Gene Summary

Gene:CASP8; caspase 8, apoptosis-related cysteine peptidase
Aliases: CAP4, MACH, MCH5, FLICE, ALPS2B, Casp-8
Summary:This gene encodes a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes composed of a prodomain, a large protease subunit, and a small protease subunit. Activation of caspases requires proteolytic processing at conserved internal aspartic residues to generate a heterodimeric enzyme consisting of the large and small subunits. This protein is involved in the programmed cell death induced by Fas and various apoptotic stimuli. The N-terminal FADD-like death effector domain of this protein suggests that it may interact with Fas-interacting protein FADD. This protein was detected in the insoluble fraction of the affected brain region from Huntington disease patients but not in those from normal controls, which implicated the role in neurodegenerative diseases. Many alternatively spliced transcript variants encoding different isoforms have been described, although not all variants have had their full-length sequences determined. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (48)
Pathways:What pathways are this gene/protein implicaed in?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
NeuroblastomaCASP8 Inactivation in NeuroblastomaPrognostic Epigenetics
CASP8, a gene in apoptosis, is frequently inactivated in unfavorable neuroblastomas through DNA methylation. Kamimatsuse et al (2009) found that the methylation status within the CpG island of CASP8 was related to prognosis and correlated with MYCN amplification.
View Publications118
Breast CancerCASP8 and Breast Cancer View Publications119
Cervical CancerCASP8 and Cervical Cancer View Publications22

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CASP8 (cancer-related)

Haque A, Rahman MA, Fuchs JR, et al.
FLLL12 induces apoptosis in lung cancer cells through a p53/p73-independent but death receptor 5-dependent pathway.
Cancer Lett. 2015; 363(2):166-75 [PubMed] Article available free on PMC after 28/07/2016 Related Publications
Unlike chemotherapy drugs, the safety of natural compounds such as curcumin has been well established. However, the potential use of curcumin in cancer has been compromised by its low bioavailability, limited tissue distribution and rapid biotransformation leading to low in vivo efficacy. To circumvent these problems, more potent and bioavailable analogs have been synthesized. In the current study, we investigated the mechanism of anti-tumor effect of one such analog, FLLL12, in lung cancers. IC50 values measured by sulforhodamine B (SRB) assay at 72 h and apoptosis assays (annexin V staining, cleavage of PARP and caspase-3) suggest that FLLL12 is 5-10-fold more potent than curcumin against a panel of premalignant and malignant lung cancer cell lines, depending on the cell line. Moreover, FLLL12 induced the expression of death receptor-5 (DR5). Ablation of the expression of the components of the extrinsic apoptotic pathway (DR5, caspase-8 and Bid) by siRNA significantly protected cells from FLLL12-induced apoptosis (p < 0.05). Analysis of mRNA expression revealed that FLLL-12 had no significant effect on the expression of DR5 mRNA expression. Interestingly, inhibition of global phosphatase activity as well as protein tyrosine phosphatases (PTPs), but not of alkaline phosphatases, strongly inhibited DR5 expression and significantly inhibited apoptosis (p < 0.05), suggesting the involvement of PTPs in the regulation of DR5 expression and apoptosis. We further showed that the apoptosis is independent of p53 and p73. Taken together, our results strongly suggest that FLLL12 induces apoptosis of lung cancer cell lines by posttranscriptional regulation of DR5 through activation of protein tyrosine phosphatase(s).

Abu-Dahab R, Abdallah MR, Kasabri V, et al.
Mechanistic studies of antiproliferative effects of Salvia triloba and Salvia dominica (Lamiaceae) on breast cancer cell lines (MCF7 and T47D).
Z Naturforsch C. 2014 Nov-Dec; 69(11-12):443-51 [PubMed] Related Publications
Ethanol extracts obtained from two Salvia species, S. triloba and S. dominica, collected from the flora of Jordan, were evaluated for their antiproliferative activity against MCF7 and T47D breast cancer cell lines by the sulforhodamine B assay. The ethanol extracts were biologically active with IC50 values of (29.89 ±0.92) and (38.91 ±2.44) μg/mL for S. triloba against MCF7 and T47D cells, respectively, and (5.83 ±0.51) and (12.83 ±0.64) μg/mL for S. dominica against MCF7 and T47D cells, respectively. Flow cytometry analysis and the annexinV-propidium iodide (PI) assay revealed apoptosismediated, and to a lesser extent necrosis-induced, cell death by the S. triloba and S. dominica ethanolic extracts in T47D cells. The mechanism of apoptosis was further investigated by determining the levels of p53, p21/WAF1, FasL (Fas ligand), and sFas (Fas/APO-1). The extract from S. triloba induced a more pronounced enrichment in cytoplasmic mono- and oligonucleosomes than that from S. dominica (p < 0:05) in T47D cells. In response to the extract from S. dominica, but not from S. triloba, the proapoptotic efficacy was specifically regulated by p21. Extracts from both Salvia spp. did not enhance p53 levels, and apoptosis induced by them was not caspase-8- or sFas/FasL-dependent. Thus, our findings indicate that S. triloba and S. dominica ethanolic extracts may be useful in breast cancer management/treatment via proapoptotic cytotoxic mechanisms.

