Gene Summary

Gene:FADD; Fas associated via death domain
Aliases: GIG3, MORT1
Summary:The protein encoded by this gene is an adaptor molecule that interacts with various cell surface receptors and mediates cell apoptotic signals. Through its C-terminal death domain, this protein can be recruited by TNFRSF6/Fas-receptor, tumor necrosis factor receptor, TNFRSF25, and TNFSF10/TRAIL-receptor, and thus it participates in the death signaling initiated by these receptors. Interaction of this protein with the receptors unmasks the N-terminal effector domain of this protein, which allows it to recruit caspase-8, and thereby activate the cysteine protease cascade. Knockout studies in mice also suggest the importance of this protein in early T cell development. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:FAS-associated death domain protein
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (10)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Up-Regulation
  • Thiones
  • Caspase 8
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Mutation
  • Antineoplastic Agents
  • Apoptosis
  • Tumor Suppressor Proteins
  • Intracellular Signaling Peptides and Proteins
  • Messenger RNA
  • Protein Binding
  • Stomach Cancer
  • Serine
  • Cancer Gene Expression Regulation
  • TNF-Related Apoptosis-Inducing Ligand
  • Cell Proliferation
  • Down-Regulation
  • TNF
  • Western Blotting
  • Fas-Associated Death Domain Protein
  • Risk Factors
  • Apoptosis Regulatory Proteins
  • Zinc Fingers
  • Enzyme Activation
  • Chromosome 11
  • Serpins
  • Carrier Proteins
  • Caspases
  • Survivors
  • p38 Mitogen-Activated Protein Kinases
  • Cancer RNA
  • Drug Resistance
  • siRNA
  • CASP8
  • rho-Associated Kinases
  • Tumor Necrosis Factor Decoy Receptors
  • FAS (CD95)
  • Ubiquitin-Protein Ligases
  • Karyotyping
  • Transfection
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FADD (cancer-related)

Woo SM, Kwon TK
Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells.
Chem Biol Interact. 2016; 260:168-175 [PubMed] Related Publications
Jaceosidin is a flavonoid isolated from Artemisia vestita that has been reported to possess anti-tumor and anti-proliferative activities in many cancer cells. In this study, we investigated the anti-tumor activity of jaceosodin in renal carcinoma cells. Jaceosidin induced apoptosis in multiple human renal carcinoma cells (Caki, ACHN, A498, and 786-O), lung cancer cells (A549) and glioma cells (U251MG). In contrast, jaceosidin does not induce apoptosis in normal human umbilical vein cells (EA.hy926). Apoptotic cell death was associated with the activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase. Treatment with jaceosidin also caused loss of mitochondrial membrane potential (MMP) and Bax activation, which led to the release of cytochrome c into the cytosol. We also found that jaceosidin downregulated Mcl-1 and c-FLIP expression at the transcriptional level and that ectopic expression of Mcl-1 and c-FLIP blocked jaceosidin-induced apoptosis. Cumulatively, our results suggest that jaceosidin induces apoptosis in renal carcinoma cells through Bax activation and reduces Mcl-1 and c-FLIP expression.

Lv XQ, Qiao XR, Su L, Chen SZ
Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP.
Acta Pharmacol Sin. 2016; 37(12):1574-1586 [PubMed] Free Access to Full Article Related Publications
AIM: Honokiol (HNK) is a natural compound isolated from the magnolia plant with numerous pharmacological activities, including inhibiting epithelial-mesenchymal transition (EMT), which has been proposed as an attractive target for anti-tumor drugs to prevent tumor migration. In this study we investigated the effects of HNK on EMT in human NSCLC cells in vitro and the related signaling mechanisms.
METHODS: TNF-α (25 ng/mL) in combination with TGF-β1 (5 ng/mL) was used to stimulate EMT of human NSCLC A549 and H460 cells. Cell proliferation was analyzed using a sulforhodamine B assay. A wound-healing assay and a transwell assay were performed to examine cell motility. Western blotting was used to detect the expression levels of relevant proteins. siRNAs were used to knock down the gene expression of c-FLIP and N-cadherin. Stable overexpression of c-FLIP L (H157-FLIP L) or Lac Z (H157-Lac Z) was also performed.
RESULTS: Treatment with TNF-α+TGF-β1 significantly enhanced the migration of A549 and H460 cells, increased c-FLIP, N-cadherin (a mesenchymal marker), snail (a transcriptional modulator) and p-Smad2/3 expression, and decreased IκB levels in the cells; these changes were abrogated by co-treatment with HNK (30 μmol/L). Further studies demonstrated that expression level of c-FLIP was highly correlated with the movement and migration of NSCLC cells, and the downstream effectors of c-FLIP signaling were NF-κB signaling and N-cadherin/snail signaling, while Smad signaling might lie upstream of c-FLIP.
CONCLUSION: HNK inhibits EMT-mediated motility and migration of human NSCLC cells in vitro by targeting c-FLIP, which can be utilized as a promising target for cancer therapy, while HNK may become a potential anti-metastasis drug or lead compound.

