Gene Summary

Gene:LIF; LIF interleukin 6 family cytokine
Summary:The protein encoded by this gene is a pleiotropic cytokine with roles in several different systems. It is involved in the induction of hematopoietic differentiation in normal and myeloid leukemia cells, induction of neuronal cell differentiation, regulator of mesenchymal to epithelial conversion during kidney development, and may also have a role in immune tolerance at the maternal-fetal interface. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Mar 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:leukemia inhibitory factor
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (45)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Colorectal Cancer
  • Spectrometry, Fluorescence
  • Chromosome 22
  • T-Lymphocytes
  • Growth Inhibitors
  • Cancer Gene Expression Regulation
  • Gene Expression
  • Oncostatin M
  • Cell Division
  • Receptors, OSM-LIF
  • Trophoblasts
  • Cytokines
  • Apoptosis
  • Gene Expression Regulation
  • Mutation
  • Transcription Factors
  • Interleukin-6
  • Base Sequence
  • Protein Biosynthesis
  • Phenotype
  • Polymorphism
  • Up-Regulation
  • Receptors, Erythropoietin
  • Cell Proliferation
  • Breast Cancer
  • MicroRNAs
  • Molecular Sequence Data
  • Leukemia Inhibitory Factor Receptor alpha Subunit
  • Leukemia Inhibitory Factor
  • Promoter Regions
  • RNA Interference
  • LIF
  • Receptors, Cytokine
  • Electrophoresis, Capillary
  • Ewing's Sarcoma
  • Transcription
  • Messenger RNA
  • Western Blotting
  • Cell Differentiation
  • Lymphokines
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LIF (cancer-related)

Chrysovergis A, Papanikolaou VS, Tsiambas E, et al.
Digital Analysis of BCL2 Expression in Laryngeal Squamous Cell Carcinoma.
Anticancer Res. 2019; 39(3):1253-1257 [PubMed] Related Publications
BACKGROUND: Deregulation of apoptosis is critical regarding the development and progression of malignancies, including laryngeal squamous cell carcinoma (LSCC). B-Cell lymphoma 2 (BCL2) (gene locus:18q21.33), located on the outer mitochondrial membrane, acts mainly as an anti-apoptotic factor suppressing and blocking apoptotic signal transduction.
MATERIALS AND METHODS: Fifty (n=50) primary LSCC tissue sections were used. Immunohistochemistry and digital image analysis were implemented for evaluating BCL2 protein expression levels.
RESULTS: High BCL2 protein expression levels were observed in 21/50 (42%) LSCC tissue sections, whereas the remaining cases (n=29) demonstrated a low expression. Overall, BCL2 expression was associated with grade (p=0.046) and anatomical region of the examined malignancies (transglottic, p=0.047). Interestingly, high BCL2 expression levels were strongly associated with radiotherapy-based only regimens (p=0.01) in corresponding patients.
CONCLUSION: BCL2 overexpression was found to be correlated with an aggressive phenotype (advanced grade of differentiation) in LSCC, also demonstrating a potential selective anatomic localization (transglotic region). Additionally, BCL2 overexpression appears to be a negative regulator for successful radiotherapy implementation by reducing the apoptotic process in patients.

Malinen MM, Ito K, Kang HE, et al.
Protein expression and function of organic anion transporters in short-term and long-term cultures of Huh7 human hepatoma cells.
Eur J Pharm Sci. 2019; 130:186-195 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Human-derived hepatic cell lines are a valuable alternative to primary hepatocytes for drug metabolism, transport and toxicity studies. However, their relevance for investigations of drug-drug and drug-organic anion (e.g., bile acid, steroid hormone) interactions at the transporter level remains to be established. The aim of the present study was to determine the suitability of the Huh7 cell line for transporter-dependent experiments. Huh7 cells were cultured for 1 to 4 weeks and subsequently were analyzed for protein expression, localization and activity of solute carrier (SLC) and ATP-binding cassette (ABC) transporters involved in organic anion transport using liquid chromatography-tandem mass spectroscopy, immunocytochemistry, and model substrates [

Dulíček P
Treatment of polycythemia vera.
Vnitr Lek. Fall 2018; 64(10):955-960 [PubMed] Related Publications
Polycythemia vera is a chronic myeloproliferative neoplasm characterized by hematopoietic stem cell-derived clonal myeloproliferation resulting in erythrocytosis, leukocytosis and thrombocytosis. Survival is reduced compared with general population. Main reasons of death include thrombohemorrhagic complications, fibrotic progression and leuk-aemic transformation. Presence of Janus kinase (JAK2) gene mutations is a diagnostic marker and standard dia-gnostic criterion. World Health Organization 2016 diagnostic criteria focusing on hemoglobin levels, hematocrit, red cell mass and bone marrow morphology are mandatory. Therapeutic approach depends on stratification of patients according age and personal risk of thrombosis. Low-risk patients are treated first line with low-dose aspirin and phlebo-tomy. Cytoreduction is indicated in high-risk patients. Interferon-α has demonstrated efficacy in many clinical trials. Its pegylated form is well tolerated, enabling less frequent administration than standard interferon. Therefore it is therapy of choice based on Central European Myeloproliferative Neoplasm Organisation recommendation. Ropeginterferon α-2b has been shown to be more efficacious than hydroxyurea. Hydroxyurea is suspected of leukemogenic potential. JAK1/JAK2 inhibitor ruxolitinib is approved for hydroxyurea resistant/intolerant patients. Key words: diagnosis - polycythemia vera - therapy.