Cardoso HJ, Vaz CV, Correia S, et al.
Paradoxical and contradictory effects of imatinib in two cell line models of hormone-refractory prostate cancer.
Prostate. 2015; 75(9):923-35 [PubMed] Related Publications
BACKGROUND: Imatinib mesylate is a chemotherapeutic drug that inhibits the tyrosine kinase activity of c-KIT and has been successfully used to treat leukemias and some solid tumors. However, its application for treatment of hormone-refractory prostate cancer (HRPC) has shown modest effectiveness and did not follow the outcomes in cultured cells or animal models. Moreover, the molecular pathways by which imatinib induces cytotoxicity in prostate cancer cells are poorly characterized.
METHODS: Two cell line models of HRPC (DU145 and PC3) were exposed to 20 μM of imatinib for 6-72 hr. MTS assay was used to assess cell viability during the course of experiment. Gene expression analysis of c-KIT, cell-cycle and apoptosis regulators, and angiogenic factors was determined by means of real-time PCR, western blot, and/or immunocytochemistry. The enzymatic activity of the apoptosis effector, caspase-3, was determined by a colorimetric assay.
RESULTS: Imatinib significantly decreased the viability of DU145 cells but paradoxically augmented the viability of PC3 cells. DU145 cells displayed diminished expression of anti-apoptotic Bcl-2 protein and augmented levels of caspase-8 and -9, as well as, increased enzymatic activity of caspase-3 in response to imatinib. No differences existed on the expression levels of apoptosis-related proteins in PC3 cells treated with imatinib, though the activity of caspase-3 was decreased. The mRNA levels of angiogenic factor VEGF were decreased in DU145-treated cells, whereas an opposite effect was seen in PC3. In addition, it was shown that DU145 and PC3 cells present a differential expression of c-KIT protein variants.
CONCLUSION: DU145 and PC3 cells displayed a contradictory behavior in response to imatinib, which was underpinned by a distinct expression pattern (or activity) of target regulators of cell-cycle, apoptosis, and angiogenesis. The paradoxical effect of imatinib in PC3 cells may be related with the differential expression of c-KIT protein variants. Moreover, the present findings helped to understand the discrepancies in the efficacy of imatinib as therapeutic option in HRPC.

Ferreira AF, de Oliveira GL, Tognon R, et al.
Apoptosis-related gene expression profile in chronic myeloid leukemia patients after imatinib mesylate and dasatinib therapy.
Acta Haematol. 2015; 133(4):354-64 [PubMed] Related Publications
BACKGROUND/AIMS: We investigated the effects of tyrosine kinase inhibitors (TKIs) on the expression of apoptosis-related genes (BCL-2 and death receptor family members) in chronic myeloid leukemia (CML) patients.
METHODS: Peripheral blood mononuclear cells from 32 healthy subjects and 26 CML patients were evaluated before and after treatment with imatinib mesylate (IM) and dasatinib (DAS) by quantitative PCR.
RESULTS: Anti-apoptotic genes (c-FLIP and MCL-1) were overexpressed and the pro-apoptotic BIK was reduced in CML patients. Expression of BMF, A1, c-FLIP, MCL-1, CIAP-2 and CIAP-1 was modulated by DAS. In IM-resistant patients, expression of A1, c-FLIP, CIAP-1 and MCL-1 was upregulated, and BCL-2, CIAP-2, BAK, BAX, BIK and FASL expression was downregulated.
CONCLUSION: Taken together, our results point out that, in CML, DAS interferes with the apoptotic machinery regulation. In addition, the data suggest that apoptosis-related gene expression profiles are associated with primary resistance to IM.

Tavallai M, Hamed HA, Roberts JL, et al.
Nexavar/Stivarga and viagra interact to kill tumor cells.
J Cell Physiol. 2015; 230(9):2281-98 [PubMed] Related Publications
We determined whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over-expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK-1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re-expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by 'rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti-tumor therapy for solid tumor patients.

Comprehensive genomic characterization of head and neck squamous cell carcinomas.
Nature. 2015; 517(7536):576-82 [PubMed] Article available free on PMC after 28/07/2016 Related Publications
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.

Rooney MS, Shukla SA, Wu CJ, et al.
Molecular and genetic properties of tumors associated with local immune cytolytic activity.
Cell. 2015; 160(1-2):48-61 [PubMed] Related Publications
How the genomic landscape of a tumor shapes and is shaped by anti-tumor immunity has not been systematically explored. Using large-scale genomic data sets of solid tissue tumor biopsies, we quantified the cytolytic activity of the local immune infiltrate and identified associated properties across 18 tumor types. The number of predicted MHC Class I-associated neoantigens was correlated with cytolytic activity and was lower than expected in colorectal and other tumors, suggesting immune-mediated elimination. We identified recurrently mutated genes that showed positive association with cytolytic activity, including beta-2-microglobulin (B2M), HLA-A, -B and -C and Caspase 8 (CASP8), highlighting loss of antigen presentation and blockade of extrinsic apoptosis as key strategies of resistance to cytolytic activity. Genetic amplifications were also associated with high cytolytic activity, including immunosuppressive factors such as PDL1/2 and ALOX12B/15B. Our genetic findings thus provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic resistance to cytolytic activity.

Huang HL, Chiang WL, Hsiao PC, et al.
Timosaponin AIII mediates caspase activation and induces apoptosis through JNK1/2 pathway in human promyelocytic leukemia cells.
Tumour Biol. 2015; 36(5):3489-97 [PubMed] Related Publications
Timosaponin AIII (TAIII) is a steroidal saponin isolated from Anemarrhena asphodeloides that has been shown to inhibit cell growth and induce apoptosis in cancer. However, the effect of TAIII on acute myeloid leukemia (AML) remains unclear. Here, the molecular mechanism by which TAIII-induced apoptosis affects human AML cells was investigated. The results showed that TAIII significantly inhibited cell proliferation of four AML cell lines (MV4-11, U937, THP-1, and HL-60). Furthermore, TAIII induced apoptosis of HL-60 cells through caspase-3, caspase-8, and caspase-9 activations and PARP cleavage in a dose- and time-dependent manner. Moreover, Western blot analysis also showed that TAIII increased phosphorylation of JNK1/2 and p38 MAPK in a dose-dependent manner. Inhibition of JNK1/2 by specific inhibitors significantly abolished the TAIII-induced activation of the caspase-8. Taken together, our results suggest that TAIII induces HL-60 cell apoptosis through JNK1/2 pathways and could serve as a potential additional chemotherapeutic agent for treating AML.