Lei S, Yang J, Chen C, et al.
FLIP(L) is critical for aerobic glycolysis in hepatocellular carcinoma.
J Exp Clin Cancer Res. 2016; 35:79 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor cells use aerobic glycolysis to rapidly generate ATP and growth substrate which expenses a large amount of glucose. However, how tumor cells take in enough glucose from the tumor microenvironment of insufficient blood supply remains poorly understood. The cellular FLICE-like inhibitory protein (FLIP), a cell apoptosis inhibiting molecule, is highly expressed in hepatocellular carcinoma (HCC) and is implicated in HCC development.
METHODS: The effects of FLIPL (the long form of FLIP) on aerobic glycolysis and glucose uptake were assessed in HCC cells and xenograft tumors. The correlations between FLIPL expression and sodium/glucose cotransporter 1 (SGLT1) expression in clinical HCC tissues were analyzed. The consequences of FLIPL-induced regulation of SGLT1 at the transcription and translation levels and the interaction between FLIPL and SGLT1 were examined. FLIPL-mediated tolerance upon glucose limitation and its mechanism were detected.
RESULTS: We report a novel role for FLIPL in promoting the aerobic glycolysis of HCC cells. FLIPL overexpression induced a significant increase in cell aerobic glycolysis indexes including glucose uptake, glucose consumption, and lactate production. FLIPL co-localized and interacted with SGLT1, a major active glucose transporter in HCC cells. FLIPL increased the stability of SGLT1 protein by inhibiting its ubiquitination and degradation. The expression level of FLIPL was positively correlated with the expression level of SGLT1 in 79 HCC tissues from surgical operation. Furthermore, FLIPL increased cell tolerance ability and decreased cell apoptosis to low glucose by regulating SGLT1.
CONCLUSIONS: Our results indicate that FLIPL plays an essential role in HCC aerobic glycolysis and that SGLT1 is required for FLIPL-modulated tumor proliferation under low glucose conditions. Targeting the actions of FLIPL in cell glucose-dependent aerobic glycolysis may provide an attractive strategy for therapeutic intervention in HCC.

Chuang WL, Lin PY, Lin HC, Chen YL
The Apoptotic Effect of Ursolic Acid on SK-Hep-1 Cells is Regulated by the PI3K/Akt, p38 and JNK MAPK Signaling Pathways.
Molecules. 2016; 21(4):460 [PubMed] Related Publications
Ursolic acid (UA) is a pentacyclic triterpene acid that is present in a wide variety of medicinal herbs and edible plants. This study investigated the effect of UA on apoptosis and proliferation of hepatocellular carcinoma SK-Hep-1 cells. After treatment of SK-Hep-1 cells with different concentrations of UA, we observed that cell viability was reduced in a dose- and time-dependent manner. Furthermore, there was a dose-dependent increase in the percentage of cells in the sub-G1 and G2/M phases, with cells treated with 60 μM showing the highest percentages of cells in those phases. UA-induced chromatin condensation of nuclei was observed by using DAPI staining. The western blot results revealed that exposure to UA was associated with decreased expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, Bcl-2, and TCTP and increased expression of apoptosis-related proteins TNF-α, Fas, FADD, Bax, cleaved caspase-3, caspase-8, caspase-9, and PARP. Immunocytochemistry staining showed that treatment with UA resulted in increased expression of caspase-3. Moreover, exposure to UA resulted in the inhibition of the PI3K/Akt and p38 MAPK signaling pathways. These findings suggest that UA inhibits the proliferation of SK-Hep-1 cells and induces apoptosis.

Mognol GP, Carneiro FR, Robbs BK, et al.
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.
Cell Death Dis. 2016; 7:e2199 [PubMed] Free Access to Full Article Related Publications
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.

Savva CG, Totokotsopoulos S, Nicolaou KC, et al.
Selective activation of TNFR1 and NF-κB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells.
BMC Cancer. 2016; 16:279 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Acquired resistance towards apoptosis is a hallmark of cancer. Elimination of cells bearing activated oncogenes or stimulation of tumor suppressor mediators may provide a selection pressure to overcome resistance. KC-53 is a novel biyouyanagin analogue known to elicit strong anti-inflammatory and anti-viral activity. The current study was designed to evaluate the anticancer efficacy and molecular mechanisms of KC-53 against human cancer cells.
METHODS: Using the MTT assay we examined initially how KC-53 affects the proliferation rates of thirteen representative human cancer cell lines in comparison to normal peripheral blood mononuclear cells (PBMCs) and immortalized cell lines. To decipher the key molecular events underlying its mode of action we selected the human promyelocytic leukemia HL-60 and the acute lymphocytic leukemia CCRF/CEM cell lines that were found to be the most sensitive to the antiproliferative effects of KC-53.
RESULTS: KC-53 promoted rapidly and irreversibly apoptosis in both leukemia cell lines at relatively low concentrations. Apoptosis was characterized by an increase in membrane-associated TNFR1, activation of Caspase-8 and proteolytic inactivation of the death domain kinase RIP1 indicating that KC-53 induced mainly the extrinsic/death receptor apoptotic pathway. Regardless, induction of the intrinsic/mitochondrial pathway was also achieved by Caspase-8 processing of Bid, activation of Caspase-9 and increased translocation of AIF to the nucleus. FADD protein knockdown restored HL-60 and CCRF/CEM cell viability and completely blocked KC-53-induced apoptosis. Furthermore, KC-53 administration dramatically inhibited TNFα-induced serine phosphorylation on TRAF2 and on IκBα hindering therefore p65/NF-κΒ translocation to nucleus. Reduced transcriptional expression of pro-inflammatory and pro-survival p65 target genes, confirmed that the agent functionally inhibited the transcriptional activity of p65.
CONCLUSIONS: Our findings demonstrate, for the first time, the selective anticancer properties of KC-53 towards leukemic cell lines and provide a detailed understanding of the molecular events underlying its dual anti-proliferative and pro-apoptotic properties. These results provide new insights into the development of innovative and targeted therapies for the treatment of some forms of leukemia.