Jagielska B, Sarnowska E, Rusetska N, et al.
Advanced adenoid cystic carcinoma (ACC) is featured by SWI/SNF chromatin remodeling complex aberrations.
J Cancer Res Clin Oncol. 2019; 145(1):201-211 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
PURPOSE: Adenoid cystic carcinoma (ACC) is a rare neurotropic cancer with slow progression occurring in salivary glands and less frequently in other body parts. ACC is featured by hyperchromatic nuclei and various mutations in genes encoding chromatin-related machineries. The ACC treatment is mainly limited to the radical surgery and radiotherapy while the chemotherapy remains ineffective. As the knowledge about molecular basis of ACC development is limited, we investigated here the molecular features of this disease.
PATIENTS AND METHODS: This study included 50 patients with ACC. Transcript profiling of available ACC samples vs normal salivary gland tissue, quantitative real-time PCR (qRT-PCR) transcript level measurements and the immunohistochemistry (IHC) for SWI/SNF chromatin remodeling complex (CRC) subunits and androgen receptor on surgery-derived paraffin-embedded samples were performed.
RESULTS: Transcriptomic study followed by Gene Ontology classification indicated alteration of chromatin-related processes, including downregulated transcript levels of main SWI/SNF CRC subunits and elevated expression of BRM ATPase-coding SMARCA2 gene in ACC. Subsequent IHC indicated broad accumulation of BRM ATPase and several SWI/SNF subunits, suggesting affected control of their protein level in ACC. The IHC revealed ectopic, heterogeneous expression of androgen receptor (AR) in some ACC cells.
CONCLUSIONS: Our study indicated that ACC features aberrant expression of genes controlling chromatin status and structure. We found that the balance between SWI/SNF classes is moved towards the BRM ATPase-containing complex in ACC. As BRM is known to be involved in chemoresistance in cancer cells, this observation may be the likely explanation for ACC chemoresistance.

Jakobsen MR, Teerapakpinyo C, Shuangshoti S, Keelawat S
Comparison between digital image analysis and visual assessment of immunohistochemical HER2 expression in breast cancer.
Pathol Res Pract. 2018; 214(12):2087-2092 [PubMed] Related Publications
BACKGROUND: Assessment of HER2 status is considered standard of care in the histopathologic workup of breast cancer and conveys prognostic and predictive information used to guide treatment decisions. The assessment is often carried out in a two-step approach where immunohistochemical expression of HER2 protein is first evaluated by conventional microscopy and equivocal cases are further analyzed by in-situ hybridization techniques to assess gene amplification status. In this study we compared conventional manual assessment of immunohistochemical HER2 expression with digital image analysis (DIA) and consensus manual assessment by a panel of three pathologists.
METHODS: From our archive we retrieved sections of 109 invasive breast carcinomas stained for HER2 with corresponding HER2 score from the original pathology report. The glass slides were assessed by three pathologists to reach a consensus score. Next, the slides were scanned into whole slide images and DIA was performed using Aperio Imagescope. The scoring results were then compared with gene amplification status evaluated by dual in-situ hybridization (DISH).
RESULTS: Comparing manual assessment with consensus assessment and DIA, good agreement was obtained with weighted kappa coefficients of 0.79 (manual vs. consensus) and 0.67 (manual vs. DIA). When compared with gene status assessment by DISH, agreement analysis yielded weighted kappa coefficients of 0.52 (manual vs. DISH), 0.58 (consensus vs. DISH) and 0.78 (DIA vs. DISH). There were no false negatives by any of the three methods and false positives ranging from 0.9 to 2.8%. The proportion of equivocal cases by each method was 44% (manual), 33.3% (consensus) and 14.7% (DIA). Application of DIA reduced the number of equivocal cases by 67% without increasing the proportion of false negatives.
CONCLUSION: We conclude that DIA is an accurate method to reduce the number of HER2 equivocal cases without affecting the sensitivity of the HER2 assessment.