Patel V, Balakrishnan K, Keating MJ, et al.
Expression of executioner procaspases and their activation by a procaspase-activating compound in chronic lymphocytic leukemia cells.
Blood. 2015; 125(7):1126-36 [PubMed] Article available free on PMC after 12/02/2016 Related Publications
Intrinsic and extrinsic apoptotic pathways converge to activate common downstream executioner caspases (caspase-3, -6, and -7), resulting in cell death. In chronic lymphocytic leukemia (CLL), neoplastic B cells evade apoptosis owing to the overexpression of survival proteins. We hypothesized that direct activation of procaspases could bypass the apoptosis resistance induced by the upstream prosurvival proteins. The procaspase-activating compounds (PAC-1), including B-PAC-1 (L14R8), convert inactive executioner procaspases to their active cleaved forms by chelation of labile zinc ions. Both at transcript and protein levels, primary CLL cells express high levels of latent procaspases (3, -7, and -9). B-PAC-1 treatment induced CLL lymphocyte death which was higher than that in normal peripheral blood mononuclear cells or B cells, and was independent of prognostic markers and microenvironmental factors. Mechanistically, B-PAC-1 treatment activated executioner procaspases and not other Zn-dependent enzymes. Exogenous zinc completely, and pancaspase inhibitors partially, reversed B-PAC-1-induced apoptosis, elucidating the zinc-mediated mechanism of action. The cell demise relied on the presence of caspase-3/7 but not caspase-8 or Bax/Bak proteins. B-PAC-1 in combination with an inhibitor of apoptosis protein antagonist (Smac066) synergistically induced apoptosis in CLL samples. Our investigations demonstrated that direct activation of executioner procaspases via B-PAC-1 treatment bypasses apoptosis resistance and is a novel approach for CLL therapeutics.

Zou C, Chen J, Chen K, et al.
Functional analysis of miR-181a and Fas involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis.
Exp Cell Res. 2015; 331(2):352-61 [PubMed] Related Publications
The hepatitis B virus (HBV) is responsible for most of hepatocellular carcinoma (HCC). However, whether HBV plays an important role during hepatocarcinogenesis through effecting miRNAs remains unknown. Here, we reported that HBV up-regulated microRNA-181a (miR-181a) by enhancing its promoter activity. Simultaneously, we found that miR-181a inhibited apoptosis in vitro and promoted tumor cell growth in vivo. TNF receptor superfamily member 6 (Fas) was further identified as a target of miR-181a. We also found that Fas could reverse the apoptosis-inhibition effect induced by miR-181a. Moreover, HBV could inhibit cell apoptosis by down-regulating Fas expression, which could be reversed by miR-181a inhibitor. Our data demonstrated that HBV suppressed apoptosis of hepatoma cells by up-regulating miR-181a expression and down-regulating Fas expression, which may provide a new understanding of the mechanism in HBV-related HCC pathogenesis.

Venza M, Visalli M, Biondo C, et al.
Epigenetic marks responsible for cadmium-induced melanoma cell overgrowth.
Toxicol In Vitro. 2015; 29(1):242-50 [PubMed] Related Publications
Cadmium (Cd) is a human carcinogen that likely acts via epigenetic mechanisms. However, the precise role of Cd in melanoma remains to be defined. The goals of this study are to: (i) examine the effect of Cd on the proliferation rate of cutaneous and uveal melanoma cells; (ii) identify the genes affected by Cd exposure; (iii) understand whether epigenetic changes are involved in the response to Cd. The cell growth capacity increased at 48 h after Cd treatment at doses ranging from 0.5 to 10 μM. The research on the key genes regulating proliferation has shown that aberrant methylation is responsible for silencing of p16(INK4A) and caspase 8 in uveal and cutaneous melanoma cells, respectively. The methylation and expression patterns of p14(ARF), death receptors 4/5, and E-cadherin remained unmodified after Cd treatment in all the cell lines analyzed. Ectopic expression of p16(INK4A) abolished the overgrowth of uveal melanoma cells in response to Cd and the overexpression of caspase 8 drastically increased the apoptotic rate of Cd-treated cutaneous melanoma cells. In conclusion, our data suggest that hypermethylation of p16(INK4A) and caspase 8 represents the most common event linked to Cd-induced stimulation of cell growth and inhibition of cell death pathway in melanoma.