Norton N, Advani PP, Serie DJ, et al.
Assessment of Tumor Heterogeneity, as Evidenced by Gene Expression Profiles, Pathway Activation, and Gene Copy Number, in Patients with Multifocal Invasive Lobular Breast Tumors.
PLoS One. 2016; 11(4):e0153411 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Invasive lobular carcinoma (ILC) comprises approximately ~10-20% of breast cancers. In general, multifocal/multicentric (MF/MC) breast cancer has been associated with an increased rate of regional lymph node metastases. Tumor heterogeneity between foci represents a largely unstudied source of genomic variation in those rare patients with MF/MC ILC.
METHODS: We characterized gene expression and copy number in 2 or more foci from 11 patients with MF/MC ILC (all ER+, HER2-) and adjacent normal tissue. RNA and DNA were extracted from 3x1.5 mm cores from all foci. Gene expression (730 genes) and copy number (80 genes) were measured using Nanostring PanCancer and Cancer CNV panels. Linear mixed models were employed to compare expression in tumor versus normal samples from the same patient, and to assess heterogeneity (variability) in expression among multiple ILC within an individual.
RESULTS: 35 and 34 genes were upregulated (FC>2) and down-regulated (FC<0.5) respectively in ILC tumor relative to adjacent normal tissue, q<0.05. 9/34 down-regulated genes (FIGF, RELN, PROM1, SFRP1, MMP7, NTRK2, LAMB3, SPRY2, KIT) had changes larger than CDH1, a hallmark of ILC. Copy number changes in these patients were relatively few but consistent across foci within each patient. Amplification of three genes (CCND1, FADD, ORAOV1) at 11q13.3 was present in 2/11 patients in both foci. We observed significant evidence of within-patient between-foci variability (heterogeneity) in gene expression for 466 genes (p<0.05 with FDR 8%), including CDH1, FIGF, RELN, SFRP1, MMP7, NTRK2, LAMB3, SPRY2 and KIT.
CONCLUSIONS: There was substantial variation in gene expression between ILC foci within patients, including known markers of ILC, suggesting an additional level of complexity that should be addressed.

Qin HD, Liao XY, Chen YB, et al.
Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis.
Am J Hum Genet. 2016; 98(4):709-27 [PubMed] Free Access to Full Article Related Publications
The genetic mechanisms underlying the poor prognosis of esophageal squamous cell carcinoma (ESCC) are not well understood. Here, we report somatic mutations found in ESCC from sequencing 10 whole-genome and 57 whole-exome matched tumor-normal sample pairs. Among the identified genes, we characterized mutations in VANGL1 and showed that they accelerated cell growth in vitro. We also found that five other genes, including three coding genes (SHANK2, MYBL2, FADD) and two non-coding genes (miR-4707-5p, PCAT1), were involved in somatic copy-number alterations (SCNAs) or structural variants (SVs). A survival analysis based on the expression profiles of 321 individuals with ESCC indicated that these genes were significantly associated with poorer survival. Subsequently, we performed functional studies, which showed that miR-4707-5p and MYBL2 promoted proliferation and metastasis. Together, our results shed light on somatic mutations and genomic events that contribute to ESCC tumorigenesis and prognosis and might suggest therapeutic targets.

Tian F, Hu Y, Sun X, et al.
Suppression of c‑FLIPL promotes JNK activation in malignant melanoma cells.
Mol Med Rep. 2016; 13(3):2904-8 [PubMed] Related Publications
The up‑regulation of cellular Fas‑associated death domain‑like interleukin‑1β‑converting enzyme (FLICE)‑like inhibitory protein (c‑FLIP) has been reported in various tumor types, and has been previously shown to be associated with the clinicopathological features of melanoma. To assess its potential role in cancer therapy, the present study evaluated the effects of short hairpin (sh)RNAs of different c‑FLIP isoforms on cellular proliferation and c‑Jun N‑terminal kinase (JNK) signaling. Human c‑FLIP shRNA plasmids were constructed and transfected into the A875 melanoma cell line. It was observed that c‑FLIP shRNA exhibited strong inhibitory effects against the levels of phosphorylated‑JNK and inhibited cellular proliferation in A875 cells. Thus, this indicated that c‑FLIP long form shRNA serves a specific inhibitory role in cellular proliferation through inducing the activation of the JNK pathway in A875 cells. The present study provided insight into the development of RNAi based therapies for melanoma.

Gherman C, Braicu OL, Zanoaga O, et al.
Caffeic acid phenethyl ester activates pro-apoptotic and epithelial-mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis.
Mol Cell Biochem. 2016; 413(1-2):189-98 [PubMed] Related Publications
Ovarian cancer is a highly aggressive pathology, displaying a poor prognosis and chemoresistance to classical therapy. The present study was conducted to evaluate the effect of caffeic acid phenethyl ester (CAPE) on survival of ovarian cancer cell lines, A2780 (sensitive to cisplatin) and A2780cis (resistant to cisplatin). MTT assay was used to evaluate cell viability, while the apoptotic processes were examined by flow cytometry and qRT-PCR. A reduction of cell proliferation and activation of the apoptosis was observed in both cell lines. qRT-PCR evaluation demonstrated the activation of the pro-apoptotic genes (BAD, CASP8, FAS, FADD, p53) in both cell lines. The limited therapeutic effect in A2780 cells is explained by the activation of epithelial-mesenchymal transition-related genes (ZEB1, ZEB2, or TGFBB1) as displayed by Ingenuity Network analysis. Overall data suggest that CAPE can be used as an alternative in sensitizing cells to chemotherapy.