Wang AC, Jones DTW, Abecassis IJ, et al.
Desmoplastic Infantile Ganglioglioma/Astrocytoma (DIG/DIA) Are Distinct Entities with Frequent BRAFV600 Mutations.
Mol Cancer Res. 2018; 16(10):1491-1498 [PubMed] Related Publications
Desmoplastic infantile ganglioglioma (DIG) and desmoplastic infantile astrocytoma (DIA) are extremely rare tumors that typically arise in infancy; however, these entities have not been well characterized in terms of genetic alterations or clinical outcomes. Here, through a multi-institutional collaboration, the largest cohort of DIG/DIA to date is examined using advanced laboratory and data processing techniques. Targeted DNA exome sequencing and DNA methylation profiling were performed on tumor specimens obtained from different patients (

Hellweg R, Mooneyham A, Chang Z, et al.
RNA Sequencing of Carboplatin- and Paclitaxel-Resistant Endometrial Cancer Cells Reveals New Stratification Markers and Molecular Targets for Cancer Treatment.
Horm Cancer. 2018; 9(5):326-337 [PubMed] Related Publications
Despite advances in surgical technique and adjuvant treatment, endometrial cancer has recently seen an increase in incidence and mortality in the USA. The majority of endometrial cancers can be cured by surgery alone or in combination with adjuvant chemo- or radiotherapy; however, a subset of patients experience recurrence for reasons that remain unclear. Recurrence is associated with chemoresistance to carboplatin and paclitaxel and consequentially, high mortality. Understanding the pathways involved in endometrial cancer chemoresistance is paramount for the identification of biomarkers and novel molecular targets for this disease. Here, we generated the first matched pairs of carboplatin-sensitive/carboplatin-resistant and paclitaxel-sensitive/paclitaxel-resistant endometrial cancer cells and subjected them to bulk RNA sequencing analysis. We found that 45 genes are commonly upregulated in carboplatin- and paclitaxel-resistant cells as compared to controls. Of these, the leukemia inhibitory factor, (LIF), the protein tyrosine phosphatase type IVA, member 3 (PTP4A3), and the transforming growth factor beta 1 (TGFB1) showed a highly significant correlation between expression level and endometrial cancer overall survival (OS) and can stratify the 545 endometrial cancer patients in the TCGA cohort into a high-risk and low-risk-cohorts. Additionally, four genes within the 45 upregulated chemoresistance-associated genes are ADAMTS5, MICAL2, STAT5A, and PTP4A3 codes for proteins for which small-molecule inhibitors already exist. We identified these proteins as molecular targets for chemoresistant endometrial cancer and showed that treatment with their correspondent inhibitors effectively killed otherwise chemoresistant cells. Collectively, these findings underline the utility of matched pair of chemosensitive and chemoresistant cancer cells to identify markers for endometrial cancer risk stratification and to serve as a pharmacogenomics model for identification of alternative chemotherapy approaches for treatment of patients with recurrent disease.

Hass HG, Vogel U, Scheurlen M, Jobst J
Use of Gene Expression Analysis for Discrimination of Primary and Secondary Adenocarcinoma of the Liver.
Oncology. 2018; 95(4):211-219 [PubMed] Related Publications
BACKGROUND: Due to late diagnosis and resistance to chemotherapy, most patients with cholangiocarcinoma have an unfavorable prognosis. Despite the use of immunohistochemistry (IHC) in clinical routine, differentiation between intrahepatic cholangiocarcinoma (ICC) and secondary adenocarcinomas of the liver is frequently not clear, leading to false diagnosis and treatment decisions.
METHODS: Oligonucleotide microarrays (Affymetrix Hu133A©) were used for gene expression analysis of ICC (n = 11) and secondary adenocarcinomas (colorectal metastases; n = 6). By two-dimensional cluster analysis a specific gene expression profile of these tumors was established and confirmed by real-time polymerase chain reaction and IHC.
RESULTS: A total of 338 genes were significantly dysregulated (gene expression/fc ≥2; dysregulation in ≥60%) in both tumor groups. Using two-dimensional cluster analysis a fast, clear, and reproducible differentiation between ICC and colorectal metastases was possible in all cases. As potential biomarkers for differentiation, twelve genes (ICC: KRT7, DBN1, LCTB, LIF, STK17A, PIGF; metastases: TDGF1, HOXA9, TFF3, MYB, ABP1, BCL11A) were detected and will be used for further investigations.
CONCLUSIONS: A specific gene expression profile for discrimination of primary and secondary adenocarcinoma of the liver could be established. In addition, marker genes for both cancers and their potential use as discrimination markers in clinical routine were also described partially for the first time.