Wang J, Hansen K, Edwards R, et al.
Mitochondrial division inhibitor 1 (mdivi-1) enhances death receptor-mediated apoptosis in human ovarian cancer cells.
Biochem Biophys Res Commun. 2015; 456(1):7-12 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) based strategy is a promising targeted therapeutic approach for the treatment of a variety of cancers including ovarian cancer. However, the inherent or acquired resistance of tumor cells to TRAIL limits the potential application of TRAIL-mediated therapy. In this study, we identified that mitochondrial division inhibitor-1 (mdivi-1) is able to enhance the sensitivity of human ovarian cancer cells to death receptor ligands including TRAIL, FAS ligands, and TNF-α. Importantly, the combination of TRAIL and mdivi-1 has no apparent cytotoxic effect on non-transformed human cells, indicating a significant therapeutic window. We identified that caspase-8 and not the modulation of TRAIL receptors is required for the combination effect of TRAIL and mdivi-1. We further demonstrated that the enhanced efficacy of combination of mdivi-1 and death ligands is not dependent on the originally reported target of mdivi-1, Drp1, and is also not dependent on the two important pro-apoptotic Bcl-2 family proteins Bax and Bak. Thus, our study presents a novel strategy in enhancing the apoptotic effect of death receptor ligands and provides a new effective TRAIL-based combination approach for treating human ovarian cancer.

Yang X, Zhu H, Qin Q, et al.
Genetic variants and risk of esophageal squamous cell carcinoma: a GWAS-based pathway analysis.
Gene. 2015; 556(2):149-52 [PubMed] Related Publications
This study was designed to identify candidate single-nucleotide polymorphisms (SNPs) that may affect the susceptibility to esophageal squamous cell carcinoma (ESCC) and elucidate their potential mechanisms to generate SNP-to-gene-to-pathway hypotheses. A genome-wide association study (GWAS) dataset for ESCC, which included 453,852 SNPs from 1898 ESCC patients and 2100 control subjects of Chinese population, was reviewed. The identify candidate causal SNPs and pathways (ICSNPathway) analysis identified seven candidate SNPs, five genes, and seven pathways, which together revealed seven hypothetical biological mechanisms. The three strongest hypothetical biological mechanisms were as follows: rs4135113→TDG→BASE EXCISION REPAIR; rs1800450→MBL2→MONOSACCHARIDE BINDING; and rs3769823→CASP8→d4gdiPathway. The GWAS dataset was evaluated using the ICSNPathway, which showed seven candidate SNPs, five genes, and seven pathways that may contribute to the susceptibility of patients to ESCC.

Antonopoulou K, Stefanaki I, Lill CM, et al.
Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database.
J Invest Dermatol. 2015; 135(4):1074-9 [PubMed] Related Publications
We updated a field synopsis of genetic associations of cutaneous melanoma (CM) by systematically retrieving and combining data from all studies in the field published as of August 31, 2013. Data were available from 197 studies, which included 83,343 CM cases and 187,809 controls and reported on 1,126 polymorphisms in 289 different genes. Random-effects meta-analyses of 81 eligible polymorphisms evaluated in >4 data sets confirmed 20 single-nucleotide polymorphisms across 10 loci (TYR, AFG3L1P, CDK10, MYH7B, SLC45A2, MTAP, ATM, CLPTM1L, FTO, and CASP8) that have previously been published with genome-wide significant evidence for association (P<5 × 10(-8)) with CM risk, with certain variants possibly functioning as proxies of already tagged genes. Four other loci (MITF, CCND1, MX2, and PLA2G6) were also significantly associated with 5 × 10(-8)

Jiang L, Wu X, Wang P, et al.
Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma.
J Cancer Res Clin Oncol. 2015; 141(6):971-81 [PubMed] Related Publications
PURPOSE: We have previously reported that forkhead box M1 (FoxM1) transcription factor was overexpressed in laryngeal squamous cell carcinoma (LSCC) and was associated with development of LSCC. However, there are limited studies regarding the functional significance of FoxM1 and FoxM1 inhibitor thiostrepton in LSCC. Therefore, the aim of this study was to examine both in vitro and in vivo activity of FoxM1 inhibitor thiostrepton against LSCC cell line and nude mice.
METHODS: Cell viability was studied by CCK-8 assay. Cell growth was evaluated by CFSE staining and cell cycle analysis. Apoptosis was measured by flow cytometry. The mRNA and protein expression were detected by quantitative real-time RT-PCR, Western blot and immunohistochemical staining. Xenograft model of tumor formation was used to investigate how thiostrepton influences tumorigenesis in vivo.
RESULTS: Overexpression of FoxM1 in LSCC cells was down-regulated by thiostrepton in a dose-dependent manner. Thiostrepton caused dose- and time-dependent suppression of cell viability of LSCC. Moreover, thiostrepton induced cell cycle arrest at S phase at early time and inhibited DNA synthesis in LSCC cells in a dose- and time-dependent manner by down-regulation of cyclin D1 and cyclin E1. Thiostrepton also induced dose- and time-dependent apoptosis of LSCC cells by down-regulation of Bcl-2, up-regulation of Bax and p53, and inducing release of cytochrome c accompanied by activation of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. In addition, z-VAD-fmk, a universal inhibitor of caspases, prevented activation of cleavage caspase-3 and abrogates cell death induced by thiostrepton treatment. Furthermore, FADD and cleaved caspase-8 were activated, and expression of cIAP1, XIAP and survivin were inhibited by thiostrepton. Finally, treatment of LSCC cell line xenografts with thiostrepton resulted in tumorigenesis inhibition of tumors in nude mice by reducing proliferation and inducing apoptosis of LSCC cells.
CONCLUSIONS: Collectively, our finding suggest that targeting FoxM1 by thiostrepton inhibit growth and induce apoptosis of LSCC through mitochondrial- and caspase-dependent intrinsic pathway and Fas-dependent extrinsic pathway as well as IAP family. Thiostrepton may represent a novel lead compound for targeted therapy of LSCC.