Reddy RB, Bhat AR, James BL, et al.
Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer.
PLoS One. 2016; 11(1):e0147409 [PubMed] Free Access to Full Article Related Publications
The head and neck squamous cell carcinoma (HNSCC) transcriptome has been profiled extensively, nevertheless, identifying biomarkers that are clinically relevant and thereby with translational benefit, has been a major challenge. The objective of this study was to use a meta-analysis based approach to catalog candidate biomarkers with high potential for clinical application in HNSCC. Data from publically available microarray series (N = 20) profiled using Agilent (4X44K G4112F) and Affymetrix (HGU133A, U133A_2, U133Plus 2) platforms was downloaded and analyzed in a platform/chip-specific manner (GeneSpring software v12.5, Agilent, USA). Principal Component Analysis (PCA) and clustering analysis was carried out iteratively for segregating outliers; 140 normal and 277 tumor samples from 15 series were included in the final analysis. The analyses identified 181 differentially expressed, concordant and statistically significant genes; STRING analysis revealed interactions between 122 of them, with two major gene clusters connected by multiple nodes (MYC, FOS and HSPA4). Validation in the HNSCC-specific database (N = 528) in The Cancer Genome Atlas (TCGA) identified a panel (ECT2, ANO1, TP63, FADD, EXT1, NCBP2) that was altered in 30% of the samples. Validation in treatment naïve (Group I; N = 12) and post treatment (Group II; N = 12) patients identified 8 genes significantly associated with the disease (Area under curve>0.6). Correlation with recurrence/re-recurrence showed ANO1 had highest efficacy (sensitivity: 0.8, specificity: 0.6) to predict failure in Group I. UBE2V2, PLAC8, FADD and TTK showed high sensitivity (1.00) in Group I while UBE2V2 and CRYM were highly sensitive (>0.8) in predicting re-recurrence in Group II. Further, TCGA analysis showed that ANO1 and FADD, located at 11q13, were co-expressed at transcript level and significantly associated with overall and disease-free survival (p<0.05). The meta-analysis approach adopted in this study has identified candidate markers correlated with disease outcome in HNSCC; further validation in a larger cohort of patients will establish their clinical relevance.

Zheng M, Wu Z, Wu A, et al.
MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer.
Tumour Biol. 2016; 37(7):8599-607 [PubMed] Related Publications
Researches indicate that the dysregulation of microRNA (miRNA) is involved in tumorigenesis. Among such dysregulated miRNAs in cancer, miR-145 is reported to be downregulated in multiple cancers. In this study, we demonstrated the downregulation of miR-145 in triple-negative breast cancer (TNBC) tissues and TNBC cell lines by quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis. Furthermore, we found that the tumor necrosis factor-alpha (TNF-α)-induced apoptosis was expanded by the transfection of miR-145 in MDA-MB-231 which belongs to the TNBC cell lines. We then indicated that the mechanism by which miR-145 promotes the TNF-α-induced apoptosis is dependent on the formation of RIP1-FADD-caspase-8 complex. The cellular inhibitor of apoptosis (cIAP1), which is the inhibitor of apoptosis protein, was found to be a target of miR-145 in MDA-MB-231 cells. As a result of cIAP1 overexpression, the promotion of miR-145 on TNF-α-induced apoptosis was inhibited in MDA-MB-231 cells. Therefore, our results indicate that miR-145 acts as a tumor suppressor in TNBC, suggesting that the miR-145-cIAP1 axis might be a potential therapeutic target for TNBC.

Han MA, Lee DH, Woo SM, et al.
Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells.
Sci Rep. 2016; 6:18642 [PubMed] Free Access to Full Article Related Publications
Galangin, bioflavonoids, has been shown anti-cancer properties in various cancer cells. In this study, we investigated whether galangin could enhance TRAIL-mediated apoptosis in TRAIL resistant renal carcinoma Caki cells. Galangin alone and TRAIL alone had no effect on apoptosis, while combined treatment with galangin and TRAIL significantly induced apoptosis in renal carcinoma (Caki, ACHN and A498) but not normal cells (normal mouse kidney cells and human normal mesangial cells). Galangin induced down-regulation of Bcl-2 protein at the transcriptional level via inhibition of NF-κB activation but not p53 pathway. Furthermore, galangin induced down-regulation of cFLIP, Mcl-1 and survivin expression at the post-translational levels, and the over-expression of Bcl-2, cFLIP, Mcl-1 and survivin markedly reduced galangin-induced TRAIL sensitization. In addition, galangin increased proteasome activity, but galangin had no effect on expression of proteasome subunits (PSMA5 and PSMD4). In conclusion, our investigation suggests that galangin is a potent candidate for sensitizer of TRAIL resistant cancer cell therapy.

Jang JH, Kim JY, Sung EG, et al.
Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells.
Int J Oncol. 2016; 48(1):376-84 [PubMed] Related Publications
Gambogic acid (GA) is a natural compound derived from brownish gamboge resin that shows a range of bioactivity, such as antitumor and antimicrobial properties. Although, GA is already known to induce cell death in a variety of cancer cells, the molecular basis for GA-induced cell death in renal cancer cells is unclear. In this study, a treatment with GA induced cell death in human renal carcinoma Caki cells in a dose-dependent manner. Treatment of Caki cells with GA decreased the levels of antiapoptotic proteins, such as Bcl-2 and XIAP in a dose-dependent manner. In addition, GA decreased the expression of the cFLIPL protein, which was downregulated at the transcriptional level without any change in the levels of cFLIPs expression. z-VAD (pan-caspase inhibitor) partially blocked GA-mediated cell death. GA-induced apoptotic cell death in Caki cells is mediated partly by the AIF translocation from the mitochondria into the nucleus via a caspase-independent pathway. In contrast, N-acetylcysteine (NAC), a ROS scavenger, had no effect on GA-induced cell death. The restoration of cFLIPL attenuated GA-induced cell death in Caki cells. Furthermore, a sub-toxic dose of GA sensitized TRAIL-mediated apoptosis in Caki cells. Pretreatment with z-VAD completely blocked GA plus TRAIL-mediated apoptosis. On the contrary, pretreatment with NAC partially inhibited GA plus TRAIL-induced apoptosis. Our findings suggested that GA induces apoptosis via the downregulation of cFLIPL and sensitized TRAIL-mediated apoptosis in Caki cells.

Chen MC, Huang HH, Lai CY, et al.
Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma.
Oncotarget. 2016; 7(1):402-17 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy.

