Gene Summary

Gene:MMP12; matrix metallopeptidase 12
Aliases: ME, HME, MME, MMP-12
Summary:This gene encodes a member of the peptidase M10 family of matrix metalloproteinases (MMPs). Proteins in this family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. The encoded preproprotein is proteolytically processed to generate the mature protease. This protease degrades soluble and insoluble elastin. This gene may play a role in aneurysm formation and mutations in this gene are associated with lung function and chronic obstructive pulmonary disease (COPD). This gene is part of a cluster of MMP genes on chromosome 11. [provided by RefSeq, Jan 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:macrophage metalloelastase
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 09 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MMP12 (cancer-related)

Hass HG, Vogel U, Scheurlen M, Jobst J
Gene-expression Analysis Identifies Specific Patterns of Dysregulated Molecular Pathways and Genetic Subgroups of Human Hepatocellular Carcinoma.
Anticancer Res. 2016; 36(10):5087-5095 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma comprises of a group of heterogeneous tumors of different etiologies. The multistep process of liver carcinogenesis involves various genetic and phenotypic alterations. The molecular pathways and driver mutations involved are still under investigation.
MATERIALS AND METHODS: DNA micorarray technology was used to identify differentially expressed genes between human hepatocarcinoma and non-tumorous liver tissues to establish a unique specific gene-expression profile independent of the underlying liver disease. The validity of this global gene-expression profile was tested for its robustness against biopsies from other liver entities (cirrhotic and non-cirrhotic liver) by diagnosing HCC in blinded samples.
RESULTS: Most of the consistently and strongly overexpressed genes were related to cell-cycle regulation and DNA replication [27 genes, e.g. cyclin B1, karyopherin alpha 2 (KPNA2), cyclin-dependent kinase 2 (CDC2)], G-protein depending signaling [e.g. Rac GTPase activating protein 1 (RACGAP1), Rab GTPase YPT1 homolog (RAB1), and ADP-ribosylation factor-like 2 (ARL2)] and extracellular matrix re-modelling or cytoskeleton structure [22 genes, e.g. serine proteinase inhibitor 1 kazal-type (SPINK1), osteopontin (OPN), secreted protein acidic and rich in cysteine (SPARC), collagen type 1 alpha2 (COL1A2), integrin alpha6 (ITGA6), and metalloproteinase 12 (MMP12)]. Furthermore, significantly differentially expressed genes (e.g. calcium-binding proteins, G-proteins, oncofetal proteins) in relation to tumor differentiation were detected using gene-expression analysis.
CONCLUSION: It is suggested that these significantly dysregulated genes are highly specific and potentially utilizable as prognostic markers and may lead to a better understanding of human hepatocarcinogenesis.

Shang D, Zheng T, Zhang J, et al.
Profiling of mRNA and long non-coding RNA of urothelial cancer in recipients after renal transplantation.
Tumour Biol. 2016; 37(9):12673-12684 [PubMed] Related Publications
The molecular mechanism and signal transduction pathways involved in urothelial cancer (UC) after renal transplantation (RTx) remain unknown. In this study, we investigated the profiling of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in RTx recipients with UC. The mRNA and lncRNA of six pairs of UC and corresponding normal urothelial tissues in RTx recipients were profiled using Arraystar Human lncRNA Microarray V3.0, which is designed for the global profiling of 26,109 coding transcripts and 30,586 lncRNAs. Quantitative real-time PCR (qRT-PCR) was used to validate the differentially expressed mRNAs and lncRNAs. Molecular function classification and biological process classification for the differentially expressed mRNAs were analyzed with Gene Ontology. The key pathways that were associated with UC after RTx were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Compared to normal urothelial tissues, 1597 mRNAs were upregulated and 1032 mRNAs were downregulated in UC; 2107 lncRNAs were upregulated and 1794 lncRNAs were downregulated (greater than twofold). Further qRT-PCR analysis of mRNA and lncRNA expression showed well consistency with the data of microarray analysis. The expression of matrix metalloprotease (MMP)-3, MMP-10, MMP-12, and MMP-13 was significantly increased, while the expression of CD36 was decreased in UC after RTx. Co-expression analysis of lncRNAs and their nearby coding genes showed that lncRNAs may play critical roles in regulating nearby genes in the carcinogenesis of UC. Our results also suggest that peroxisome proliferator-activated receptor (PPAR) signaling may be involved in UC after RTx. Moreover, several cytokines and their receptors were also significantly upregulated in UC after RTx, suggesting that cytokines might be modulated and participated in the carcinogenesis of UC after RTx. We analyzed the potential molecular mechanism and pathways involved in the UC of RTx recipients. Our results revealed that several key regulatory pathways and lncRNAs play critical roles in the carcinogenesis of UC, and suggest that UC in RTx recipients may be more likely to invade and metastasis. However, the detailed functional analysis of these mechanisms should be further performed in the future.

Wan Z, Jiang D, Chen S, et al.
T-box transcription factor brachyury promotes tumor cell invasion and metastasis in non-small cell lung cancer via upregulation of matrix metalloproteinase 12.
Oncol Rep. 2016; 36(1):306-14 [PubMed] Related Publications
T-box transcription factor brachyury and matrix metalloproteinases (MMPs) play important roles in non-small cell lung cancer (NSCLC) cell invasion and metastasis. However, the association between Brachyury and the MMP family has not yet been fully investigated. The present study aimed to assess the influence of Brachyury on the expression of 23 MMP members and to further explore the mechanisms involved in the promotion of NSCLC cell invasion by Brachyury and MMPs in the H460 and H1299 stable cell lines. The protein expression levels and correlations between the brachyury transcription factor and the targeted MMPs were also validated in 52 NSCLC patient tissue samples. We observed that brachyury significantly upregulated MMP12 expression to promote NSCLC cell invasion. We also found a potential binding site for the brachyury transcription factor in the MMP12 promoter.

