NME2

Gene Summary

Gene:NME2; NME/NM23 nucleoside diphosphate kinase 2
Aliases: PUF, NDKB, NDPKB, NM23B, NDPK-B, NM23-H2
Location:17q21.33
Summary:Nucleoside diphosphate kinase (NDK) exists as a hexamer composed of 'A' (encoded by NME1) and 'B' (encoded by this gene) isoforms. Multiple alternatively spliced transcript variants have been found for this gene. Read-through transcription from the neighboring upstream gene (NME1) generates naturally-occurring transcripts (NME1-NME2) that encode a fusion protein comprised of sequence sharing identity with each individual gene product. [provided by RefSeq, Nov 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:nucleoside diphosphate kinase B
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transcription Factors
  • Leukemic Gene Expression Regulation
  • Cancer Gene Expression Regulation
  • Tumor Suppressor Gene
  • Lung Cancer
  • Neoplasm Metastasis
  • Cervical Cancer
  • Transfection
  • Cell Proliferation
  • Binding Sites
  • Ovarian Cancer
  • Base Sequence
  • DNA Repair
  • Western Blotting
  • Neuroblastoma
  • Phenotype
  • Fusion Proteins, bcr-abl
  • Breast Cancer
  • Monomeric GTP-Binding Proteins
  • Cell Cycle
  • Oligonucleotide Array Sequence Analysis
  • Chromosome Deletion
  • Mesothelioma
  • Transcription
  • Polymerase Chain Reaction
  • Apoptosis
  • Gene Expression
  • Cell Movement
  • Two-Hybrid System Techniques
  • Gene Expression Profiling
  • Neoplastic Cell Transformation
  • Chromosome 17
  • Proto-Oncogenes
  • Messenger RNA
  • Molecular Sequence Data
  • Alleles
  • Promoter Regions
  • Pleural Neoplasms
  • Protein Subunits
  • NM23 Nucleoside Diphosphate Kinases
  • Chronic Myelogenous Leukemia
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NME2 (cancer-related)

You HJ, Park HY, Kim J, et al.
Integrative radiogenomic analysis for genomic signatures in glioblastomas presenting leptomeningeal dissemination.
Medicine (Baltimore). 2016; 95(27):e4109 [PubMed] Free Access to Full Article Related Publications
Despite therapeutic advances, the prognosis for glioblastoma (GBM) remains poor. In particular, leptomeningeal dissemination (LMD) has a dismal prognosis. The aim of this study was to identify tumor molecular phenotype, which has a great propensity to develop LMD. Between May 2004 and December 2012, a total of 145 GBM tumor samples were obtained from data registry. A total of 20 of the 145 patients with GBM were found to develop LMD. A specialized radiologist confirmed the diagnosis of LMD on magnetic resonance imaging. To clarify the genomic signatures in GBM with LMD, we performed integrative analysis of whole transcriptome sequencing and copy number alteration in the radiological features indicating LMD phenotypes in GBM. Eleven newly diagnosed patients with GBM with LMD had worse prognosis than those without LMD (median 5.55 vs. 12.94 months, P < 0.0001). Integrating analysis using gene expression based on the change of copy number revealed that SPOCK1, EHD2, SLC2A3, and ANXA11 were highly expressed with the gain of copy number, compared with the gene expression in the non-LMD group. In addition, it was demonstrated that NME2, TMEM100, and SIVA1 were downregulated with the loss of copy number. We also found that mesenchymal subtype accounted for 50% in LMD group, whereas mesenchymal subtype consisted of 29% in non-LMD group, even though there was no statistical significance (P = 0.06). Through this radiogenomic analysis, we suggested the possibility of finding candidate genes associated with LMD and highlighted the significance of integrating approach to clarify the molecular characteristics in LMD.