Zhang Y, Huang F, Wang J, et al.
2-DG-Regulated RIP and c-FLIP Effect on Liver Cancer Cell Apoptosis Induced by TRAIL.
Med Sci Monit. 2015; 21:3442-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer cells survival depends on glucose metabolism and ATP. Inhibiting glucose metabolism is a possible anticancer treatment. The phosphorylation of 2-deoxy-D-glucose (2-DG), which is a glycogen analogue, seriously affects the normal glycometabolism phosphorylation process, leading to ATP consumption. Studies showed that 2-DG could regulate RIP and c-FLIP. This paper aimed to investigate the effect of 2-DG on RIP and c-FLIP expression in HepG2 and Hep3B cells, further illustrating the effect and mechanism of 2-DG regulating RIP and c-FLIP expression on liver cancer cell apoptosis induced by TRAIL.
MATERIAL AND METHODS: RIP and c-FLIP gene silencing HepG2 and Hep3B cell models were established by siRNA and detected by Western blot. Cell viability was determined by MTT and apoptosis rate was measured by flow cytometry. JC-1 fluorescent probe was used to test mitochondrial membrane potential.
RESULTS: 2-DG or TRAIL alone significantly reduced HepG2 and Hep3B cell survival rate and promoted apoptosis. Compared with the single TRAIL treatment group, the combination of 2-DG and TRAIL could reduce cell survival rate, increase apoptosis rate, and decease mitochondrial membrane potential, which is dependent on Caspases. 2-DG can inhibit RIP and c-FLIP expression, leading to increased TRAIL-induced HepG2 and Hep3B cells apoptosis.
CONCLUSIONS: 2-DG can down-regulate RIP and c-FLIP expression, and change Caspases activities to increase the liver cancer cell apoptosis induced by TRAIL.

Tang FY, Chen CY, Shyu HW, et al.
Resveratrol induces cell death and inhibits human herpesvirus 8 replication in primary effusion lymphoma cells.
Chem Biol Interact. 2015; 242:372-9 [PubMed] Related Publications
Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been reported to inhibit proliferation of various cancer cells. However, the effects of resveratrol on the human herpesvirus 8 (HHV8) harboring primary effusion lymphoma (PEL) cells remains unclear. The anti-proliferation effects and possible mechanisms of resveratrol in the HHV8 harboring PEL cells were examined in this study. Results showed that resveratrol induced caspase-3 activation and the formation of acidic vacuoles in the HHV8 harboring PEL cells, indicating resveratrol treatment could cause apoptosis and autophagy in PEL cells. In addition, resveratrol treatment increased ROS generation but did not lead to HHV8 reactivation. ROS scavenger (N-acetyl cysteine, NAC) could attenuate both the resveratrol induced caspase-3 activity and the formation of acidic vacuoles, but failed to attenuate resveratrol induced PEL cell death. Caspase inhibitor, autophagy inhibitors and necroptosis inhibitor could not block resveratrol induced PEL cell death. Moreover, resveratrol disrupted HHV8 latent infection, inhibited HHV8 lytic gene expression and decreased virus progeny production. Overexpression of HHV8-encoded viral FLICE inhibitory protein (vFLIP) could partially block resveratrol induced cell death in PEL cells. These data suggest that resveratrol-induced cell death in PEL cells may be mediated by disruption of HHV8 replication. Resveratrol may be a potential anti-HHV8 drug and an effective treatment for HHV8-related tumors.

Alshatwi AA, Subash-Babu P, Antonisamy P
Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2.
Exp Toxicol Pathol. 2016; 68(1):89-97 [PubMed] Related Publications
We aimed to explore the anticancer potential of violacein and its time, dose dependent mechanism of action in human MCF-7 breast cancer cells. We observed, violacein inhibit MCF-7 cells viability in a time and dose-dependent manner, IC50 value was 4.5 μM in 24 h, 1.7 μM in 48 h and 0.51 μM in 72 h. Violacein triggered generation of intra cellular ROS even from the lower doses, significant ROS production was observed from 0.25, 0.45 μM dose range and it is relative to higher doses. Further we fixed 0.45 μM and 4.5 μM as an experimental dose for relative dose dependent analysis. In nuclear staining, after 48 h 0.45 μM dose showed characteristic apoptotic morphological changes such as, 59% of cells in apoptosis and 11% of cells in necrotic stage, also in 72 h we found 68% in apoptosis and 12% in necrotic stage. However, 4.5 μM (IC50) dose of violacein, 78% of cells became apoptotic and 21% in necrotic after 48 h; but in 72 h only 61% cells are in apoptotic, necrosis was increased to 38%. Violacein increased both mitochondrial and extra mitochondrial apoptotic pathway related gene expressions; it was confirmed by increased CYP1A, GPX, GSK3β and TNF-α gene. Further, 0.45 and 4.5 μM of violacein increased apoptotic genes, such as Bax, p53, caspase 3, Fas, FADD and markedly reduced Bcl-2 and MDM2 expression levels to two fold when compared to control. In addition violacein upregulated poly ADP-ribose polymerase (PARP), CDKN1A and caspase-9 significantly (p≤0.05) when compared to control. Relative quantification of caspase-8 was differently expressed; there were no changes in 0.45 μM, but in 4.5 μM we found two fold increased caspase-8 expression. In conclusion, lower dose of violacein treatment induced apoptosis in human breast cancer MCF-7 cells through TNF-α and p53 dependent mitochondrial pathways.