Cao W, Wei W, Zhan Z, et al.
MiR-1284 modulates multidrug resistance of gastric cancer cells by targeting EIF4A1.
Oncol Rep. 2016; 35(5):2583-91 [PubMed] Related Publications
Routine chemotherapy as an important treatment mode often can not be effective because of multidrug resistance (MDR). MicroRNA (miRNA) modulates the expression of a great number of genes, including MDR. In this study, the expression of miR-1284 was reduced in gastric cancer (GC) tissue specimens with metastasis and in vincristine-resistant (VCR) GC SGC7901 cells (SGC-7901/VCR) compared to that in the controls. Recombinant lentiviral vectors with miR-1284 led to the overexpression of miR-1284 mRNA and reversed the chemoresistance of SGC7901/VCR cells, promoted cell cycle arrested at the G0/G1 phase, accelerated drug-induced apoptosis, and decreased migration and invasiveness of SGC-7901/VCR. In addition, the overexpression of miR-1284 sensitized tumors to chemotherapy in vivo. Our data provide combined evidence that miR-1284 can heighten the expression of MYC and reduce the expression of JUN, MMP12, and EIF4A1 that was the direct target. In conclusion, miR-1284 can function as a new regulator to reduce GC MDR cells by targeting EIF4A1.

Niu H, Hu Z, Liu H, et al.
Long non-coding RNA AK027294 involves in the process of proliferation, migration, and apoptosis of colorectal cancer cells.
Tumour Biol. 2016; 37(8):10097-105 [PubMed] Free Access to Full Article Related Publications
This study is aimed to investigate the differentially expressed long non-coding RNAs (lncRNAs) in colorectal cancer and its potential biological function. Colorectal adenoma is the precancerous lesions of colorectal cancer, so in this study, we used colorectal adenoma as negative control. The global lncRNA expression profile in colorectal cancer and adenoma was evaluated by bioinformatics. The biological functions and potential mechanism of AK027294 were investigated in HCT116, HCT8, and SW480 colorectal cancer cells. A total of 135 lncRNAs were found to be differentially expressed in colorectal cancer and adenoma tissues. Among them, 71 lncRNAs were up-regulated and 64 lncRNAs were down-regulated. Especially, AK027294 was found to be highly expressed in colorectal cancer tissues compared with colorectal adenoma tissues (fold change is 184.5). Our results indicated that AK027294 down-regulation significantly inhibited colorectal cancer cells proliferation and migration, but promoted cell apoptosis (P < 0.05). The potential mechanism of AK027294 might be associated with the regulation of caspase-3, caspase-8, Bcl-2, MMP12, MMP9, and TWIST. The lncRNA expression profile in colorectal cancer suggests lncRNAs may play important roles in the occurrence and progression of colorectal cancer. AK027294 is highly expressed in colorectal cancer and closely correlates with colorectal cells proliferation, migration, and apoptosis.

Warnecke-Eberz U, Metzger R, Hölscher AH, et al.
Diagnostic marker signature for esophageal cancer from transcriptome analysis.
Tumour Biol. 2016; 37(5):6349-58 [PubMed] Related Publications
Esophageal cancer is often diagnosed at an advanced stage. Diagnostic markers are needed for achieving a cure in esophageal cancer detecting and treating tumor cells earlier. In patients with locally advanced squamous cell carcinoma of the esophagus (ESCC), we profiled the gene expression of ESCC compared to corresponding normal biopsies for diagnostic markers by genome microarrays. Profiling of gene expression identified 4844 genes differentially expressed, 2122 upregulated and 2722 downregulated in ESCC. Twenty-three overexpressed candidates with best scores from significance analysis have been selected for further analysis by TaqMan low-density array-technique using a validation cohort of 40 patients. The verification rate was 100 % for ESCC. Twenty-two markers were additionally overexpressed in adenocarcinoma of the esophagus (EAC). The markers significantly overexpressed already in earlier tumor stages (pT1-2) of both histological subtypes (n = 19) have been clustered in a "diagnostic signature": PLA2G7, PRAME, MMP1, MMP3, MMP12, LIlRB2, TREM2, CHST2, IGFBP2, IGFBP7, KCNJ8, EMILIN2, CTHRC1, EMR2, WDR72, LPCAT1, COL4A2, CCL4, and SNX10. The marker signature will be translated to clinical practice to prove its diagnostic impact. This diagnostic signature may contribute to the earlier detection of tumor cells, with the aim to complement clinical techniques resulting in the development of better detection of concepts of esophageal cancer for earlier therapy and more favorite prognosis.

Agostini M, Janssen KP, Kim IJ, et al.
An integrative approach for the identification of prognostic and predictive biomarkers in rectal cancer.
Oncotarget. 2015; 6(32):32561-74 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Colorectal cancer is the third most common cancer in the world, a small fraction of which is represented by locally advanced rectal cancer (LARC). If not medically contraindicated, preoperative chemoradiotherapy, represent the standard of care for LARC patients. Unfortunately, patients shows a wide range of response rates in which approximately 20% has a complete pathological response, whereas in 20 to 40% the response is poor or absent.
RESULTS: The following specific gene signature, able to discriminate responders' patients from non-responders, were founded: AKR1C3, CXCL11, CXCL10, IDO1, CXCL9, MMP12 and HLA-DRA. These genes are mainly involved in immune system pathways and interact with drugs traditionally used in the adjuvant treatment of rectal cancer.
DISCUSSION: The present study suggests that new ideas for therapy could be found not only limited to studying genes differentially expressed between the two groups of patients but deepening the mechanisms, associated to response, in which they are involved.
METHODS: Gene expression studies performed by: Agostini et al., Rimkus et al. and Kim et al. have been merged through a meta-analysis of the raw data. Gene expression data-sets have been processed using A-MADMAN. Common differentially expressed gene (DEG) were identified through SAM analysis. To further characterize the identified DEG we deeply investigated its biological role using an integrative computational biology approach.