Chang YW, Chiu CF, Lee KY, et al.
CARMA3 Represses Metastasis Suppressor NME2 to Promote Lung Cancer Stemness and Metastasis.
Am J Respir Crit Care Med. 2015; 192(1):64-75 [PubMed] Related Publications
RATIONALE: CARD-recruited membrane-associated protein 3 (CARMA3) is a novel scaffold protein that regulates nuclear factor (NF)-κB activation; however, the underlying mechanism of CARMA3 in lung cancer stemness and metastasis remains largely unknown.
OBJECTIVES: To investigate the molecular mechanisms underlying the involvement of CARMA3 in non-small cell lung cancer progression.
METHODS: The expression levels of CARMA3 and NME2 in a cohort of patients with lung cancer (n = 91) were examined by immunohistochemistry staining and assessed by Kaplan-Meier survival analysis. The effects of CARMA3, microRNA-182 (miR-182), and NME2 on cancer stemness and metastasis were measured in vitro and in vivo. Chromatin immunoprecipitation and luciferase reporter assays were performed to determine the mechanisms of NF-κB-driven miR-182 expression and NME2 regulation.
MEASUREMENTS AND MAIN RESULTS: We observed that CARMA3 inversely correlated with NME2 expression in patients with lung cancer (Pearson correlation coefficient: R = -0.24; P = 0.022). NME2 levels were significantly decreased in tumor tissues compared with adjacent normal lung tissues (P < 0.001), and patients with lung cancer with higher levels of NME2 had longer survival outcomes (overall survival, P < 0.01; disease-free survival, P < 0.01). Mechanistically, CARMA3 promoted cell motility by reducing the level of NME2 through the NF-κB/miR-182 pathway and by increasing cancer stem cell properties and metastasis in lung cancer.
CONCLUSIONS: We identified a novel mechanism of CARMA3 in lung cancer stemness and metastasis through the negative regulation of NME2 by NF-κB-dependent induction of miR-182. Our findings provide an attractive strategy for targeting the CARMA3/NF-κB/miR-182 pathway as a potential treatment for lung cancer.

Melaiu O, Melissari E, Mutti L, et al.
Expression status of candidate genes in mesothelioma tissues and cell lines.
Mutat Res. 2015; 771:6-12 [PubMed] Related Publications
In order to broaden knowledge on the pathogenesis of malignant pleural mesothelioma (MPM), we reviewed studies on the MPM-transcriptome and identified 119 deregulated genes. However, there was poor consistency among the studies. Thus, the expression of these genes was further investigated in the present work using reverse transcriptase-quantitative PCR (RT-qPCR) in 15 MPM and 20 non-MPM tissue samples. Fifty-nine genes showed a statistically significant deregulation and were further evaluated in two epithelioid MPM cell lines (compared to MET-5A, a non-MPM cell line). Nine genes (ACSL1, CCNO, CFB, PDGFRB, SULF1, TACC1, THBS2, TIMP3, XPOT) were deregulated with statistical significance in both cell lines, 12 (ASS1, CCNB1, CDH11, COL1A1, CXADR, EIF4G1, GALNT7, ITGA4, KRT5, PTGIS, RAN, SOD1) in at least one cell line, whereas 7 (DSP, HEG1, MCM4, MSLN, NME2, NMU, TNPO2) were close but did not reach the statistical significance in any of the cell line. Patients whose MPM tissues expressed elevated mRNA levels of BIRC5, DSP, NME2, and THBS2 showed a statistically significant shorter overall survival. Although MPM is a poorly studied cancer, some features are starting to emerge. Novel cancer genes are suggested here, in particular those involved in cell-cell and cell-matrix interactions.

Liu YF, Yang A, Liu W, et al.
NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.
PLoS One. 2015; 10(2):e0115968 [PubMed] Free Access to Full Article Related Publications
Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2), which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

Coumans JV, Gau D, Poljak A, et al.
Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.
OMICS. 2014; 18(12):778-91 [PubMed] Free Access to Full Article Related Publications
Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