Fahrioğlu U, Dodurga Y, Elmas L, Seçme M
Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro.
Gene. 2016; 576(1 Pt 3):476-82 [PubMed] Related Publications
Novel and combinatorial treatment methods are becoming sought after entities in cancer treatment and these treatments are even more valuable for pancreatic cancer. The scientists are always on the lookout for new chemicals to help them in their fight against cancer. In this study, we examine the effects of ferulic acid (FA), a phenolic compound, on gene expression, viability, colony formation and migration/invasion in the cultured MIA PaCa-2 human pancreatic cancer cell. Cytotoxic effects of FA were determined by using trypan blue dye exclusion test and Cell TiterGlo (CTG) assay. IC50 dose in MIA PaCa-2 cells was detected as 500μM/ml at the 72nd hour. Expression profiles of certain cell cycle and apoptosis genes such as CCND1 (cyclin D1),CDK4, CDK6, RB, p21, p16, p53, caspase-3, caspase-9, caspase-8, caspase-10, Bcl-2, BCL-XL,BID, DR4,DR5,FADD,TRADD,PARP, APAF, Bax, Akt, PTEN, PUMA, NOXA, MMP2, MMP9, TIMP1 and TIMP2 were determined by real-time PCR. The effect of FA on cell viability was determined by CellTiter-Glo® Luminescent Cell Viability Assay. Additionally, effects of FA on colony formation and invasion were also investigated. It was observed that FA caused a significant decrease in the expression of CCND1, CDK 4/6, Bcl2 and caspase 8 and 10 in the MIA PaCa-2 cells while causing an increase in the expression of p53, Bax, PTEN caspase 3 and 9. FA was observed to decrease colony formation while inhibiting cell invasion and migration as observed by the BioCoat Matrigel Invasion Chamber guide and colony formation assays. In conclusion, FA is thought to behave as an anti-cancer agent by affecting cell cycle, apoptotic, invasion and colony formation behavior of MIA PaCa-2 cells. Therefore, FA is placed as a strong candidate for further studies aimed at finding a better, more effective treatment approach for pancreatic cancer.

Oh YT, Yue P, Wang D, et al.
Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling.
Oncotarget. 2015; 6(38):41324-38 [PubMed] Free Access to Full Article Related Publications
The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.

Sophonnithiprasert T, Nilwarangkoon S, Nakamura Y, Watanapokasin R
Goniothalamin enhances TRAIL-induced apoptosis in colorectal cancer cells through DR5 upregulation and cFLIP downregulation.
Int J Oncol. 2015; 47(6):2188-96 [PubMed] Related Publications
The combination of TNF-related apoptosis-inducing ligand (TRAIL) and bioactive compound to enhance apoptosis in TRAIL-resistant cancer is one of cancer treatment strategies. TRAIL possesses the unique capacity to selectively induce apoptosis in cancer cells both in vitro and in vivo with little effect on normal cells. Recent studies have reported that there are many TRAIL-resistant cancers. Thus, bioactive compounds that enhance cytotoxicity of TRAIL would be potential candidates for cancer therapeutic application. This study evaluated the cytotoxic and apoptosis induction upon combined treatment of TRAIL and goniothalamin, the natural styryl-lactone compound extracted from plant Goniothalamus spp., in LoVo cells. The results showed that a combination of goniothalamin and TRAIL enhanced caspase-dependent apoptosis induction in LoVo cells via both death receptor- and mitochondrial-mediated apoptosis pathways. In addition, goniothalamin enhanced TRAIL-induced apoptosis through increased death receptor DR5 expression and decreased anti-apoptotic regulator cFLIP. Interestingly, goniothalamin increased translocation of DR5 to cell surface and consequently contributed to the enhancement of TRAIL-induced apoptosis. In conclusion, this is the first report showing the combined treatment of goniothalamin and TRAIL was able to effectively enhance TRAIL-mediated apoptosis induction in TRAIL-refractory colorectal cancer, LoVo cells. Therefore, this study may offer a strategic cancer treatment against TRAIL-resistant cancers.

Saitoh Y, Hamano A, Mochida K, et al.
A20 targets caspase-8 and FADD to protect HTLV-I-infected cells.
Leukemia. 2016; 30(3):716-27 [PubMed] Related Publications
Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell lineage, A20 is abundantly expressed in primary ATL cells without notable mutations. Depletion of A20 in HTLV-I-infected cells resulted in caspase activation, cell death induction and impaired tumorigenicity in mouse xenograft models. Mechanistically, A20 stably interacts with caspase-8 and Fas-associated via death domain (FADD) in HTLV-I-infected cells. Mutational studies revealed that A20 supports the growth of HTLV-I-infected cells independent of its catalytic functions and that the zinc-finger domains are required for the interaction with and regulation of caspases. These results indicate a pivotal role for A20 in the survival of HTLV-I-infected cells and implicate A20 as a potential therapeutic target in ATL.

Iulia Irimie A, Braicu C, Zanoaga O, et al.
Inhibition of tumor necrosis factor alpha using RNA interference in oral squamous cell carcinoma.
J BUON. 2015 Jul-Aug; 20(4):1107-14 [PubMed] Related Publications
PURPOSE: Oral squamous cell carcinoma (OSCC) is a disease with increased prevalence and unfavorable prognosis calling for development of novel therapeutic strategies. Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine implicated in the development and progression of cancer. The present study was designed to assess the impact of TNF-α specific inhibition using small interference RNA (siRNA) in SSC-4 cells, a representative model for OSCC.
METHODS: The present study evaluated the effect of TNF-α inhibition using siRNA as inhibitory mechanism on SCC-4 cells. The study focused on the effect of TNF-α inhibition on apoptosis, autophagy and invasion in parallel with a panel of 20 genes involved in apoptosis and angiogenesis.
RESULTS: TNF-α inhibition was related with reduction of cell viability, activation of apoptosis and autophagy in parallel with the inhibition of migration in SCC-4 cells. Evaluating the impact on gene expression levels, inhibition of FASL-FADD, NFκB, SEMA 3C, TNF-α, TGFB1, VEGFA, along with activation of PDGFB and SEMA 3D was observed. Our study confirms the important role of TNF-α and sustains that it might be a therapeutic target in OSCC.
CONCLUSIONS: TNF-α is a key mediator of the immune system, with important role in OSCC tumorigenesis, and might be considered as a therapeutic target using siRNA technology, particularly for those risk cases having FASL/FADD overexpressed.