Takahashi C, Miyatake K, Kusakabe M, Nishida E
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
J Biol Chem. 2018; 293(22):8342-8361 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in

Nguyen EV, Centenera MM, Moldovan M, et al.
Identification of Novel Response and Predictive Biomarkers to Hsp90 Inhibitors Through Proteomic Profiling of Patient-derived Prostate Tumor Explants.
Mol Cell Proteomics. 2018; 17(8):1470-1486 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Inhibition of the heat shock protein 90 (Hsp90) chaperone is a promising therapeutic strategy to target expression of the androgen receptor (AR) and other oncogenic drivers in prostate cancer cells. However, identification of clinically-relevant responses and predictive biomarkers is essential to maximize efficacy and treatment personalization. Here, we combined mass spectrometry (MS)-based proteomic analyses with a unique patient-derived explant (PDE) model that retains the complex microenvironment of primary prostate tumors. Independent discovery and validation cohorts of PDEs (

Wang M, Wang M, Wang Z, et al.
Long non-coding RNA-CTD-2108O9.1 represses breast cancer metastasis by influencing leukemia inhibitory factor receptor.
Cancer Sci. 2018; 109(6):1764-1774 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Breast cancer (BC) is an aggressive malignant disease in women worldwide with a high tendency to metastasize. However, important biomarkers for BC metastasis remain largely undefined. In the present study, we identified that long non-coding RNA-CTD-2108O9.1 is downregulated in BC tissues and cells and acts as a metastatic inhibitor of BC. Mechanistic investigation determined that lncRNA-CTD-2108O9.1 represses metastasis by targeting leukemia inhibitory factor receptor (LIFR), which is designated as a metastasis suppressor in BC. Our study characterizes a significant tumor suppressor active in BC metastasis repression through the known metastasis inhibitor LIFR.

Farra R, Musiani F, Perrone F, et al.
Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness.
Molecules. 2018; 23(4) [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.

Huang K, Fang C, Yi K, et al.
The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes.
Theranostics. 2018; 8(6):1540-1557 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Exosomes play critical roles in intercellular communication in both nearby and distant cells in individuals and organs. Polymerase I and transcript release factor (PTRF), also known as Cavin1, has previously been described as a critical factor in caveola formation, and aberrant PTRF expression has been reported in various malignancies. However, the function of PTRF in tumor progression remains controversial, and its role in glioma is poorly understood. In this study, we report that PTRF is associated with malignancy grade and poor prognosis in glioma patients. Our previous study using two proteomics methods, tandem mass tag (TMT) and data-independent acquisition (DIA), showed that EGFRvIII overexpression increased PTRF expression at the protein level. In contrast, blocking PI3K and AKT using LY294002 and MK-2206, respectively, decreased PTRF expression, showing that PTRF is regulated in the EGFR/PI3K/AKT pathway. ChIP-PCR analysis showed that PTRF is transcriptionally regulated by the H3K4me3 and H3K27me3 modifications. Furthermore, PTRF overexpression increased exosome secretion and induced cell growth in vitro. More importantly, overexpressing PTRF induced the malignancy of nearby cells in vivo, suggesting that PTRF alters the microenvironment through intercellular communication via exosomes. Furthermore, analysis of clinical samples showed a positive correlation between tumor grade and PTRF expression in both tumor tissues and exosomes isolated from blood harvested from glioma patients, and PTRF expression in exosomes isolated from the sera of GBM patients was decreased after surgery. In conclusion, PTRF serves as a promising biomarker in both tumor samples and serum exosomes, thus facilitating the detection of glioma and potentially serving as a therapeutic target for glioblastoma multiforme.

Ohata Y, Tsuchiya M, Hirai H, et al.
Leukemia inhibitory factor produced by fibroblasts within tumor stroma participates in invasion of oral squamous cell carcinoma.
PLoS One. 2018; 13(2):e0191865 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
The interaction between cancer cells and the cancer stroma plays a crucial role in tumor progression and metastasis in diverse malignancies, including oral cancer. However, the mechanism underlying this interaction remains incompletely elucidated. Here, to investigate the interaction between oral cancer cells and fibroblasts, which are major cellular components of the tumor stroma, we conducted an in vitro study by using human oral squamous cell carcinoma (OSCC) cell lines and normal human dermal fibroblasts (NHDFs). The results of transwell assays revealed that the migration and invasion of 2 OSCC cell lines, HO1-N-1 and HSC3, were markedly stimulated upon coculturing with NHDFs. To investigate the factors that promote tumor invasion, we isolated NHDFs from cocultures prepared with HO1-N-1 cells and performed microarray analysis. Among the various genes that were upregulated, we identified the gene encoding leukemia inhibitory factor (LIF), and we focused on LIF in further analyses. We confirmed that all OSCC-derived conditioned media potently upregulated LIF expression in NHDFs, and the results of our transwell analysis demonstrated that NHDF-induced OSCC migration and invasion were inhibited by LIF-neutralizing antibodies. Furthermore, immunohistochemical analysis of patient samples revealed that in 44 out of 112 OSCC cases, LIF was expressed in the tumor stroma, particularly in cancer-associated fibroblasts (CAFs), and, notably, clinicopathological analyses confirmed that LIF expression in CAFs was significantly correlated with increased depth of tumor invasion. Collectively, our results suggest that OSCC stimulates fibroblasts to produce LIF, which, in turn, participates in cancer-cell invasion. Our finding offers a potential therapeutic strategy targeting the cancer stroma for the treatment of OSCC patients.