Li Y, Tong Y, Wong YH
Regulatory functions of Nm23-H2 in tumorigenesis: insights from biochemical to clinical perspectives.
Naunyn Schmiedebergs Arch Pharmacol. 2015; 388(2):243-56 [PubMed] Related Publications
Substantial effort has been directed at elucidating the functions of the products of the Nm23 tumor metastasis suppressor genes over the past two decades, with the ultimate goal of exploring their translational potentials in changing cancer patients' outcomes. Much attention has been focused on the better-known Nm23-H1, but despite having high sequence similarity, Nm23-H2 functions differently in many aspects. Besides acting as a metastasis suppressor, compelling data suggest that Nm23-H2 may modulate various tumor-associated biological events to enhance tumorigenesis in human solid tumors and hematological malignancies. Linkage to tumorigenesis may occur through the ability of Nm23-H2 to regulate transcription, cell proliferation, apoptosis, differentiation, and telomerase activity. In this review, we examine the linkages of Nm23-H2 to tumorigenesis in terms of its biochemical and structural properties and discuss its potential role in various tumor-associated events.

He F, York JP, Burroughs SG, et al.
Recruited metastasis suppressor NM23-H2 attenuates expression and activity of peroxisome proliferator-activated receptor δ (PPARδ) in human cholangiocarcinoma.
Dig Liver Dis. 2015; 47(1):62-7 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Peroxisome proliferator-activated receptor δ (PPARδ) is a versatile regulator of distinct biological processes and overexpression of PPARδ in cancer may be partially related to its suppression of its own co-regulators.
AIMS: To determine whether recruited suppressor proteins bind to and regulate PPARδ expression, activity and PPARδ-dependent cholangiocarcinoma proliferation.
METHODS: Yeast two-hybrid assays were done using murine PPARδ as bait. PPARδ mRNA expression was determined by qPCR. Protein expression was measured by western blot. Immunohistochemistry and fluorescence microscopy were used to determine PPARδ expression and co-localization with NDP Kinase alpha (NM23-H2). Cell proliferation assays were performed to determine cell numbers.
RESULTS: Yeast two-hybrid screening identified NM23-H2 as a PPARδ binding protein and their interaction was confirmed. Overexpressed PPARδ or treatment with the agonist GW501516 resulted in increased cell proliferation. NM23-H2 siRNA activated PPARδ luciferase promoter activity, upregulated PPARδ RNA and protein expression and increased GW501516-stimulated CCA growth. Overexpression of NM23-H2 inhibited PPARδ luciferase promoter activity, downregulated PPARδ expression and AKT phosphorylation and reduced GW501516-stimulated CCA growth.
CONCLUSIONS: We report the novel association of NM23-H2 with PPARδ and the negative regulation of PPARδ expression by NM23-H2 binding to the C-terminal region of PPARδ. These findings provide evidence that the metastasis suppressor NM23-H2 is involved in the regulation of PPARδ-mediated proliferation.

Thakur RK, Yadav VK, Kumar A, et al.
Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin.
Nucleic Acids Res. 2014; 42(18):11589-600 [PubMed] Free Access to Full Article Related Publications
Tumor metastasis refers to spread of a tumor from site of its origin to distant organs and causes majority of cancer deaths. Although >30 metastasis suppressor genes (MSGs) that negatively regulate metastasis have been identified so far, two issues are poorly understood: first, which MSGs oppose metastasis in a tumor type, and second, which molecular function of MSG controls metastasis. Herein, integrative analyses of tumor-transcriptomes (n=382), survival data (n=530) and lymph node metastases (n=100) in lung cancer patients identified non-metastatic 2 (NME2) as a key MSG from a pool of >30 metastasis suppressors. Subsequently, we generated a promoter-wide binding map for NME2 using chromatin immunoprecipitation with promoter microarrays (ChIP-chip), and transcriptome profiling. We discovered novel targets of NME2 which are involved in focal adhesion signaling. Importantly, we detected binding of NME2 in promoter of focal adhesion factor, vinculin. Reduced expression of NME2 led to enhanced transcription of vinculin. In comparison, NME1, a close homolog of NME2, did not bind to vinculin promoter nor regulate its expression. In line, enhanced metastasis of NME2-depleted lung cancer cells was found in zebrafish and nude mice tumor models. The metastatic potential of NME2-depleted cells was remarkably diminished upon selective RNA-i-mediated silencing of vinculin. Together, we demonstrate that reduced NME2 levels lead to transcriptional de-repression of vinculin and regulate lung cancer metastasis.