Yao W, Yue P, Khuri FR, Sun SY
The BET bromodomain inhibitor, JQ1, facilitates c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 and c-Myc inhibition.
Oncotarget. 2015; 6(33):34669-79 [PubMed] Free Access to Full Article Related Publications
Inhibition of BET bromodomains (BRDs) has emerged as a promising cancer therapeutic strategy. Accordingly, inhibitors of BRDs such as JQ1 have been actively developed and some have reached clinical testing. However, the mechanisms by which this group of inhibitors exerts their anticancer activity, including induction of apoptosis, have not been fully elucidated. This report reveals a previously uncovered activity of JQ1 in inducing c-FLIP degradation and enhancing TRAIL-induced apoptosis. JQ1 potently decreased c-FLIP (both long and short forms) levels in multiple cancer cell lines without apparently increasing the expression of DR5 and DR4. Consequently, JQ1, when combined with TRAIL, synergistically induced apoptosis; this enhanced apoptosis-inducing activity could be abolished by enforced expression of ectopic FLIPL or FLIPS. Hence it appears that JQ1 decreases c-FLIP levels, resulting in enhancement of TRAIL-induced apoptosis. Inhibition of proteasome with MG132 prevented JQ1-induced c-FLIP reduction. Moreover, JQ1 decreased c-FLIP stability. Therefore, JQ1 apparently decreases c-FLIP levels through facilitating its proteasomal degradation. Genetic inhibition of either BRD4 or c-Myc by knocking down their expression failed to mimic JQ1 in decreasing c-FLIP and enhancing TRAIL-induced apoptosis, suggesting that JQ1 induces c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 or c-Myc inhibition. In summary, our findings in this study highlights a novel biological function of JQ1 in modulating apoptosis and warrant further study of the potential treatment of cancer with the JQ1 and TRAIL combination.

Fidan-Yaylalı G, Dodurga Y, Seçme M, Elmas L
Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells.
Tumour Biol. 2016; 37(2):2647-53 [PubMed] Related Publications
Exendin-4 is a GLP-1 analog used for the treatment of type 2 diabetes mellitus in its synthetic form. As women with diabetes have higher breast cancer incidence and mortality, we examined the effect of the incretin drug exendin-4 on breast cancer cells. The aim of the study is to investigate anticancer mechanism of exendin-4 in MCF-7 breast cancer cells. Cytotoxic effects of exendin-4 were determined by XTT assay. IC50 dose in MCF-7 cells were detected as 5 μM at 48th hour. Gene messenger RNA (mRNA) expressions were evaluated by real-time PCR. According to results, caspase-9, Akt, and MMP2 expression was reduced in dose group cells, compared with the control group cells. p53, caspase-3, caspase-8, caspase-10, BID, DR4, DR5, FADD, TRADD, PARP, PTEN, PUMA, NOXA, APAF, TIMP1, and TIMP2 expression was increased in dose group cells, compared with the control group cells. Effects of exendin-4 on cell invasion, colony formation, and cell migration were detected by Matrigel chamber, colony formation assay, and wound-healing assay, respectively. To conclude, it is thought that exendin-4 demonstrates anticarcinogenesis activity by effecting apoptosis, invasion, migration, and colony formation in MCF-7 cells. Exendin-4 may be a therapeutic agent for treatment of breast cancer as single or in combination with other agents. More detailed researches are required to define the pathways of GLP-1 effect on breast cancer cells because of the molecular biology of breast cancer that involves a complex network of interconnected signaling pathways that have role in cell growth, survival, and cell invasion.

Riley JS, Malik A, Holohan C, Longley DB
DED or alive: assembly and regulation of the death effector domain complexes.
Cell Death Dis. 2015; 6:e1866 [PubMed] Free Access to Full Article Related Publications
Death effector domains (DEDs) are protein-protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.

Sun J, Luo H, Nie W, et al.
Protective effect of RIP and c-FLIP in preventing liver cancer cell apoptosis induced by TRAIL.
Int J Clin Exp Pathol. 2015; 8(6):6519-25 [PubMed] Free Access to Full Article Related Publications
TRAIL (TNF-related apoptosis-inducing ligand) is a member of the tumor necrosis factor superfamily that can induce tumor selective death by up-regulating death receptor 4 (DR4) and DR5 expression. The study aimed to explore the role of RIP and c-FLIP genes in TRAIL induced liver cancer cell HepG2 and Hep3B apoptosis and related mechanism. RIP and c-FLIP silenced HepG2 and Hep3B cell model were established through siRNA. Western blot was applied to test c-FLIP, RIP, DR4, DR5, FADD, Caspase-3/8/9, ERK1/2, and DFF45 protein expression. Caspase-8 kit was used to detect Caspase-8 expression. Flow cytometry was performed to measure cell apoptosis rate. Acid phosphatase method was applied to determine cell cycle. TRAIL had no significant effect on Caspase-3/8/9, DR4, DR5, ERK1/2, and DFF45 protein expression, but up-regulated c-FLIP and RIP protein expression and reduced FADD expression level. After treated by the chemotherapy drug mitomycin and adriamycin, c-FLIP and RIP expression decreased significantly, while FADD increased. After knockout c-FLIP and RIP gene, HepG2 and Hep3B cell apoptosis rate induced by TRAIL increased obviously. Meanwhile, cell subG1 percentage increased markedly and exhibited G1 phase growth retardation. In addition, after two kinds of gene knockout, Caspase-8 was activated and produce Caspase-3 P20 and P24, leading DFF45 appeared DNA fragment P17 and P25. c-FLIP and RIP can inhibit Caspase-8 activation and prompting HepG2 and Hep3B resistant to cell apoptosis induced by TRAIL.