Edwards DR, Moroz K, Zhang H, et al.
PRL‑3 increases the aggressive phenotype of prostate cancer cells in vitro and its expression correlates with high-grade prostate tumors in patients.
Int J Oncol. 2018; 52(2):402-412 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
The increased expression of phosphatase of regenerating liver-3 (PRL‑3) has been shown to be associated with the aggressive and metastatic phenotype of different solid tumors. However, it is not known whether PRL‑3 plays a similar role in the progression of prostate cancer (PCa). In this study, immunoblot analysis of androgen receptor (AR)-positive PCa lines (LNCaP and LNCaP‑SF) revealed the constitutive cytoplasmic expression of PRL‑3, and stimulation with R1881 (AR agonist) rapidly increased the nuclear translocation of PRL‑3. The AR-negative cell lines exhibited negligible PRL‑3 expression, and the ectopic overexpression of PRL‑3 increased both the proliferative and invasive potential of PC3 and DU145 cells. In addition, we measured PRL‑3 protein expression in human prostate tumor sections. A high-density prostate tumor microarray (TMA) was immunostained to assess whether PRL‑3 expression and its subcellular localization (cytoplasmic and nuclear levels) is associated with the Gleason score (GS), Gleason grade (GG) and tumor stage (T-stage). Digital image analysis (DIA) revealed that PRL‑3 expression was significantly higher in the malignant cores, as compared to the non‑malignant areas. Increases in both total and nuclear PRL‑3 levels were also associated with a higher GS and GG. Metastatic tumors (T4‑stage) had lower cytoplasmic, but higher nuclear PRL‑3 levels. Furthermore, the nuclear/cytoplasmic ratio for PRL‑3 in the tumors graded as GS7 could effectively distinguish between indolent (3+4) and aggressive (4+3) disease. Thus, our experiments using PCa lines suggested that PRL‑3 is an AR-regulated gene and its androgen-induced nuclear localization may increase the aggressive behavior of PCa cells. Furthermore, the digital analysis of immunostained tumor sections suggested that PRL‑3 may be an effective biomarker of high-grade PCa, and its nuclear/cytoplasmic ratio may be used to distinguish between indolent vs. aggressive tumors.

Nguyen MT, Ho-Huynh TD
Nam Dia long, a Vietnamese folk formula, induces apoptosis in MCF-7 cells through various mechanisms of action.
BMC Complement Altern Med. 2017; 17(1):522 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
BACKGROUND: The holistic approach of traditional medicine renders the identification of its mechanisms of action difficult. Microarray technology provides an efficient way to analyze the complex genome-wide gene expression of cells treated with mixtures of medicinal ingredients. We performed transcriptional profiling of MCF-7 cells treated with Nam Dia Long (NDL), a Vietnamese traditional formula, to explore the mechanism of action underlying the apoptosis inducing effect of this formula reported in a previous study.
METHODS: MCF-7 cells were treated with aqueous extracts of NDL at the IC
RESULTS: Fifty-four and 601 genes were differentially expressed at 24 and 48 h of NDL treatment, respectively. Genes with altered expression at 24 h were mostly involved in cell responses to xenobiotic stress whereas genes differentially expressed at 48 h were related to endoplasmic reticulum stress, DNA damage and cell cycle control. Apoptosis of NDL treated MCF-7 cells resulted from a combination of different mechanisms including the intrinsic and extrinsic pathways, cell cycle arrest- and oxidative stress-related cell death.
CONCLUSION: NDL elicited a two-stage response in MCF-7 treated cells with apoptosis as the ultimate result. The various mechanisms inducing apoptosis reflected the complexity of the formula composition.

Song Y, Zhong L, Zhou J, et al.
Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.
Proteomics Clin Appl. 2017; 11(11-12) [PubMed] Related Publications
PURPOSE: Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation.
EXPERIMENTAL DESIGN: Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues.
RESULTS: More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results.
CONCLUSIONS AND CLINICAL RELEVANCE: The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis.

Chen X, Fan Z, McGee W, et al.
TDP-43 regulates cancer-associated microRNAs.
Protein Cell. 2018; 9(10):848-866 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.