Yang S, Long M, Tachado SD, Seng S
Cigarette smoke modulates PC3 prostate cancer cell migration by altering adhesion molecules and the extracellular matrix.
Mol Med Rep. 2015; 12(5):6990-6 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) is the second leading cause of cancer‑related mortality among American males. Studies suggest that cigarette smoking is associated with the progression of PCa; however, the molecular mechanisms underlying this process have not been extensively investigated. PCa progression is characterized by increased cell migration and alterations in extracellular matrix (ECM)‑ and cell adhesion molecule (CAM)‑related gene expression. In the present study, the influence of cigarette smoke medium (SM) on cell migration and on the expression of ECM‑ and CAM‑related genes in PC3 prostate adenocarcinoma cells was investigated. According to a wound‑healing assay, SM treatment promoted PC3 cell migration. RNA expression levels from SM‑treated and control cells were analyzed using a polymerase chain reaction (PCR) array. Of 84 genes analyzed, 27.38% (23/84) exhibited a ≥2‑fold change in threshold cycle in PC3 cells following 0.5% SM treatment. Functional gene grouping analysis demonstrated that SM treatment modulated the RNA transcription of approximately 18.4% of CAMs and 33.93% of ECM‑related genes. Quantitative PCR analysis showed that SM treatment led to a significant decrease in transcription levels of the following genes: Collagen 5 α‑1(V), connective tissue growth factor, integrin β‑2, kallmann syndrome 1, laminin α 3, matrix metallopeptidase 7 (MMP7), MMP13, secreted protein acidic cysteine‑rich, thrombospondin‑2 and versican; and that SM significantly increased the transcription levels of MMP2 and MMP12. Furthermore, MMP2 knockdown significantly reduced the migration of SM‑treated PC3 cells. The present study provides novel insights into the association of cigarette smoking with PCa progression, via the alteration of ECM/CAM interactions.

Bonnefont-Rebeix C, Fournel-Fleury C, Ponce F, et al.
Characterization of a novel canine T-cell line established from a spontaneously occurring aggressive T-cell lymphoma with large granular cell morphology.
Immunobiology. 2016; 221(1):12-22 [PubMed] Related Publications
Dogs with lymphoma are established as good model for human non-Hodgkin lymphoma studies. Canine cell lines derived from lymphomas may be valuable tools for testing new therapeutic drugs. In this context, we established a canine T-cell line, PER-VAS, from a primary aggressive T-cell lymphoma with large granular morphology. Flow cytometric analysis revealed a stable immunophenotype: PER-VAS cells were positively labelled for CD5, CD45, MHC II and TLR3, and were negative for CD3, CD4 and CD8 expression. Although unstable along the culture process, IL-17 and MMP12 proteins were detectable as late as at passages 280 and 325i.e. respectively 24 and 29 months post isolation. At passage 325, PER-VAS cells maintained the expression of IL-17, CD3, CD56, IFNγ and TNFα mRNAs as shown by RT-PCR analysis. Stable rearrangement of the TCRγ gene has been evidenced by PCR. PER-VAS cells have a high proliferation index with a doubling time of 16.5h and were tumorigenic in Nude mice. Compared to the canine cell lines already reported, PER-VAS cells display an original expression pattern, close to NKT cells, which makes them valuable tools for in vitro comparative research on lymphomas.

Zhang Z, Zhu S, Yang Y, et al.
Matrix metalloproteinase-12 expression is increased in cutaneous melanoma and associated with tumor aggressiveness.
Tumour Biol. 2015; 36(11):8593-600 [PubMed] Related Publications
Cutaneous melanoma is the most malignant form of skin cancer characterized by aggressive invasion. Matrix metalloproteinases play essential roles in tumor invasion due to their ECM degrading capacity. However, the clinical significance of matrix metalloproteinasis (MMP)-12 in human cutaneous melanoma has not been addressed yet. In the present study, we investigated MMP-12 expression level in 298 patients with cutaneous melanoma and 60 normal skin tissue specimens by immunohistochemistry assay. Appropriate statistical analysis was utilized to determine the association of MMP-12 with clinical features and prognosis of melanoma. Results showed that MMP-12 expression was increased in cutaneous melanoma compared with that in normal skin. It was also found that MMP-12 expression in melanoma was significantly associated with tumor invasion and metastasis. Univariate survival analysis indicated that patients with melanoma of high MMP-12 expression had unfavorable overall survival compared with those of low MMP-12 expression. Cox's proportional hazards analysis showed that MMP-12 expression was an independent prognostic marker of overall survival for patients with cutaneous melanoma. These results proved that MMP-12 expression was increased in cutaneous melanoma and associated with tumor progression. It also provided the first evidence that MMP-12 level could be an independent prognostic marker for patients with cutaneous melanoma.

Gump JM, Donson AM, Birks DK, et al.
Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.
Acta Neuropathol Commun. 2015; 3:30 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP.
RESULTS: Using mRNA microarray gene expression analysis of 15 ACP patient samples, we have found several pharmaceutical targets that are significantly and consistently overexpressed in our panel of ACP relative to other pediatric brain tumors, pituitary tumors, normal pituitary and normal brain tissue. Among the most highly expressed are several targets of the kinase inhibitor dasatinib - LCK, EPHA2 and SRC; EGFR pathway targets - AREG, EGFR and ERBB3; and other potentially actionable cancer targets - SHH, MMP9 and MMP12. We confirm by western blot that a subset of these targets is highly expressed in ACP primary tumor samples.
CONCLUSIONS: We report here the first published transcriptome for ACP and the identification of targets for rational therapy. Experimental drugs targeting each of these gene products are currently being tested clinically and pre-clinically for the treatment of other tumor types. This study provides a rationale for further pre-clinical and clinical studies of novel pharmacological treatments for ACP. Development of mouse and cell culture models for ACP will further enable the translation of these targets from the lab to the clinic, potentially ushering in a new era in the treatment of ACP.