Yao Y, Li C, Zhou X, et al.
PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation.
Oncotarget. 2014; 5(18):8466-77 [PubMed] Free Access to Full Article Related Publications
c-Myc serves as a crucial regulator in multiple cellular events. Cumulative evidences demonstrate that anomalous c-Myc overexpression correlates with proliferation, invasion and metastasis in various human tumors. However, the transcriptionally activating mechanisms responsible for c-Myc overexpression are complex and continue to be intangible. Here we showed that Piwi-Like RNA-Mediated Gene Silencing 2 (PIWIL2) can upregulate c-Myc via binding with NME/NM23 nucleoside diphosphate kinase 2 (NME2). PIWIL2 promotes c-Myc transcription by interacting with and facilitating NME2 to bind to G4-motif region within c-Myc promoter. Interestingly, in a c-Myc-mediated manner, PIWIL2 upregulates RhoA, which in turn induces filamentary F-actin. Deficiency of PIWIL2 results in obstacle for c-Myc expression, cell cycle progress and cell proliferation. Taken together, our present work demonstrates that PIWIL2 modulates tumor cell proliferation and F-actin filaments via promoting c-Myc expression.

Yadav VK, Thakur RK, Eckloff B, et al.
Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity.
Nucleic Acids Res. 2014; 42(15):9602-11 [PubMed] Free Access to Full Article Related Publications
Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.

Fan CC, Lee LY, Yu MY, et al.
Upregulated hPuf-A promotes breast cancer tumorigenesis.
Tumour Biol. 2013; 34(5):2557-64 [PubMed] Related Publications
hPuf-A is a member of RNA-binding PUF family that regulates mRNA translation. Redistribution of hPuf-A from the nucleolus to the nucleoplasm upon genotoxic stress modulates the poly(ADP-ribosyl)ation activity of PARP-1. Here, we report a novel function of hPuf-A involved in promoting breast cancer progression. Immunohistochemical studies showed higher expression levels of hPuf-A in stage I, II, III, and IV breast cancer specimens in contrast with those of hPuf-A in ductal carcinoma in situ. The presence of hPuf-A is highly associated with colony formation capacities in breast cancer T47D and MDA-MB-231 cells. Xenograft growth of hPuf-A-silenced and hPuf-A overexpressing MDA-MB-231 cells in nude mice was substantially in concert with colony formation capacities. This promoting effect of hPuf-A in tumorigenesis might be correlated with the regulation of its associated mRNAs, such as RbAp48 and DDX3. Collectively, hPuf-A may have diagnostic values in breast cancer progression.

Wakefield A, Soukupova J, Montagne A, et al.
Bcl3 selectively promotes metastasis of ERBB2-driven mammary tumors.
Cancer Res. 2013; 73(2):745-55 [PubMed] Related Publications
Bcl3 is a putative proto-oncogene deregulated in hematopoietic and solid tumors. Studies in cell lines suggest that its oncogenic effects are mediated through the induction of proliferation and inhibition of cell death, yet its role in endogenous solid tumors has not been established. Here, we address the oncogenic effect of Bcl3 in vivo and describe how this Stat3-responsive oncogene promotes metastasis of ErbB2-positive mammary tumors without affecting primary tumor growth or normal mammary function. Deletion of the Bcl3 gene in ErbB2-positive (MMTV-Neu) mice resulted in a 75% reduction in metastatic tumor burden in the lungs with a 3.6-fold decrease in cell turnover index in these secondary lesions with no significant effect on primary mammary tumor growth, cyclin D1 levels, or caspase-3 activity. Direct inhibition of Bcl3 by siRNA in a transplantation model of an Erbb2-positive mammary tumor cell line confirmed the effect of Bcl3 in malignancy, suggesting that the effect of Bcl3 was intrinsic to the tumor cells. Bcl3 knockdown resulted in a 61% decrease in tumor cell motility and a concomitant increase in the cell migration inhibitors Nme1, Nme2, and Nme3, the GDP dissociation inhibitor Arhgdib, and the metalloprotease inhibitors Timp1 and Timp2. Independent knockdown of Nme1, Nme2, and Arhgdib partially rescued the Bcl3 motility phenotype. These results indicate for the first time a cell-autonomous disease-modifying role for Bcl3 in vivo, affecting metastatic disease progression rather than primary tumor growth.