Alonso-Calvo R, Paraiso-Medina S, Perez-Rey D, et al.
A semantic interoperability approach to support integration of gene expression and clinical data in breast cancer.
Comput Biol Med. 2017; 87:179-186 [PubMed] Related Publications
INTRODUCTION: The introduction of omics data and advances in technologies involved in clinical treatment has led to a broad range of approaches to represent clinical information. Within this context, patient stratification across health institutions due to omic profiling presents a complex scenario to carry out multi-center clinical trials.
METHODS: This paper presents a standards-based approach to ensure semantic integration required to facilitate the analysis of clinico-genomic clinical trials. To ensure interoperability across different institutions, we have developed a Semantic Interoperability Layer (SIL) to facilitate homogeneous access to clinical and genetic information, based on different well-established biomedical standards and following International Health (IHE) recommendations.
RESULTS: The SIL has shown suitability for integrating biomedical knowledge and technologies to match the latest clinical advances in healthcare and the use of genomic information. This genomic data integration in the SIL has been tested with a diagnostic classifier tool that takes advantage of harmonized multi-center clinico-genomic data for training statistical predictive models.
CONCLUSIONS: The SIL has been adopted in national and international research initiatives, such as the EURECA-EU research project and the CIMED collaborative Spanish project, where the proposed solution has been applied and evaluated by clinical experts focused on clinico-genomic studies.

Fennell LJ, Clendenning M, McKeone DM, et al.
RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers.
Fam Cancer. 2018; 17(1):63-69 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers. This study assesses the relative frequency of RNF43 mutations in hereditary colorectal cancers arising in the setting of Lynch syndrome. The entire coding region of RNF43 was Sanger sequenced in 24 colorectal cancers from 23 patients who either (i) carried a germline mutation in one of the DNA mismatch repair genes (MLH1, MSH6, MSH2, PMS2), or (ii) showed immunohistochemical loss of expression of one or more of the DNA mismatch repair proteins, was BRAF wild type at V600E, were under 60 years of age at diagnosis, and demonstrated no promoter region methylation for MLH1 in tumor DNA. A validation cohort of 44 colorectal cancers from mismatch repair germline mutation carriers from the Australasian Colorectal Cancer Family Registry (ACCFR) were sequenced for the most common truncating mutation hotspots (X117 and X659). RNF43 mutations were found in 9 of 24 (37.5%) Lynch syndrome colorectal cancers. The majority of mutations were frameshift deletions in the G659 G7 repeat tract (29%); 2 cancers (2/24, 8%) from the one patient harbored frameshift mutations at codon R117 (C6 repeat tract) within exon 3. In the ACCFR validation cohort, RNF43 hotspot mutations were identified in 19/44 (43.2%) of samples, which was not significantly different to the initial series. The proportion of mutant RNF43 in Lynch syndrome related colorectal cancers is significantly lower than the previously reported mutation rate found in sporadic MSI colorectal cancers. These findings identify further genetic differences between sporadic and hereditary colorectal cancers. This may be because Lynch Syndrome cancers commonly arise in colorectal adenomas already bearing the APC mutation, whereas sporadic microsatellite unstable colorectal cancers arise from serrated polyps typically lacking APC mutation, decreasing the selection pressure on other WNT signaling related loci in Lynch syndrome.

Won H, Moreira D, Gao C, et al.
TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs.
J Leukoc Biol. 2017; 102(2):423-436 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Proinflammatory signals promote prostate tumorigenesis and progression, but their origins and downstream effects remain unclear. We recently demonstrated that the expression of an innate immune receptor, TLR9, by prostate cancer cells is critical for their tumor-propagating potential. We investigated whether cancer cell-intrinsic TLR9 signaling alters composition of the prostate tumor microenvironment. We generated Ras/Myc (RM9) and Myc-driven (Myc-CaP) prostate cancer cells expressing the tetracycline-inducible gene

Imajo M, Kondoh K, Yamamoto T, et al.
Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells.
Mol Cell Biol. 2017; 37(15) [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Deregulated activation of RAS/extracellular signal-regulated kinase (ERK) signaling and defects in retinoic acid receptor (RAR) signaling are both implicated in many types of cancers. However, interrelationships between these alterations in regulating cancer cell fates have not been fully elucidated. Here, we show that RAS/ERK and RAR signaling pathways antagonistically interact with each other to regulate colorectal cancer (CRC) cell fates. We show that RAR signaling activation promotes spontaneous differentiation of CRC cells, while ERK activation suppresses it. Our microarray analyses identify genes whose expression levels are upregulated by RAR signaling. Notably, one of these genes,