Tian ZQ, Li ZH, Wen SW, et al.
Identification of Commonly Dysregulated Genes in Non-small-cell Lung Cancer by Integrated Analysis of Microarray Data and qRT-PCR Validation.
Lung. 2015; 193(4):583-92 [PubMed] Related Publications
BACKGROUND: Non-small-cell lung cancer (NSCLC), the most common lung cancer, leads to the largest number of cancer-related deaths worldwide. There are many studies to identify the differentially expressed genes (DEGs) between NSCLC and normal control (NC) tissues by means of microarray technology. Because of the inconsistency of the microarray data sets, we performed an integrated analysis to identify DEGs and analyzed their biological function.
METHODS AND RESULTS: We combined 15 microarray data sets and identified 1063 DEGs between NSCLC and NC tissues; in addition, we found that the DEGs were enriched in regulation of cell proliferation process and focal adhesion signaling pathway. The protein-protein interaction network analysis for the top 20 significantly DEGs revealed that CAV1, COL1A1, and ADRB2 were the significant hub proteins. Finally, we employed qRT-PCR to validate the meta-analysis approach by determining the expression of the top 10 most significantly DEGs and found that the expression of these genes were significantly different between tumor and NC tissues, in accordance with the results of meta-analysis.
CONCLUSION: qRT-PCR results indicated that the meta-analysis approach in our study was acceptable. Our data suggested that some of the DEGs, including MMP12, COL11A1, THBS2, FAP, and CAV1, may participate in the pathology of NSCLC and could be applied as potential markers or therapeutic targets for NSCLC.

Litvinov IV, Netchiporouk E, Cordeiro B, et al.
The Use of Transcriptional Profiling to Improve Personalized Diagnosis and Management of Cutaneous T-cell Lymphoma (CTCL).
Clin Cancer Res. 2015; 21(12):2820-9 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Although many patients with mycosis fungoides presenting with stage I disease enjoy an indolent disease course and normal life expectancy, about 15% to 20% of them progress to higher stages and most ultimately succumb to their disease. Currently, it is not possible to predict which patients will progress and which patients will have a stable disease. Previously, we conducted microarray analyses with RT-PCR validation of gene expression in biopsy specimens from 60 patients with stage I-IV cutaneous T-cell lymphoma (CTCL), identified three distinct clusters based upon transcription profile, and correlated our molecular findings with 6 years of clinical follow-up.
EXPERIMENTAL DESIGN: We test by RT-PCR within our prediction model the expression of about 240 genes that were previously reported to play an important role in CTCL carcinogenesis. We further extend the clinical follow-up of our patients to 11 years. We compare the expression of selected genes between mycosis fungoides/Sézary syndrome and benign inflammatory dermatoses that often mimic this cancer.
RESULTS: Our findings demonstrate that 52 of the about 240 genes can be classified into cluster 1-3 expression patterns and such expression is consistent with their suggested biologic roles. Moreover, we determined that 17 genes (CCL18, CCL26, FYB, T3JAM, MMP12, LEF1, LCK, ITK, GNLY, IL2RA, IL26, IL22, CCR4, GTSF1, SYCP1, STAT5A, and TOX) are able to both identify patients who are at risk of progression and also distinguish mycosis fungoides/Sézary syndrome from benign mimickers.
CONCLUSIONS: This study, combined with other gene expression analyses, prepares the foundation for the development of personalized molecular approach toward diagnosis and treatment of CTCL.

Ford CA, Petrova S, Pound JD, et al.
Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.
Curr Biol. 2015; 25(5):577-88 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects.
RESULTS: Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma.
CONCLUSIONS: In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy.

Neelgundmath M, Dinesh KR, Mohan CD, et al.
Novel synthetic coumarins that targets NF-κB in Hepatocellular carcinoma.
Bioorg Med Chem Lett. 2015; 25(4):893-7 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor worldwide, and is the third most common cause of cancer related death. Constitutive activation of NF-κB is the underlying mechanism behind tumorigenesis and this protein regulates the expression of genes involved in proliferation, survival, drug resistance, angiogenesis and metastasis. The design of inhibitors which suppress NF-κB activation is therefore of great therapeutic importance in the treatment of HCC. In this study, we investigated the effect of newly synthesized coumarin derivatives against HCC cells, and identified (7-Carbethoxyamino-2-oxo-2H-chromen-4-yl)methylpyrrolidine-1 carbodithioate (CPP) as lead compound. Further, we evaluated the effect of CPP on the DNA binding ability of NF-κB, CXCL12-induced cell migration and invasion, and the regulated gene products in HCC cells. We found that CPP induced cytotoxicity in three HCC cells in a time and dose dependent manner, and suppressed the DNA binding ability of NF-κB. CPP significantly decreased the CXCL12-induced cell migration and invasion. More evidently, CPP inhibits the expression of NF-κB targeted genes such as cyclin D1, Bcl-2, survivin, MMP12 and C-Myc. Furthermore, the molecular docking analysis suggested that CPP interacts with the p50 binding domain of the p65 subunit, scoring best among the 26 docked coumarin derivatives of this study. Thus, we are reporting CPP as a potent inhibitor of the pro-inflammatory pathway in Hepatocellular carcinoma.

Wang P, Chen SH, Hung WC, et al.
Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways.
Oncogene. 2015; 34(35):4558-69 [PubMed] Free Access to Full Article Related Publications
Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm(2)) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified.