Khan S, Greco D, Michailidou K, et al.
MicroRNA related polymorphisms and breast cancer risk.
PLoS One. 2014; 9(11):e109973 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

Sharifi S, Barar J, Hejazi MS, Samadi N
Roles of the Bcl-2/Bax ratio, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel.
Asian Pac J Cancer Prev. 2014; 15(20):8617-22 [PubMed] Related Publications
The goal of this study was to establish paclitaxel resistant MCF-7 cells, as in vitro model, to identify the molecular mechanisms leading to acquired chemoresistance in breast cancer cells. Resistant cells were developed by stepwise increasing exposure to paclitaxel. Gene expression levels of Bax and Bcl-2 along with protein levels of caspase-8 and caspase-9 were evaluated in two resistant cell lines (MCF -7/Pac64 and MCF -7/Pac5 nM). Morphological modifications in paclitaxel resistance cells were examined by light microscopy and fluorescence activated cell sorting (FACS). As an important indicator of resistance to chemotheraputic agents, the Bcl-2/Bax ratio showed a significant increase in both MCF-7/Pac5nM and MCF-7/Pac 64nM cells (p<0.001), while caspase-9 levels were decreased (p<0.001) and caspase-8 was increased (p<0.001). FACS analysis demonstrated that MCF -7/Pac64 cells were smaller than MCF-7 cells with no difference in their granularity. Our results support the idea that paclitaxel induces apoptosis in a mitochondrial-dependent manner. Identifying breast cancer patients with a higher Bcl-2/Bax ratio and caspase 9 level and then inhibiting the activity of these proteins may improve the efficacy of chemotheraputic agents.

Zhang YC, Guo LQ, Chen X, et al.
The role of death receptor 3 in the biological behavior of hepatocellular carcinoma cells.
Mol Med Rep. 2015; 11(2):797-804 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Death receptor 3 (DR3) belongs to the tumor necrosis factor (TNF) receptor superfamily, primarily found in lymphoid tissues. Reports have determined that DR3 may also be distributed in numerous types of tumors. Therefore, it is thought that DR3 may have an important role in the process of tumorigenesis. The aim of the present study was to observe the effect of silencing DR3 expression on hepatocarcinoma cell growth, apoptosis and invasion in order to elucidate the role of DR3 in tumor development. The hepatocarcinoma cell lines (HepG2, Huh7, SMMC7721 and Bel‑7402) and normal human liver cells (HL‑7702) were transfected with three stealth RNA interference (RNAi) sequences that target the DR3 gene. Reverse transcription quantitative polymerase chain reaction was used to detect the expression levels of DR3 in hepatocarcinoma cell lines and normal liver HL‑7702 cells. MTT assay and flow cytometry (FCM) were used to determine the rates of cell proliferation and apoptosis, respectively. Following silencing of the DR3 gene, western blot analysis was used to determine the protein expression of P53, Fas, Caspase8, nuclear factor kappa‑light‑chain‑enhancer of activated B cells (NF‑κB) and Caspase3. DR3 messenger RNA (mRNA) expression in hepatocarcinoma cell lines was significantly increased compared with that in the normal liver cell line. Three targeted DR3 gene small interfering RNAs significantly inhibited DR3 gene expression in Bel‑7402 cells at the nucleic acid level. AF02670.1_stealth_883 and cocktail demonstrated the most efficient inhibition of DR3 gene expression at 48 and 72 h following transfection, with mRNA inhibition rates of 89.46 and 92.75%, and 90.53 and 94.25% (P<0.01), respectively. Cell viability was significantly reduced by AF02670.1_stealth_883 and RNAi cocktail at 24, 48 and 72 h following transfection. The inhibition rates of cell proliferation were 50.76 and 61.76% (P<0.05) at 72 h following transfection. FCM revealed that AF02670.1_stealth_883 and RNAi cocktail also induced apoptosis in Bel‑7402 cells at 72 h following transfection. Reduction of NF‑κB and P53 levels was observed (P<0.05) in Bel‑7402 cells following DR3 silencing, whereas levels of Fas, Caspase3 and Caspase8 were markedly elevated (P<0.05). DR3 expression levels in hepatocellular carcinoma cells were significantly higher than those in normal cells. DR3 silencing effectively inhibited proliferation and invasion of hepatocellular carcinoma cells in vitro. However, silencing of the DR3 gene affect levels of apoptosis antigen‑3 ligand in cells, therefore indicating that it may be involved with other pathways that regulate apoptosis in HCCs. In conclusion, the results of the present study indicated that DR3 may be a promising therapeutic target molecule for further study of hepatocellular carcinoma gene therapy.

Kliková K, Štefaniková A, Pilchová I, et al.
Differential impact of bortezomib on HL-60 and K562 cells.
Gen Physiol Biophys. 2015; 34(1):33-42 [PubMed] Related Publications
Bortezomib (PS-341, or Velcade), reversible inhibitor of 20S proteasome approved for the treatment of multiple myeloma and mantle cell lymphoma, exhibited a cytotoxic effect toward other malignancies including leukaemia. In this study, we have documented that incubation of both HL-60 and K562 leukaemia cells with nanomolar concentrations of bortezomib is associated with the death of HL-60 cells observed within 24 hours of incubation with bortezomib and the death of K562 cells that were observed after 72 hours of incubation with bortezomib. The relative resistance of K562 cells to bortezomib correlated well with significantly higher expression of HSP27, HSP70, HSP90α, HSP90β and GRP75 in these cells. Incubation of both HL-60 and K562 cells with bortezomib induced a cleavage of HSP90β as well as expression of HSP70 and HSP90β but bortezomib did not affect levels of HSP27, HSP90α, GRP75 and GRP78. The death of both types of cells was accompanied with proteolytic activation of caspase 3 that was observed in HL-60 cells and proteolytic degradation of procaspase 3 in K562 cells. Our study has also pointed to essential role of caspase 8 in bortezomib-induced cleavage of HSP90β in both HL-60 and K562 cells. Finally, we have shown that bortezomib induced activation of caspase 9/caspase 3 axis in HL-60 cells, while the mechanism of death of K562 cells remains unknown.

