aldosterone by the adrenal cortex and is determined by a benign aldosterone-producing adenoma (APA) in a significant proportion of cases. Local mechanisms, as opposed to circulatory ones, that control aldosterone production in the adrenal cortex are particularly relevant in the physiopathological setting and in the pathogenesis of PA. A breakthrough in our understanding of the pathogenetic mechanisms in APA has been the identification of somatic mutations in genes controlling membrane potential and intracellular calcium concentrations. However, recent data show that the processes of nodule formation and aldosterone hypersecretion can be dissociated in pathological adrenals and suggest a model envisaging different molecular events for the pathogenesis of APA.

Michalk M, Meinrath J, Künstlinger H, et al.
MDM2 gene amplification in esophageal carcinoma.
Oncol Rep. 2016; 35(4):2223-7 [PubMed] Related Publications
Esophageal cancer (EC) is one of the most common malignancies diagnosed in the Western world with an increasing incidence noted for esophageal adenocarcinoma (EAC). Despite improvements in staging, surgical procedures and postoperative treatments, the overall survival of patients with EC remains low. Murine double minute‑2 (MDM2) acts as an oncogene by inducing the degradation of the tumor‑suppressor protein TP53. In order to evaluate the MDM2 gene amplification status in EAC and squamous cell carcinoma (SCC), we established a quantitative PCR (qPCR) assay, screening a total of 127 esophageal carcinoma cases for MDM2 amplification. Esophageal carcinoma cases with enhanced MDM2 gene copy numbers were further analyzed by fluorescence in situ hybridisation (FISH) and MDM2 immunostaining. Among a total of 23 specimens (18%), identified by qPCR to possess elevated MDM2 gene copy numbers, one third (6.3%) showed a cluster‑like fluorescence pattern by FISH analyses and marked MDM2 protein immunostaining. MDM2 gene amplifications did not correlate with the occurrence of TP53 mutations. Due to the high therapeutic relevance of MDM2 overexpression, but the high cost of FISH, we suggest a primary screening of MDM2 copy number variations by qPCR, followed by detailed FISH analysis of the identified ECs.

Becker J, May A, Gerges C, et al.
The Barrett-associated variants at GDF7 and TBX5 also increase esophageal adenocarcinoma risk.
Cancer Med. 2016; 5(5):888-91 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) represent two stages within the esophagitis-metaplasia-dysplasia-adenocarcinoma sequence. Previously genetic risk factors have been identified that confer risk to BE and EAC development. However, to which extent the genetic variants confer risk to different stages of the BE/EAC sequence remains mainly unknown. In this study we analyzed three most recently identified BE variants at the genes GDF7 (rs3072), TBX5 (rs2701108), and ALDH1A2 (rs3784262) separately in BE and EAC samples in order to determine their risk effects during BE/EAC sequence. Our data show that rs3072 at GDF7 and rs2701108 at TBX5 are also associated with EAC and conclude that both loci confer disease risk also at later stages of the BE/EAC sequence. In contrast, rs3784262 at ALDH1A2 was highly significantly associated with BE, but showed no association with EAC. Our data do not provide evidence that the ALDH1A2 locus confers equal risk in early and late stages of BE/EAC sequence.

Catarinella M, Monestiroli A, Escobar G, et al.
IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment.
EMBO Mol Med. 2016; 8(2):155-70 [PubMed] Article available free on PMC after 14/03/2017 Related Publications
Colorectal cancer (CRC) metastatic dissemination to the liver is one of the most life-threatening malignancies in humans and represents the leading cause of CRC-related mortality. Herein, we adopted a gene transfer strategy into mouse hematopoietic stem/progenitor cells to generate immune-competent mice in which TEMs-a subset of Tie2(+) monocytes/macrophages found at peritumoral sites-express interferon-alpha (IFNα), a pleiotropic cytokine with anti-tumor effects. Utilizing this strategy in mouse models of CRC liver metastasis, we show that TEMs accumulate in the proximity of hepatic metastatic areas and that TEM-mediated delivery of IFNα inhibits tumor growth when administered prior to metastasis challenge as well as on established hepatic lesions, improving overall survival. Further analyses unveiled that local delivery of IFNα does not inhibit homing but limits the early phases of hepatic CRC cell expansion by acting on the radio-resistant hepatic microenvironment. TEM-mediated IFNα expression was not associated with systemic side effects, hematopoietic toxicity, or inability to respond to a virus challenge. Along with the notion that TEMs were detected in the proximity of CRC metastases in human livers, these results raise the possibility to employ similar gene/cell therapies as tumor site-specific drug-delivery strategies in patients with CRC.

Stepanenko AA, Andreieva SV, Korets KV, et al.
mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells.
Gene. 2016; 579(1):58-68 [PubMed] Related Publications
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and the RAF/mitogen-activated and extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways are frequently deregulated in cancer. Temsirolimus (TEM) and its primary active metabolite rapamycin allosterically block mTOR complex 1 substrate recruitment. The context-/experimental setup-dependent opposite effects of rapamycin on the multiple centrosome formation, aneuploidy, DNA damage/repair, proliferation, and invasion were reported. Similarly, the context-dependent either tumor-promoting or suppressing effects of RAF-MEK-ERK pathway and its inhibitors were demonstrated. Drug treatment-mediated stress may promote chromosomal instability (CIN), accelerating changes in the genomic landscape and phenotype diversity. Here, we characterized the genomic and phenotypic changes of U251 and T98G glioblastoma cell lines long-term treated with TEM or U0126, an inhibitor of MEK1/2. TEM significantly increased clonal and non-clonal chromosome aberrations. Both TEM and U0126 affected copy number alterations (CNAs) pattern. A proliferation rate of U251TEM and U251U0126 cells was lower and higher, respectively, than control cells. Colony formation efficiency of U251TEM significantly decreased, whereas U251U0126 did not change. U251TEM and U251U0126 cells decreased migration. In contrast, T98GTEM and T98GU0126 cells did not change proliferation, colony formation efficiency, and migration. Changes in the sensitivity of inhibitor-treated cells to the reduction of the glucose concentration were observed. Our results suggest that CIN and adaptive reprogramming of signal transduction pathways may be responsible for the cell type-dependent phenotype changes of long-term TEM- or U0126-treated tumor cells.

Sun B, Li L, Ma W, et al.
MiR-130b inhibits proliferation and induces apoptosis of gastric cancer cells via CYLD.
Tumour Biol. 2016; 37(6):7981-7 [PubMed] Related Publications
A role of microRNA-130b (miR-130b) in the carcinogenesis of gastric cancer remains undetermined. In this study, we studied the effects and mechanism of miR-130b to the gastric cell proliferation and apoptosis. We found that the levels of miR-130b significantly up-regulated in gastric cancer tissue, compared to the paired adjacent non-tumor gastric tissue. The miR-130b levels in gastric cancer cell lines were significantly higher than those in control normal gastric tissues. Transfection with the miR-130b mimic enhanced the cell proliferation and suppressed cell apoptosis in gastric cancer cells, while transfection with the anti-sense of miR-130b (anti-miR-130b) suppressed cell proliferation and induced cell apoptosis in gastric cancer cells. Bioinformatics analyses showed that cylindromatosis gene (CYLD) was a potential target gene of miR-130b. The luciferase activity assay and western blot verified that miR-130b targeted CYLD messenger RNA (mRNA) to modulate its protein levels. Together, our study suggests that aberrantly expressed miR-130b may regulate cell apoptosis and proliferation of human gastric cancer cells via CYLD, which appears to be a promising therapeutic target for gastric cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CYLD, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999