Malvasi A, Cavallotti C, Nicolardi G, et al.
NT, NPY and PGP 9.5 presence in myomeytrium and in fibroid pseudocapsule and their possible impact on muscular physiology.
Gynecol Endocrinol. 2013; 29(2):177-81 [PubMed] Related Publications
The uterine myoma pseudocapsule is a neurovascular bundle surrounding fibroid, containing neuropeptides, probably involved in uterine scar healing. We studied neurotensin (NT), neuropeptide tyrosine (NPY), and protein gene product 9.5 (PGP 9.5) nerve fibres in the pseudocapsule neurovascular bundle of intramural uterine fibroids on 67 no pregnant women by intracapsular myomectomy sparing the neurovascular bundle, sampling full thickness specimens of the pseudocapsule of uterine fibroids (PUF) and normal myometrium (NM) obtained from the fundus uteri (FU) and the uterine body (UB). The samples were sent for histological and immunofluorescent analyses and compared by morphometrical quantification. The Conventional Unit (C.U.) difference of NT, NPY, and PGP 9.5 nerve fibres was statistically analyzed. Our results showed that NT, NPY, and PGP 9.5 neurofibers are almost equally present in PUF as in NM of a no pregnant uterus. As all of these neuropeptides are present in the uterine muscle and can affect muscle contractility, uterine peristalsis and muscular healing. A myomectomy respecting the pseudocapsule neurofibers should facilitate smooth muscle scarring and promote restoration of normal uterine peristalsis with a possible positive influence on fertility.

Jarrett SG, Novak M, Harris N, et al.
NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.
Clin Exp Metastasis. 2013; 30(1):25-36 [PubMed] Free Access to Full Article Related Publications
Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

Bach E, Krahl R, Lange T, et al.
Delayed processing of bone marrow samples reveals a prognostic pattern of NME mRNA expression in cytogenetically normal acute myeloid leukemia.
Leuk Lymphoma. 2012; 53(8):1561-8 [PubMed] Related Publications
Improvements in the therapy of cytogenetically normal acute myeloid leukemia (CN-AML) will depend largely on the characterization of functional subtypes identified by prognostic markers. Exposing leukemic cells to stress ex vivo may reveal relevant phenotypic markers not apparent in freshly explanted cells. Here, we assess the prognostic relevance of expression of the nucleoside diphosphate kinase genes NME1 and NME2 in a cohort of 78 patients with CN-AML aged < 60 years using archived mononuclear cell samples originally prepared from bone marrow either directly (n = 25) or following 2-3 days of transport (n = 53). The stress conditions arising during transport resulted in the development of a prognostic pattern of NME mRNA with maintenance of high NME2 mRNA being a strong indicator of increased event-free survival independent of FLT3-internal tandem duplication. Prospective analysis of CN-AML bone marrow (n = 7) confirmed that NME1 mRNA is always decreased during storage, while NME2 mRNA is either decreased or maintained. We conclude that ex vivo stress can reveal novel prognostic markers.