Song X, Kim SY, Zhang L, et al.
Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer.
Cell Death Dis. 2014; 5:e1504 [PubMed] Related Publications
Unresectable colorectal liver metastases remain a major unresolved issue and more effective novel regimens are urgently needed. While screening synergistic drug combinations for colon cancer therapy, we identified a novel multidrug treatment for colon cancer: chemotherapeutic agent melphalan in combination with proteasome inhibitor bortezomib and mTOR (mammalian target of rapamycin) inhibitor rapamycin. We investigated the mechanisms of synergistic antitumor efficacy during the multidrug treatment. All experiments were performed with highly metastatic human colon cancer CX-1 and HCT116 cells, and selected critical experiments were repeated with human colon cancer stem Tu-22 cells and mouse embryo fibroblast (MEF) cells. We used immunochemical techniques to investigate a cross-talk between apoptosis and autophagy during the multidrug treatment. We observed that melphalan triggered apoptosis, bortezomib induced apoptosis and autophagy, rapamycin caused autophagy and the combinatorial treatment-induced synergistic apoptosis, which was mediated through an increase in caspase activation. We also observed that mitochondrial dysfunction induced by the combination was linked with altered cellular metabolism, which induced adenosine monophosphate-activated protein kinase (AMPK) activation, resulting in Beclin-1 phosphorylated at Ser 93/96. Interestingly, Beclin-1 phosphorylated at Ser 93/96 is sufficient to induce Beclin-1 cleavage by caspase-8, which switches off autophagy to achieve the synergistic induction of apoptosis. Similar results were observed with the essential autophagy gene, autophagy-related protein 7, -deficient MEF cells. The multidrug treatment-induced Beclin-1 cleavage was abolished in Beclin-1 double-mutant (D133A/D146A) knock-in HCT116 cells, restoring the autophagy-promoting function of Beclin-1 and suppressing the apoptosis induced by the combination therapy. These observations identify a novel mechanism for AMPK-induced apoptosis through interplay between autophagy and apoptosis.

Liu BX, Zhou JY, Li Y, et al.
Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway.
BMC Complement Altern Med. 2014; 14:412 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
BACKGROUND: Colorectal cancer has become one of the leading cause of cancer morbidity and mortality throughout world. Hederagenin, a derivative of oleanolic acid isolated from the leaves of ivy (Hedera helix L.), has been shown to have potential anti-tumor activity. The study was conducted to evaluate whether hederagenin could induce apoptosis of human colon cancer LoVo cells and explore the possible mechanism.
METHODS: MTT assay was used for evaluating cell viability while Annexin V-FITC/PI assay and Hoechst 33342 nuclear stainining were used for the determination of apoptosis and mitochondrial membrane potential. DCFH-DA fluorescence staining and flow cytometry were used to measure ROS generation. Real-time PCR and western blot analysis were performed for apoptosis-related protein expressions.
RESULTS: MTT assay showed that hederagenin could significantly inhibit the viability of LoVo cells in a concentration-dependent and time-dependent manner by IC50 of 1.39 μM at 24 h and 1.17 μM at 48 h. The apoptosis ratio was significantly increased to 32.46% and 81.78% by the induction of hederagenin (1 and 2 μM) in Annexin V-FITC/PI assay. Hederagenin could also induce the nuclear changes characteristic of apoptosis by Hoechst 33342 nuclear stainining under fluorescence microscopy. DCFH-DA fluorescence staining and flow cytometry showed that hederagenin could increase significantly ROS generation in LoVo cells. Real-time PCR showed that hederagenin induced the up-regulation of Bax and down-regulation of Bcl-2, Bcl-xL and Survivin. Western blotting analysis showed that hederagenin decreased the expressions of apoptosis-associated proteins Bcl-2, procaspase-9, procaspase-3, and polyADP- ribosepolymerase (PARP) were increased, while the expressions of Bax, caspase-3, caspase-9 were increased. However, there was no significant change on caspase-8.
CONCLUSIONS: These results indicated that the disruption of mitochondrial membrane potential might contribute to the apoptosis of hederagenin in LoVo cells. Our findings suggested that hederagenin might be a promising therapeutic candidate for human colon cancer.

Jiang L, Wang P, Chen L, Chen H
Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells.
Int J Clin Exp Pathol. 2014; 7(9):5450-60 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor rare throughout most of the world but common in Southern China. Forkhead box M1 (FoxM1) transcription factor has been shown to play important role in the development and progression of human cancers. We have previously found that FoxM1 was overexpressed in NPC patients and was associated with development of NPC. However, the exact functional significance of FoxM1 and its inhibitor thiostrepton in NPC is little known. The purpose of this study was to investigate in vitro activity of down-regulation of FoxM1 by thiostrepton or siRNA against NPC cell line. FoxM1 inhibition by thiostrepton or siRNA inhibited proliferation of NPC cells by down-regulation of cyclin D1 and cyclin E1. Transformation ability of NPC cells was suppressed by thiostrepton. FoxM1 inhibition by thiostrepton induced apoptosis of NPC cells by down-regulation of bcl-2, up-regulation of bax and p53, and inducing release of cytochrome c accompanied by activation of caspase-9, cleaved caspase-3 and cleaved PARP. In addition, FoxM1 inhibition by siRNA transfection also down-regulated expression of bcl-2 and up-regulated expression of bax, p53, cleaved caspase-3 and cleaved PARP. Furthermore, FADD and cleaved caspase-8 expression were up-regulated by thiostrepton or FoxM1 siRNA, and expression of cIAP1 and XIAP was inhibited by thiostrepton. At last, FoxM1 inhibition by thiostrepton reduced the expression of HIF-1α and VEGF, and transfection of FoxM1 siRNA decreased VEGF expression but not HIF-1α. Collectively, our finding suggest that FoxM1 inhibition by thiostrepton or siRNA suppresses proliferation, transformation ability, angiogenesis, and induces apoptosis of NPC.