Salz T, Deng C, Pampo C, et al.
Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer.
Mol Cancer Res. 2015; 13(3):461-9 [PubMed] Related Publications
UNLABELLED: Epigenetic alteration is a hallmark of all cancers. Such alterations lead to modulation of fundamental cancer-related functions, such as proliferation, migration, and invasion. In particular, methylation of Histone H3 Lysine 4 (H3K4), a histone mark generally associated with transcriptional activation, is altered during progression of several human cancers. While the depletion of H3K4 demethylases promotes breast cancer metastasis, the effect of H3K4 methyltransferases on metastasis is not clear. Nevertheless, gene duplications in the human SETD1A (hSETD1A) H3K4 methyltransferase are present in almost half of breast cancers. Herein, expression analysis determined that hSETD1A is upregulated in multiple metastatic human breast cancer cell lines and clinical tumor specimens. Ablation of hSETD1A in breast cancer cells led to a decrease in migration and invasion in vitro and to a decrease in metastasis in nude mice. Furthermore, a group of matrix metalloproteinases (including MMP2, MMP9, MMP12, MMP13, and MMP17) were identified which were downregulated upon depletion of hSETD1A and demonstrated a decrease in H3K4me3 at their proximal promoters based on chromatin immunoprecipitation analysis. These results provide evidence for a functional and mechanistic link among hSETD1A, MMPs, and metastasis in breast cancer, thereby supporting an oncogenic role for hSETD1A in cancer.
IMPLICATIONS: This study reveals that hSETD1A controls tumor metastasis by activating MMP expression and provides an epigenetic link among hSETD1A, MMPs, and metastasis of breast cancer.

Brzóska K, Bartłomiejczyk T, Sochanowicz B, et al.
Matrix metalloproteinase 3 polymorphisms as a potential marker of enhanced susceptibility to lung cancer in chronic obstructive pulmonary disease subjects.
Ann Agric Environ Med. 2014; 21(3):546-51 [PubMed] Related Publications
INTRODUCTION AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is often accompanied by lung cancer. Among the genes that may play a role in the occurrence of COPD and lung cancer are those encoding the proteolytic enzymes, such as matrix metalloproteinases (MMPs) and their tissue inhibitors. The objective of this study was to find MMPs-associated markers useful in the identification of COPD subjects with increased susceptibility to developing lung cancer.
MATERIALS AND METHODS: We compared the frequency of single nucleotide polymorphisms in genes coding for matrix proteinases (MMP1, MMP2, MMP3, MMP9, MMP12) as well as tissue inhibitor of metalloproteinases (TIMP1) in two groups of subjects: COPD patients (54 subjects) and COPD patients diagnosed for lung cancer occurrence (53 subjects).The levels of the respective proteins in blood serum were also analyzed.
RESULTS: The frequencies of 2 genotypes, MMP3 rs3025058 and MMP3 rs678815, were significantly different between the studied groups. In both cases, more heterozygotes and less homozygotes (both types) were observed in the COPD group than in the COPD + cancer group. A significantly higher TIMP1 level in blood serum was observed in the COPD + cancer group than in the COPD group. There were no statistically significant differences in MMPs blood levels between the studied groups. In addition, no genotype-associated differences in TIMP1 or MMPs blood levels were observed.
CONCLUSIONS: Homozygocity for MMP3 rs3025058 and rs678815 polymorphisms is a potential marker of enhanced susceptibility to lung cancer development among COPD subjects.

Wei X, Li J, Xie H, et al.
Chloride intracellular channel 1 participates in migration and invasion of hepatocellular carcinoma by targeting maspin.
J Gastroenterol Hepatol. 2015; 30(1):208-16 [PubMed] Related Publications
BACKGROUND AND AIM: Our previous proteomic research found that chloride intracellular channel 1 (CLIC1) was upregulated in hepatocellular carcinoma (HCC) tissues with portal vein tumor thrombus. The present study aimed to determine the role of CLIC1 in HCC invasion.
METHODS: Immunohistochemistry was used to explore protein expression of CLIC1 in 15 cirrhotic tissues and 69 pairs of HCC and paracarcinoma tissues. Small interfering RNA (siRNA) and plasmids were transfected into HepG2 and SMMC7721 cells, and the in vitro function of CLIC1 in these cells were assessed with cell counting kit-8 assays, cell apoptosis assays, scratch assays, and transwell assays. Microarray analysis was also performed to further explore the candidate genes related to CLIC1.
RESULTS: Our results confirmed that upregulated CLIC1 expression was significantly correlated with vascular invasion (P = 0.034) in HCC tissues. Knockdown of CLIC1 decreased cell viability and the invasive potency of HepG2 cells, whereas CLIC1 overexpression resulted in an opposite effect in SMMC7721 cells. Microarray analysis identified 618 genes that were differentially expressed (fold change ≥ 2, P < 0.05) between HepG2 cells transfected with CLIC1 siRNA and the negative control. Further studies indicate that knockdown of CLIC1 increased maspin expression and reduced vascular endothelial growth factor (VEGF), matrixmetalloproteinase-2 (MMP2), MMP9, MMP11, and MMP12 expression. In contrast, overexpression of CLIC1 decreased maspin expression and increased VEGF, MMP2, MMP12, and MMP13 expression.
CONCLUSIONS: CLIC1 protein expression is significantly correlated with vascular invasion, and the present study suggests a previously unknown mechanism of CLIC1-mediated control of HCC invasiveness by targeting maspin.