Sanchez-Diaz PC, Chang JC, Moses ES, et al.
Ubiquitin carboxyl-terminal esterase L1 (UCHL1) is associated with stem-like cancer cell functions in pediatric high-grade glioma.
PLoS One. 2017; 12(5):e0176879 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Pediatric high-grade gliomas represent 8-12% of all primary tumors of the nervous system in children. Five-year survival for these pediatric aggressive tumors is poor (15-35%) indicating the need to develop better treatments for pediatric high-grade gliomas. In this work we used SF188 and SJ-GBM2 cell lines to study the function of the ubiquitin carboxyl-terminal esterase L1 (UCHL1), a deubiquitinase de-regulated in several cancers, in pediatric high-grade gliomas. UCHL1 depletion in SF188 and SJ-GBM2 glioma cells was associated with decreased cell proliferation and invasion, along with a reduced ability to grow in soft agar and to form spheres (i.e. self-renewal measure). A 70% reduction in Wnt signaling was also observed in the SF188 and SJ-GBM2 UCHL1 knockdowns (KDs) using a TCF-dependent TOPflash reporter assay. Transcriptome comparisons of UCHL1 KDs versus vector control identified a list of 306 differentially expressed genes (at least 2-fold change; p <0.05) which included genes known to be involved in cancer like ACTA2, POSTN, LIF, FBXL7, FBXW11, GDF15, HEY2, but also potential novel genes such us IGLL5, ABCA4, AQP3, AQP4, CALB1, and ALK. Bioinformatics gene ontology (GO) analysis of these 306 genes revealed significant enrichment in "signal peptides", "extracellular matrix"and "secreted proteins" GO Terms. "Angiogenesis and blood vessel development", "neuron differentiation/development", cell adhesion", and "cell migration" also showed significant enrichment in our GO analysis. Top canonical pathways identified by Ingenuity Pathway Analysis (IPA) included "Clathrin-mediated Endocytosis Signaling" (p = 5.14x10-4), "Virus Entry via Endocytic Pathways" (p = 6.15x 10-4), and "High Mobility Group-Box 1 (HMGB1) Signaling" (p = 6.15x10-4). While FGF2, IL1B, TNF and PDGFB were predicted as top upstream regulators (p < 2x10-16) of the UCHL1 KD-associated transcriptome. Aberrant expression of UCHL1 in pediatric high-grade gliomas may promote cell invasion, transformation, and self-renewal properties, at least in part, by modulating Wnt/Beta catenin activity. UCHL1 might act as an oncogene in glioma within the gene network that imparts stem-like characteristics to these cancer cells.

Qian L, Xu F, Wang X, et al.
LncRNA expression profile of ΔNp63α in cervical squamous cancers and its suppressive effects on LIF expression.
Cytokine. 2017; 96:114-122 [PubMed] Related Publications
We aim to determine the lncRNA targets of ΔNp63α in cervical cancer and molecular programs in cancerous differentiation. Different profiles of the lncRNAs were assayed and validated in overexpressing p63 SiHa cells (SiHa/ΔNp63α) and the control cell lines (SiHa/pCon). ENST00000422259, ENST00000447565 (Lnc-LIF-AS) and ENST00000469965, together with their related antisense mRNA DPYD (dihydropyrimidine dehydrogenase, a pyrimidine catabolic pathway gene), LIF (leukemia inhibitor factor) and FLNC (filamin C) were all notably differentially expressed in both ΔNp63α overexpression cells and knockdown cells. Here, we illustrated that ΔNp63α can inhibit the levels of LIF mRNA by direct transcription regulation and decrease LIF mRNA stability by suppressing the expression of Lnc-LIF-AS. An inverse interaction of LIF and ΔNp63α expression was as well validated in clinical samples of cervical cancer, and high level of LIF in cervical cancers was related with poor patient survival. The decrease of ΔNp63α also attenuated the differentiation of cervical cancerous cells. Suggesting that ΔNp63α may be form a complex network in regulation cervical cancerous differentiation.

Luo L, Orlow I, Kanetsky PA, et al.
No prognostic value added by vitamin D pathway SNPs to current prognostic system for melanoma survival.
PLoS One. 2017; 12(3):e0174234 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
The prognostic improvement attributed to genetic markers over current prognostic system has not been well studied for melanoma. The goal of this study is to evaluate the added prognostic value of Vitamin D Pathway (VitD) SNPs to currently known clinical and demographic factors such as age, sex, Breslow thickness, mitosis and ulceration (CDF). We utilized two large independent well-characterized melanoma studies: the Genes, Environment, and Melanoma (GEM) and MD Anderson studies, and performed variable selection of VitD pathway SNPs and CDF using Random Survival Forest (RSF) method in addition to Cox proportional hazards models. The Harrell's C-index was used to compare the performance of model predictability. The population-based GEM study enrolled 3,578 incident cases of cutaneous melanoma (CM), and the hospital-based MD Anderson study consisted of 1,804 CM patients. Including both VitD SNPs and CDF yielded C-index of 0.85, which provided slight but not significant improvement by CDF alone (C-index = 0.83) in the GEM study. Similar results were observed in the independent MD Anderson study (C-index = 0.84 and 0.83, respectively). The Cox model identified no significant associations after adjusting for multiplicity. Our results do not support clinically significant prognostic improvements attributable to VitD pathway SNPs over current prognostic system for melanoma survival.