Tschiedel S, Bach E, Jilo A, et al.
Bcr-Abl dependent post-transcriptional activation of NME2 expression is a specific and common feature of chronic myeloid leukemia.
Leuk Lymphoma. 2012; 53(8):1569-76 [PubMed] Related Publications
We have previously identified NME2 (Nm23-H2) as a tumor antigen in a patient with chronic myeloid leukemia (CML). Here we investigated the association between NME2 and Bcr-Abl. NME2 protein was highly overexpressed in the cytoplasm of peripheral blood mononuclear cells from 29/30 patients with CML at diagnosis and 10/10 patients resistant to imatinib. Protein was overexpressed in the absence of increased levels of mRNA and was limited to Bcr-Abl + populations, being absent from Bcr-Abl - patient cells, normal donors and 14/15 acute myeloid leukemia (AML) samples. Furthermore, the Bcr-Abl dependent overexpression of NME2 protein was reversed specifically by tyrosine kinase inhibitor (TKI) treatment of Ba/F3 expressing wild-type and TKI-sensitive, but not TKI-resistant, mutants of Bcr-Abl. The post-transcriptional up-regulation of the tumor antigen NME2 is therefore a common and specific property of CML closely associated with Bcr-Abl activity.

Lee MJ, Xu DY, Li H, et al.
Pro-oncogenic potential of NM23-H2 in hepatocellular carcinoma.
Exp Mol Med. 2012; 44(3):214-24 [PubMed] Free Access to Full Article Related Publications
NM23 is a family of structurally and functionally conserved proteins known as nucleoside diphosphate kinases (NDPK). There is abundant mRNA expression of NM23-H1, NM23-H2, or a read through transcript (NM23-LV) in the primary sites of hepatocellular carcinoma (HCC). Although the NM23-H1 protein is implicated as a metastasis suppressor, the role of NM23-H2 appears to be less understood. Thus, the aim of this study was to examine whether NM23-H2 is associated with hepatocarcinogenesis. The level of NM23-H2 expression in tumor tissues and the surrounding matrix appeared to be independent of etiology and tumor differentiation. Its subcellular localization was confined to mainly the cytoplasm and to a lesser extent in the nucleus. Ectopic expression of NM23-H2 in NIH3T3 fibroblasts and HLK3 hepatocytes showed a transformed morphology, enhanced focus formation, and allowed anchorage-independent growth. Finally, NIH3T3 fibroblasts and HLK3 hepatocytes stably expressing NM23-H2 produced tumors in athymic mice and showed c-Myc over-expression. In addition, NF-κB and cyclin D1 expression were also increased by NM23-H2. Lentiviral delivery of NM23-H2 shRNA inhibited tumor growth of xenotransplanted tumors produced from HLK3 cells stably expressing NM23-H2. Collectively, these results indicate that NM23-H2 may be pro-oncogenic in hepatocarcinogenesis.

Boissan M, Lacombe ML
Learning about the functions of NME/NM23: lessons from knockout mice to silencing strategies.
Naunyn Schmiedebergs Arch Pharmacol. 2011; 384(4-5):421-31 [PubMed] Related Publications
The human NME gene family (also known as NM23) comprises ten genes that are involved in diverse physiological and pathological processes including proliferation, differentiation, development, ciliary functions, and metastasis. For the moment, only the NME1, NME2, and NME7 genes have been inactivated in transgenic knockout mice, as well as a double NME1-NME2 gene knockout. Mice lacking NME1 or NME2 grow to adulthood without health problems, although NME1 (-/-) mice have modest growth retardation. Double knockout NME1 (-/-)-NME2 (-/-) mice, by contrast, are highly hypotrophic and die at birth from profound anemia due to impaired erythroblast development. Evidence for a metastasis suppressor function of NME1 in vivo comes from crossing NME1 (-/-) mice with mice prone to develop hepatocellular carcinoma; the double transgenic mice present a higher incidence of lung metastases. Silencing of NME1 by siRNA interference has confirmed this function by conferring a "metastatic phenotype" on non-invasive human epithelial cancer cell lines. This function is specific to NME1 and is not observed when the NME2 is silenced. The data indicate that NME1 loss is causally involved at the early stages of the metastatic cascade. NME2 (-/-) mice and NME2 silencing experiments reveal a specific role of NME2 in activation of heterotrimeric G proteins and of KCa3.1 channel in T cells, pointing to a role of NME2 as a histidine phosphotransferase. Regarding NME7, consistent with its expression in axonemal structures, NME7 (-/-) mice present lesions similar to primary ciliary dyskinesia. This review summarizes the recent data obtained by knockout and silencing of NME/NM23 genes that provide mechanistic insights into their respective roles in physiology and pathology.