Chung IC, Chen LC, Chung AK, et al.
Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma.
BMC Cancer. 2014; 14:348 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a DNA/RNA binding protein, is associated with metastasis in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying hnRNP K-mediated metastasis is unclear. The aim of the present study was to determine the role of matrix metalloproteinase (MMP) in hnRNP K-mediated metastasis in NPC.
METHODS: We studied hnRNP K-regulated MMPs by analyzing the expression profiles of MMP family genes in NPC tissues and hnRNP K-knockdown NPC cells using Affymetrix microarray analysis and quantitative RT-PCR. The association of hnRNP K and MMP12 expression in 82 clinically proven NPC cases was determined by immunohistochemical analysis. The hnRNP K-mediated MMP12 regulation was determined by zymography and Western blot, as well as by promoter, DNA pull-down and chromatin immunoprecipitation (ChIP) assays. The functional role of MMP12 in cell migration and invasion was demonstrated by MMP12-knockdown and the treatment of MMP12-specific inhibitor, PF-356231.
RESULTS: MMP12 was overexpressed in NPC tissues, and this high level of expression was significantly correlated with high-level expression of hnRNP K (P = 0.026). The levels of mRNA, protein and enzyme activity of MMP12 were reduced in hnRNP K-knockdown NPC cells. HnRNP K interacting with the region spanning -42 to -33 bp of the transcription start site triggered transcriptional activation of the MMP12 promoter. Furthermore, inhibiting MMP12 by MMP12 knockdown and MMP12-specific inhibitor, PF-356231, significantly reduced the migration and invasion of NPC cells.
CONCLUSIONS: Overexpression of MMP12 was significantly correlated with hnRNP K in NPC tissues. HnRNP K can induce MMP12 expression and enzyme activity through activating MMP12 promoter, which promotes cell migration and invasion in NPC cells. In vitro experiments suggest that NPC metastasis with high MMP12 expression may be treated with PF-356231. HnRNP K and MMP12 may be potential therapeutic markers for NPC, but additional validation studies are warranted.

Kupczyk M, Kuna P
[MicroRNAs--new biomarkers of respiratory tract diseases].
Pneumonol Alergol Pol. 2014; 82(2):183-90 [PubMed] Related Publications
MicroRNAs (miRNAs) represent a group of small, non-coding RNA molecules that have been shown to regulate gene expression at the translational level by interfering with the 3' untranslated region of messenger RNAs. Gene silencing through miRNA interference is one epigenetic mechanism impacting the development and homeostasis of the organism. MiRNAs are critical for regulation of several biological processes, cellular function, the cell cycle, differentiation and apoptosis. Deregulation of miRNAs was confirmed in several pathologies including cancer (in lung cancer among others), asthma, COPD, diabetes and cardiovascular diseases. In mice models of asthma it has been found that increased levels of miR-21 and miR-126, and decreased levels of miR-672 and miR-143 are associated with regulation of cytokines involved in inflammation and remodeling, namely Il-13, Il-12, Il-10 and matrix metalloproteinase-12 (MMP-12). In lung cancer, overexpression of several miRNAs (miR-155, miR21, miR-17-92, miR221/222) and downregulation of let-7, miR-1, miR-29 and miR-126 has been found. It has been shown that serum miRNA profile may be regarded as a potential tool for early, non-invasive lung cancer diagnosis, and it can be used for chemotherapy sensitivity prediction and prognosis. MiRNAs seem to represent a promising goal in the search for new biomarkers and may be considered as an interesting target for therapeutical intervention.

Wen Y, Cai L
[Research progress of matrix metalloproteinase 12 in non-small cell lung cancer].
Zhongguo Fei Ai Za Zhi. 2014; 17(1):30-3 [PubMed] Related Publications
Lung cancer is one of the most common malignant tumors in the world wide. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of lung cancers, its pathogenesis have not been elucidated. Recently, researches have shown that dysregulation and excessive activity of the matrix metalloproteinases (MMPs) has been associated with many pathologies. Some results suggest that the matrix metalloproteinases 12 (MMP-12) participates in the invasion and metastasis of NSCLC. The expression of MMP-12 in non-small cell lung cancer is significantly higher than in adjacent tissues. And studies have shown that the MMP-12 has important prognostic significance in NSCLC. Therefore this article will briefly summarize the research progresses of MMP-12 in NSCLC.

Silva SD, Alaoui-Jamali MA, Hier M, et al.
Cooverexpression of ERBB1 and ERBB4 receptors predicts poor clinical outcome in pN+ oral squamous cell carcinoma with extranodal spread.
Clin Exp Metastasis. 2014; 31(3):307-16 [PubMed] Related Publications
Overexpression of members of the ErbB receptor family is common in oral squamous cell carcinomas (OSCC); however, their prognostic value for aggressive OSCC has been debated. Extranodal spread to cervical lymph nodes is the most significant prognostic indicator in OSCC. In the present study, we investigated the clinical significance of single versus paired overexpression of members of the ErbB receptor family in 82 OSCC patients with lymph nodes metastasis, with or without capsular rupture (CR) followed by at least 10 years. Immunohistochemistry analysis revealed a common overexpression of ErbB1 (P = 0.021), ErbB2 (P = 0.001), ErbB4 (P = 0.048), as well as MMP-2 (P = 0.043) in OSCC cases with CR+. Increased expression of ErbB1 was associated with MMP-2 in tumors with advanced clinical stages, including poorly differentiated (grade III) tumors (P < 0.050). Vascular embolization was associated with MMP-2 (P = 0.021) and MMP-13 (P = 0.010) overexpression. Survival analysis revealed a lower survival probability in tumors overexpressing ErbB1 (P = 0.038), ErbB4 (P = 0.043), and MMP-12 (P = 0.050). As well a strong association was observed in cases with high risk of recurrence and strong immunostaining for ErbB1 (P = 0.017), ErbB4 (P = 0.008), MMP-1 (P = 0.003), MMP-2 (P = 0.016), MMP-10 (P = 0.041), and MMP-13 (P = 0.005). Stratified multivariate survival analysis revealed a strong prognostic interdependence of ErbB1 and ErbB4 cooverexpression in predicting the worst overall and disease-free survivals (P = 0.0013 and P = 0.0004, respectively). Taken together, these results support a cooperation of ErbB1, ErbB4, and members of the MMP family in predicting OSCC invasion and poor clinical outcomes.