Luan Z, He Y, He F, Chen Z
Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation.
Mol Med Rep. 2015; 11(1):203-11 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.

Zhang K, Li Y, Liu W, et al.
Silencing survivin expression inhibits the tumor growth of non-small-cell lung cancer cells in vitro and in vivo.
Mol Med Rep. 2015; 11(1):639-44 [PubMed] Related Publications
Survivin is a promising anticancer therapeutic target due to its important role in the inhibition of apoptosis of tumor cells. However, little is currently known about its role in non small cell lung cancer (NSCLC). The present study evaluated whether the downregulation of survivin expression would affect cell proliferation, cell cycle distribution, apoptosis and colony formation of NSCLC. A recombinant lentiviral small hairpin RNA (shRNA) expression vector, which specifically targeted survivin, was constructed and transfected into the A549 human NSCLC cell line. Quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of survivin, 48 h following the knockdown of survivin expression. Cell proliferation, apoptosis, cell cycle distribution and colony formation were determined following the downregulation of survivin by shRNA. In addition, A549 cells were injected into nude mice, and the effects of shRNA targeting the survivin gene on tumor growth were assessed. Downregulation of survivin expression, using the RNA silencing approach in A549 tumor cells, significantly suppressed the proliferation and colony formation ability of the cells, and induced tumor apoptosis in vitro. The nude mice inoculated with A549 cells developed cancer, and treatment with shRNA targeting survivin markedly inhibited the growth of these cancers, with no obvious side effects. The results of the present study suggest that suppression of survivin expression by RNA interference may induce NSCLC apoptosis, and provide a novel approach for anticancer gene therapy.

Mi C, Shi H, Ma J, et al.
Celastrol induces the apoptosis of breast cancer cells and inhibits their invasion via downregulation of MMP-9.
Oncol Rep. 2014; 32(6):2527-32 [PubMed] Related Publications
Celastrol is a quinone methide triterpene derived from Tripterygium wilfordii Hook F., a plant used in traditional medicine. In the present study, we reported that celastrol potentiated tumor necrosis factor-α (TNF-α)-induced apoptosis, affected activation of caspase-8, caspase-3 and PARP cleavage, and inhibited the expression of anti-apoptotic proteins such as cellular inhibitor of apoptosis protein 1 and 2 (cIAP1 and cIAP2), cellular FLICE-inhibitory protein (FLIP), and B-cell lymphoma 2 (Bcl-2). In addition, celastrol significantly reduced the invasion of MDA-MB-231 human breast cancer cells after TNF-α stimulation. As matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor metastasis, we analyzed its expression with celastrol treatment. Western blot analysis and real-time PCR showed that celastrol dose-dependently suppressed TNF-α-induced MMP-9 gene expression at both the mRNA and protein levels in MDA-MB-231 cells. Taken together, our findings indicate that celastrol may be a potential candidate for breast cancer chemotherapy.

Yang WT, Chen DL, Zhang FQ, et al.
Experimental study on inhibition effects of the XAF1 gene against lung cancer cell proliferation.
Asian Pac J Cancer Prev. 2014; 15(18):7825-9 [PubMed] Related Publications
OBJECTIVE: To investigate the effect of high expression of XAF1 in vivo or in vitro on lung cancer cell growth and apoptosis.
METHODS: 1. The A549 human lung cancer cell line was transfected with Ad5/F35 - XAF1, or Ad5/ F35 - Null at the same multiplicity of infection (MOI); (hereinafter referred to as transient transfected cell strain); XAF1 gene mRNA and protein expression was detected by reverse transcription polymerase chain reaction (RT- PCR) and Western blotting respectively. 2. Methyl thiazolyl tetrazolium (MTT) and annexin V-FITC/PI double staining were used to detect cell proliferation and apoptosis before and after infection of Ad5/F35 - XAF1 with Western blotting for apoptosis related proteins, caspase 3, caspase - 8 and PARP. 3. After the XAF1 gene was transfected into lung cancer A549 cells by lentiviral vectors, and selected by screening with Blasticidin, reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were applied to detect mRNA and protein expression, to establish a line with a stable high expression of XAF1 (hereinafter referred to as stable expression cell strain). Twenty nude mice were randomly divided into groups A and B, 10 in each group: A549/ XAF1 stable expression cell strain was subcutaneously injected in group A, and A549/Ctrl stable cell line stable expression cell strain in group B (control group), to observe transplanted tumor growth in nude mice.
RESULTS: The mRNA and protein expression of XAF1 in A549 cells transfected by Ad5/F35 - XAF1 was significantly higher than in the control group. XAF1 mediated by adenovirus vector demonstrated a dose dependent inhibition of lung cancer cell proliferation and induction of apoptosis. This was accompanied by cleavage of caspase -3, -8, -9 and PARP, suggesting activation of intrinsic or extrinsic apoptotic pathways. A cell strain of lung cancer highly expressing XAF1 was established, and this demonstrated delayed tumor growth after transplantation in vivo.
CONCLUSION: Adenovirus mediated XAF1 gene expression could inhibit proliferation and induce apoptosis in lung cancer cells in vitro; highly stable expression of XAF1 could also significantly inhibit the growth of transplanted tumors in nude mouse, with no obvious adverse reactions observed. Therefore, the XAF1 gene could become a new target for lung cancer treatment.