Mahata B, Biswas S, Rayman P, et al.
GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway.
PLoS One. 2015; 10(7):e0134425 [PubMed] Free Access to Full Article Related Publications
Previously we demonstrated that human glioblastoma cell lines induce apoptosis in peripheral blood T cells through partial involvement of secreted gangliosides. Here we show that GBM-derived gangliosides induce apoptosis through involvement of the TNF receptor and activation of the caspase cascade. Culturing T lymphocytes with GBM cell line derived gangliosides (10-20 μg/ml) demonstrated increased ROS production as early as 18 hrs as indicated by increased uptake of the dye H2DCFDA while western blotting demonstrated mitochondrial damage as evident by cleavage of Bid to t-Bid and by the release of cytochrome-c into the cytosol. Within 48-72 hrs apoptosis was evident by nuclear blebbing, trypan blue positivity and annexinV/7AAD staining. GBM-ganglioside induced activation of the effector caspase-3 along with both initiator caspases (-9 and -8) in T cells while both the caspase-8 and -9 inhibitors were equally effective in blocking apoptosis (60% protection) confirming the role of caspases in the apoptotic process. Ganglioside-induced T cell apoptosis did not involve production of TNF-α since anti-human TNFα antibody was unable to protect T cells from nuclear blebbing and subsequent cell death. However, confocal microscopy demonstrated co-localization of GM2 ganglioside with the TNF receptor and co-immunoprecipitation experiments showed recruitment of death domains FADD and TRADD with the TNF receptor post ganglioside treatment, suggesting direct interaction of gangliosides with the TNF receptor. Further confirmation of the interaction between GM2 and TNFR1 was obtained from confocal microscopy data with wild type and TNFR1 KO (TALEN mediated) Jurkat cells, which clearly demonstrated co-localization of GM2 and TNFR1 in the wild type cells but not in the TNFR1 KO clones. Thus, GBM-ganglioside can mediate T cell apoptosis by interacting with the TNF receptor followed by activation of both the extrinsic and the intrinsic pathway of caspases.

Zhitao J, Long L, Jia L, et al.
Temozolomide sensitizes stem-like cells of glioma spheres to TRAIL-induced apoptosis via upregulation of casitas B-lineage lymphoma (c-Cbl) protein.
Tumour Biol. 2015; 36(12):9621-30 [PubMed] Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has potent antitumor effects in glioma cell lines but has shown little clinical benefit for patients. We investigated whether the widely used chemotherapeutic agent temozolomide (TMZ) can sensitize glioma stem-like cells (GSCs) from human glioblastoma multiforme (GBM) to TRAIL-induced apoptosis. GSCs were isolated from GBM, and stem cell properties were confirmed by immunocytochemistry and in vivo tumorigenicity. Primary GSCs (PGCs) were produced by serum treatment of GBM-derived cells. Changes in expression levels of various TRAIL-related signaling factors before and after TRAIL or TRAIL + TMZ treatment were measured by Western blotting. Overexpression vectors and siRNAs were used to investigate mechanism of TRAIL sensitivity. GSCs showed greater resistance to TRAIL-induced apoptosis than PGCs and had lower basal caspase activity. Caspase knockdown in PGCs reduced TRAIL sensitivity. Expression levels of c-Fas-associated death domain-like interleukin 1-converting enzyme-like inhibitory protein long and short isoforms (c-FLIPL and c-FLIPS) were significantly higher in GSCs than PGCs, and siRNA-mediated c-FLIP knockdown in GSCs enhanced TRAIL-induced apoptosis. TMZ enhanced TRAIL-induced apoptosis in GSCs and downregulated c-FLIP expression. Add of TMZ also upregulated the expression of the E3 ubiquitin ligase casitas B-lineage lymphoma (c-Cbl). Moreover, overexpression of c-Cbl alone reduced c-FLIP expression, and c-Cbl knockdown both enhanced c-FLIP expression and reduced the potentiating effect of TMZ on TRAIL-induced apoptosis. The result indicated that TMZ may overcome TRAIL resistance in GSCs by suppressing c-FLIP expression through c-Cbl-mediated ubiquitination and degradation.

Venza M, Visalli M, Oteri R, et al.
The overriding of TRAIL resistance by the histone deacetylase inhibitor MS-275 involves c-myc up-regulation in cutaneous, uveal, and mucosal melanoma.
Int Immunopharmacol. 2015; 28(1):313-21 [PubMed] Related Publications
Malignant melanoma is a highly aggressive tumor which may occur in the skin, eye, and mucous membranes. The prognosis of melanoma remains poor in spite of therapeutic advances, emphasizing the importance of innovative treatment modalities. Currently, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is showing promising clinical responses, however its use is hampered by intrinsic or acquired melanoma resistance to apoptosis. Recently, we showed that the combination of TRAIL with the class I-specific histone deacetylase inhibitor (HDACi) MS-275 was a privileged way to override TRAIL resistance through down-regulation of cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP). Here, we elucidated the underlying mechanism and provided evidence that a crucial step in the c-FLIP downregulation triggered by MS-275 implies the up-regulation of c-myc, a transcriptional repressor of c-FLIP. Notably, MS-275 caused H3 histone acetylation at the promoter of c-myc and increased its binding to the c-FLIP promoter, that in turn led to reduced c-FLIP gene transcription. Knockdown of c-myc prevented the MS-275-mediated downregulation of c-FLIP and hindered TRAIL-plus MS-275-induced apoptosis. Findings reported here provide additional knowledge tools for a more aware and effective molecular therapy of melanoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FADD, Cancer Genetics Web: http://www.cancer-genetics.org/FADD.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999