Kim SJ, Sohn I, Do IG, et al.
Gene expression profiles for the prediction of progression-free survival in diffuse large B cell lymphoma: results of a DASL assay.
Ann Hematol. 2014; 93(3):437-47 [PubMed] Related Publications
We performed the whole genome cDNA-mediated annealing, selection and ligation assay with 164 formalin-fixed paraffin-embedded (FFPE) tumor samples to develop robust prognostic gene expression profiles in patients with diffuse large B cell lymphoma. The prognostic gene expression profiles were developed and validated by a gradient lasso and leave-one-out cross-validation process. We identified a set of genes whose expression provided prognostic indicators from whole data set (PRKCDBP, CASP10, FAM3C, KCNK12, MAN1A2, PRND, RAB1A, TMEM39B, SLC6A6, MMP12, FEM1B, C3orh37, RBP1, HK1, LOC400464, KIAA0746, and SLC25A23). This gene expression profile-based risk model could classify patients into two cross-validated risk groups with a significant difference in 5-year progression-free survival rates (71.1 vs. 45.5 %) and with a hazard ratio for recurrence of 2.45 (95 % CI, 1.44-4.16, P = 0.001). This model provided prognostic information independent of the International Prognostic Index (IPI), and discriminated high-risk group from patients belong to high/high-intermediate risk of IPI and activated B cell-like type. Thus, gene expression profiling from FFPE could provide additional prognostic information for diffuse large B cell lymphoma and our data underscore the need for development of risk-adapted treatment strategies based on gene expression profiles.

VAN Nguyen S, Skarstedt M, Löfgren S, et al.
Gene polymorphism of matrix metalloproteinase-12 and -13 and association with colorectal cancer in Swedish patients.
Anticancer Res. 2013; 33(8):3247-50 [PubMed] Related Publications
BACKGROUND: It has been widely reported that matrix metalloproteinases (MMPs) have fundamental roles in pathological processes in cancer through degradation of basal membranes and extracellular matrix. For MMP12 and MMP13, a functional single nucleotide polymorphism (SNP) has been detected -82A →G (rs2276109) and -77A →G (rs2252070), respectively. These SNPs are suggested to have an influence on different diseases. The present study evaluated the association between these SNPs in patients with colorectal cancer (CRC) patients and healthy controls.
PATIENTS AND METHODS: Using the TaqMan system, these SNPs were screened in 385 patients with CRC and 619 controls.
RESULTS: No significant difference in genotype distribution or in allelic frequencies was found between the two groups. However, we showed that the AA MMP-12 genotype is connected with a higher risk of disseminated CRC (Odds Ratio=1.77; 95% Confidence Interval=1.11-2.81, p=0.018).
CONCLUSION: The results of this study suggest that the -82A →G (rs2276109) polymorphism of the MMP12 gene reflects clinical outcome of patients with CRC.

Wieczorek E, Reszka E, Jablonowski Z, et al.
Genetic polymorphisms in matrix metalloproteinases (MMPs) and tissue inhibitors of MPs (TIMPs), and bladder cancer susceptibility.
BJU Int. 2013; 112(8):1207-14 [PubMed] Related Publications
OBJECTIVES: To elucidate genetic polymorphisms of the matrix metalloproteinases (MMPs) MMP1 (rs1799750), MMP2 (rs243865), MMP9 (rs3918242), MMP12 (rs2276109) and tissue inhibitors of MMPs (TIMPs) TIMP1 (rs2070584) and TIMP3 (rs9619311) genes that may be involved in susceptibility to bladder cancer (BC).
PATIENTS AND METHODS: We enrolled 241 patients with BC and 199 controls. Genomic DNA samples were extracted from peripheral blood and polymorphisms were analysed by high-resolution melting analysis and by real-time polymerase chain reaction using TaqMan fluorescent probes.
RESULTS: Of the six evaluated polymorphisms of MMPs and TIMPs, only one was found to be associated with BC risk. There was a significant difference for MMP1 (rs1799750) 2G/1G+1G/1G genotype (odds ratio [OR] 0.62, 95% confidence interval [CI] 0.39-0.98; P = 0.042). Additionally, there was a joint effect of this genotype on BC risk among 'ever smokers' (OR 0.51, 95% CI 0.28-0.89; P = 0.019), but not in 'never smokers'. The combined genotype MMP2 -1306C/T (rs243865) allele T with MMP9 -1562C/T (rs3918242) allele T was found to increase BC risk (OR 2.00, 95% CI 1.10-3.62; P = 0.022).
CONCLUSIONS: Our results suggest that genetic variations in five polymorphisms of MMPs and TIMPs are not associated with a high risk of BC. Only MMP1 polymorphism may be related to the risk of BC, notably in 'ever smokers'. Our study suggests that the effects of polymorphisms of MMPs and TIMPs on BC risk deserve further investigation.