Gulluoglu S, Sahin M, Tuysuz EC, et al.
Leukemia Inhibitory Factor Promotes Aggressiveness of Chordoma.
Oncol Res. 2017; 25(7):1177-1188 [PubMed] Related Publications
Chordomas are rare tumors of the spine and skull base that are locally destructive and resistant to chemotherapy and radiation therapy, with a poor prognosis and limited therapeutic options. Chordoma patients have a long life expectancy with high mortality from the disease. Cancer stem cells, which are known to exist in chordomas, have extensive proliferative and self-renewal potential and are responsible for maintaining tumor heterogeneity along with chemotherapy and radiotherapy resistance. Leukemia inhibitory factor (LIF) has multiple functions in stem cell biology, the immune response, and cancer, and is potentially a key molecule that allows cancer stem cells to self-renew. The purpose of this study was to determine whether LIF increases the aggressive traits of chordoma cells and leads to a poor prognosis in patients. Chordoma cell lines were treated with LIF, and functional tests were done. Twenty skull base chordoma samples were checked for levels of LIF and a correlation with clinicopathological features. The whole transcriptome microarray was used to observe changes in gene expression. We observed increased migration, invasion, tumorosphere formation, colony formation, epithelial-mesenchymal transition, and chemoresistance accompanied by a dramatic elevation in inflammatory gene networks and pathways in chordomas. The expression of LIF was associated with tumor size and a poorer overall survival. Microarray and quantitative real-time polymerase chain reaction assessments suggest that LIF can facilitate tumor-promoting inflammation. Results indicate that LIF plays a role in maintaining cancer stem cells in chordomas.

Edwards LA, Li A, Berel D, et al.
ZEB1 regulates glioma stemness through LIF repression.
Sci Rep. 2017; 7(1):69 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
The identification of a stem cell regulatory gene which is aberrantly expressed in glioma and associated with patient survival would increase the understanding of the role of glioma cancer stem cells (GCSCs) in the virulence of gliomas. Interrogating the genomes of over 4000 brain cancers we identified ZEB1 deletion in ~15% (grade II and III) and 50% of glioblastomas. Meta-analysis of ZEB1 copy number status in 2,988 cases of glioma revealed disruptive ZEB1 deletions associated with decreased survival. We identified ZEB1 binding sites within the LIF (stemness factor) promoter region, and demonstrate LIF repression by ZEB1. ZEB1 knockdown in GCSCs caused LIF induction commensurate with GCSC self-renewal and inhibition of differentiation. IFN-γ treatment to GCSCs induced ZEB1 expression, attenuating LIF activities. These findings implicate ZEB1 as a stem cell regulator in glioma which when deleted leads to increased stemness, tumorigenicity and shortened patient survival.

Bonan S, Albrengues J, Grasset E, et al.
Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts.
Oncotarget. 2017; 8(1):1304-1320 [PubMed] Article available free on PMC after 15/03/2020 Related Publications
Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in fibroblasts, we identified the glycoprotein ICAM-1 as a crucial regulator of stroma fibroblast proinvasive matrix remodeling. We demonstrate that the membrane-bound ICAM-1 isoform is necessary and sufficient to promote inflammation-dependent extracellular matrix contraction, which favors cancer cell invasion. Indeed, ICAM-1 mediates generation of acto-myosin contractility downstream of the Src kinases in stromal fibroblasts. Moreover, acto-myosin contractility regulates ICAM-1 expression by establishing a positive feedback signaling. Thus, targeting stromal ICAM-1 might constitute a possible therapeutic mean to counteract tumor cell invasion and dissemination.

Wang J, Xie C, Pan S, et al.
N-myc downstream-regulated gene 2 inhibits human cholangiocarcinoma progression and is regulated by leukemia inhibitory factor/MicroRNA-181c negative feedback pathway.
Hepatology. 2016; 64(5):1606-1622 [PubMed] Related Publications
Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients.
CONCLUSION: These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).

Zeng H, Qu J, Jin N, et al.
Feedback Activation of Leukemia Inhibitory Factor Receptor Limits Response to Histone Deacetylase Inhibitors in Breast Cancer.
Cancer Cell. 2016; 30(3):459-473 [PubMed] Related Publications
Histone deacetylase (HDAC) inhibitors have demonstrated clinical benefits in subtypes of hematological malignancies. However, the efficacy of HDAC inhibitors in solid tumors remains uncertain. This study takes breast cancer as a model to understand mechanisms accounting for limited response of HDAC inhibitors in solid tumors and to seek combination solutions. We discover that feedback activation of leukemia inhibitory factor receptor (LIFR) signaling in breast cancer limits the response to HDAC inhibition. Mechanistically, HDAC inhibition increases histone acetylation at the LIFR gene promoter, which recruits bromodomain protein BRD4, upregulates LIFR expression, and activates JAK1-STAT3 signaling. Importantly, JAK1 or BRD4 inhibition sensitizes breast cancer to HDAC inhibitors, implicating combination inhibition of HDAC with JAK1 or BRD4 as potential therapies for breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LIF, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999