Abu N, Akhtar MN, Yeap SK, et al.
Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro.
PLoS One. 2014; 9(10):e105244 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
INTRODUCTION: The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.
METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.
RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.
CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

Momose I, Abe H, Watanabe T, et al.
Antitumor effects of tyropeptin-boronic acid derivatives: New proteasome inhibitors.
Cancer Sci. 2014; 105(12):1609-15 [PubMed] Related Publications
The proteasome degrades numerous regulatory proteins that are critical for tumor growth. Thus, proteasome inhibitors are promising antitumor agents. New proteasome inhibitors, such as tyropeptins and tyropeptin-boronic acid derivatives, have a potent inhibitory activity. Here we report the antitumor effects of two new tyropeptin-boronic acid derivatives, AS-06 and AS-29. AS-06 and AS-29 significantly suppress the degradation of the proteasome-sensitive fluorescent proteins in HEK293PS cells, and induce the accumulation of ubiquitinated proteins in human multiple myeloma cells. We show that these derivatives also suppress the degradation of the NF-κB inhibitor IκB-α and the nuclear translocation of NF-κB p65 in multiple myeloma cells, resulting in the inhibition of NF-κB activation. Furthermore, we demonstrate that AS-06 and AS-29 induce apoptosis through the caspase-8 and caspase-9 cascades. In a xenograft mouse model, i.v. administration of tyropeptin-boronic acid derivatives inhibits proteasome in tumors and clearly suppresses tumor growth in mice bearing human multiple myeloma. Our results indicate that tyropeptin-boronic acid derivatives could be lead therapeutic agents against human multiple myeloma.

Abedini MR, Wang PW, Huang YF, et al.
Cell fate regulation by gelsolin in human gynecologic cancers.
Proc Natl Acad Sci U S A. 2014; 111(40):14442-7 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Chemoresistance is a major hurdle in cancer treatment. Down-regulation of apoptosis pathways is one of the key determinants for chemoresistance. Here, we report higher gelsolin (GSN) levels in chemoresistant gynecological cancer cells compared with their sensitive counterparts. cis-Diammine dichloroplatinium (II) (CDDP)-induced GSN down-regulation is associated with its cleavage and apoptosis. Although the C-terminal GSN fragment (C-GSN) sensitized chemoresistant cells to CDDP, intact GSN and its N-terminal fragment (N-GSN) attenuated this response. GSN silencing also facilitated CDDP-induced apoptosis in chemoresistant cells. In contrast, intact GSN (I-GSN) was prosurvival in the presence of CDDP through a FLICE-like inhibitory protein (FLIP)-Itch interaction. This interaction was colocalized in the perinuclear region that could be dissociated by CDDP in sensitive cells, thereby inducing FLIP ubiquitination and degradation, followed by apoptosis. In resistant cells, GSN was highly expressed and CDDP failed to abolish the I-GSN-FLIP-Itch interaction, resulting in the dysregulation of the downstream responses. In addition, we investigated the association between GSN expression in ovarian serous adenocarcinoma and progression free survival and overall survival, as well as clinical prognosis. GSN overexpression was significantly associated with more aggressive behavior and more cancer deaths and supported our hypothesis that high GSN expression confers chemoresistance in cancer cells by altering the GSN-FLIP-Itch interaction. These findings are in agreement with the notion that GSN plays an important role in the regulation of gynecological cell fate as reflected in dysregulation in chemosensitivity.

Yi S, Wen L, He J, et al.
Deguelin, a selective silencer of the NPM1 mutant, potentiates apoptosis and induces differentiation in AML cells carrying the NPM1 mutation.
Ann Hematol. 2015; 94(2):201-10 [PubMed] Related Publications
Nucleophosmin (NPM1) is a multifunctional protein that functions as a molecular chaperone, shuttling between the nucleolus and the cytoplasm. In up to one third of patients with acute myeloid leukemia, mutation of NPM1 results in the aberrant cytoplasmic accumulation of mutant protein and is thought to be responsible for leukemogenesis. Deguelin, a rotenoid isolated from several plant species, has been shown to be a strong anti-tumor agent. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis and differentiation assays, and associated molecular events were assessed by Western blot. Gene silencing was performed using small interfering RNA (siRNA). Deguelin exhibited strong cytotoxic activity in the cell line of OCI-AML3 and selectively down-regulated the NPM1 mutant protein, which was accompanied by up-regulation of the activity of caspase-6 and caspase-8 in high concentrations. Deguelin induced differentiation of OCI-AML3 cells at a nontoxic concentration which was associated with a decrease in expression of activated caspase-8, p53, p21, and the 30-kD form of CCAAT/enhancer binding protein α (C/EBPα), whereas no effects were found in OCIM2 cells expressing NPM-wt. Moreover, treatment with siRNA in the NPM mutant cell line OCI-AML3 decreased expression of p53, p21, pro-caspase-8, and the 30-kD form of C/EBPα, and it inhibited proliferation and induced differentiation of the OCI-AML3 cells. In conclusion, deguelin is a potent in vitro inhibitor of the mutant form of NPM1, which provides the molecular basis for its anti-leukemia activities in NPM1 mutant acute myeloid leukemia cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CASP8, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999