Grudny J, Kołakowski J, Kruszewski M, et al.
Association of genetic dependences between lung cancer and chronic obstructive pulmonary disease.
Pneumonol Alergol Pol. 2013; 81(4):308-18 [PubMed] Related Publications
INTRODUCTION: Recent studies have shown an increased risk of lung cancer in patients with bronchial obstructive changes, including patients with COPD. It seems that there are common factors of pathogenesis of both diseases associated with oxidative stress. In the present paper the genes linked to the repair of oxidative damage of DNA, associated with cancer, of iron metabolism and coding proteolytic enzymes were assessed.
MATERIAL AND METHODS: The study was conducted in two groups of patients: 53 patients with non-small cell lung cancer and chronic obstructive pulmonary disease, and 54 patients only with chronic obstructive pulmonary disease. The polymorphisms of the single nucleotide were determined in the case of the majority of genes using the PCR-RFLP method. The statistical analysis of quantitative variables was executed using the Mann-Withney U-test and the test of medians; the analysis of genetic variables was executed using the chi² test.
RESULTS: Regarding the polymorphisms of genes involved in iron metabolism, statistically significant differences between the two groups have been demonstrated only in the case of haptoglobin gene HP1/2. A higher incidence of form 1/1 was found in patients with COPD and a higher incidence of form 1/2 in patients with lung cancer and COPD. Analysis of gene polymorphisms of proteolytic enzymes and inhibitors of the enzyme gene showed statistically significant differences between the two groups only for the MMP3 gene 6A/5A. In the case of the MMP12 gene polymorphism (A-82G) a tendency toward differences in the occurrence of specific alleles was identified.
CONCLUSIONS: These results indicate that patients with coincidence of COPD and lung cancer have disorders of the genes involved in iron metabolism, and they have different genetic polymorphisms of proteolytic enzymes comparing to COPD patients.

Chen L, Chen XR, Chen FF, et al.
MicroRNA-107 inhibits U87 glioma stem cells growth and invasion.
Cell Mol Neurobiol. 2013; 33(5):651-7 [PubMed] Related Publications
Glioma stem cells (GSCs) are thought to be critical for resistance to radiotherapy and chemotherapy and for tumor recurrence after surgery in glioma patients. Identification of new therapeutic strategies that can target GSCs may thus be critical for improving patient survival. MicroRNAs (miRNAs) are small non-coding RNAs that function as tumor suppressors or oncogenes. In this study, we confirmed that miR-107 was down-regulated in GSCs. To investigate the role of miR-107 in tumorigenesis of GSCs, a lentiviral vector over-expressing miR-107 in U87GSCs was constructed. We found that over-expression of miR-107 suppressed proliferation and down-regulated Notch2 protein and stem cell marker (CD133 and Nestin) expression in U87GSCs. Furthermore, enhanced miR-107 expression significantly inhibited U87GSC invasion and reduced matrix metalloproteinase-12 expression. miR-107 also suppressed U87GSCs xenograft growth in vivo. These findings suggest that miR-107 is involved in U87GSCs growth and invasion and may provide a potential therapeutic target for glioma treatment.

Larson SR, Zhang X, Dumpit R, et al.
Characterization of osteoblastic and osteolytic proteins in prostate cancer bone metastases.
Prostate. 2013; 73(9):932-40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Approximately 90% of patients who die of Prostate Cancer (PCa) have bone metastases, which promote a spectrum of osteoblastic, osteolytic or mixed bone responses. Numerous secreted proteins have been reported to promote osteoblastic or osteolytic bone responses. We determined whether previously identified and/or novel proteins were associated with the osteoblastic or osteolytic response in clinical specimens of PCa bone metastases.
METHODS: Gene expression was analyzed on 14 PCa metastases from 11 patients by microarray profiling and qRT-PCR, and protein expression was analyzed on 33 PCa metastases from 30 patients by immunohistochemistry on highly osteoblastic and highly osteolytic bone specimens.
RESULTS: Transcript and protein levels of BMP-2, BMP-7, DKK-1, ET-1, and Sclerostin were not significantly different between osteoblastic and osteolytic metastases. However, levels of OPG, PGK1, and Substance P proteins were increased in osteoblastic samples. In addition, Emu1, MMP-12, and sFRP-1 were proteins identified with a novel role of being associated with either the osteoblastic or osteolytic bone response.
CONCLUSIONS: This is the first detailed analysis of bone remodeling proteins in human specimens of PCa bone metastases. Three proteins not previously shown to be involved may have a role in the PCa bone response. Furthermore, our data suggests that the relative expression of numerous, rather than a single, bone remodeling proteins determine the bone response in PCa bone metastases.

Li ML, Zhang JC, Li SG, et al.
Characteristic gene expression profiles in the progression from normal gastric epithelial cells to moderate gastric epithelial dysplasia and to gastric cancer.
Chin Med J (Engl). 2012; 125(10):1777-83 [PubMed] Related Publications
BACKGROUND: Gastric cancer ranks high among the most common causes of cancer-related death worldwide. This study was designed to explore key genes involved in the progression of normal gastric epithelial cells to moderate gastric epithelial dysplasia (mGED) and to gastric cancer.
METHODS: Twelve pairs of mGED tissues, gastric cancer tissues, and normal gastric tissues were collected by gastroscopy. Total RNA was then extracted and purified. After the addition of fluorescent tags, hybridization was carried out on a Gene chip microarray slide. Significance analysis of microarrays was performed to determine significant differences in gene expression between the different tissue types.
RESULTS: Microarray data analysis revealed totally 34 genes that were expressed differently: 18 highly expressed (fold change > 2; P < 0.01) and 16 down-regulated (fold change > 2; P < 0.01). Of the 34 genes, 24 belonged to several different functional categories such as structural molecule activity, extracellular regions, structural formation, cell death, biological adhesion, developmental processes, locomotion, and biological regulation that were associated with cancer. The remaining 10 genes were not involved in cancer research. Of these genes, the expression levels of Matrix metalloproteinase-12 (MMP12), Caspase-associated recruitment domain 14 (CARD14), and Chitinase 3-like 1 (CHI3L1) were confirmed by semi-quantitative RT-PCR. A two-way clustering algorithm divided the 36 samples into three categories and the overall correct classification efficiency was 80.6% (29/36). Almost all of these genes (31/34) showed constant changes in the process of normal gastric epithelial cells to mGED to gastric cancer.
CONCLUSIONS: The results of this study provided global gene expression profiles during the development and progression from normal gastric epithelial cells to mGED to gastric cancer. These data may provide new insights into the molecular pathology of gastric cancer which may be useful for the detection, diagnosis, and treatment.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MMP12, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999