Thakur RK, Yadav VK, Kumar P, Chowdhury S
Mechanisms of non-metastatic 2 (NME2)-mediated control of metastasis across tumor types.
Naunyn Schmiedebergs Arch Pharmacol. 2011; 384(4-5):397-406 [PubMed] Related Publications
Non-metastatic 23 [NM23/nucleoside diphosphate kinases (NDPK)] genes are the first discovered metastasis suppressor genes. More than two decades of research has demonstrated their roles in a variety of biological processes with NME1 and NME2 being most studied in the context of metastasis suppression. Although NME1 and NME2 share >85% homology at amino acid level, they show redundant as well as unique molecular functions. Phenotypic analyses of knockout (KO) mice for NM23 members (NDPK-A, B) and compound KO (A as well as B) showed requirement of both proteins in hematopoiesis suggesting shared functions in development disease. Several reviews have discussed NME1, however the role of NME2 appears to be relatively less understood in the context of metastasis suppression. Here, we focus on NME2 and by meta-analysis of gene expression from multiple tumor types, and survey of in vivo and vitro studies, suggest the possibility that NME2 may be one of the key factors in metastasis. This along with the relevance of normal physiological functions of NME2 in the context of metastasis is discussed. We further examined the genetic and epigenetic features of NME2 and NME1 gene promoters and found aspects of transcription control that could be unique to NME2/NME1. Findings on signaling pathways and small molecules which regulate the expression of NME2 that could be therapeutically important are also discussed.

Boissan M, De Wever O, Lizarraga F, et al.
Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells.
Cancer Res. 2010; 70(19):7710-22 [PubMed] Related Publications
Loss of NM23-H1 expression correlates with the degree of metastasis and with unfavorable clinical prognosis in several types of human carcinoma. However, the mechanistic basis for the metastasis suppressor function of NM23-H1 is obscure. We silenced NM23-H1 expression in human hepatoma and colon carcinoma cells and methodologically investigated effects on cell-cell adhesion, migration, invasion, and signaling linked to cancer progression. NM23-H1 silencing disrupted cell-cell adhesion mediated by E-cadherin, resulting in β-catenin nuclear translocation and T-cell factor/lymphoid-enhancing factor-1 transactivation. Further, NM23-H1 silencing promoted cellular scattering, motility, and extracellular matrix invasion by promoting invadopodia formation and upregulating several matrix metalloproteinases (MMP), including membrane type 1 MMP. In contrast, silencing the related NM23-H2 gene was ineffective at promoting invasion. NM23-H1 silencing activated proinvasive signaling pathways involving Rac1, mitogen-activated protein kinases, phosphatidylinositol 3-kinase (PI3K)/Akt, and src kinase. Conversely, NM23-H1 was dispensable for cancer cell proliferation in vitro and liver regeneration in NM23-M1 null mice, instead inducing cellular resistance to chemotherapeutic drugs in vitro. Analysis of NM23-H1 expression in clinical specimens revealed high expression in premalignant lesions (liver cirrhosis and colon adenoma) and the central body of primary liver or colon tumors, but downregulation at the invasive front of tumors. Our findings reveal that NM23-H1 is critical for control of cell-cell adhesion and cell migration at early stages of the invasive program in epithelial cancers, orchestrating a barrier against conversion of in situ carcinoma into invasive malignancy.

Aktary Z, Chapman K, Lam L, et al.
Plakoglobin interacts with and increases the protein levels of metastasis suppressor Nm23-H2 and regulates the expression of Nm23-H1.
Oncogene. 2010; 29(14):2118-29 [PubMed] Related Publications
Plakoglobin (gamma-catenin) is a homolog of beta-catenin with similar dual adhesive and signaling functions. The adhesive function of these proteins is mediated by their interactions with cadherins, whereas their signaling activity is regulated by association with various intracellular partners. In this respect, beta-catenin has a well-defined oncogenic activity through its role in the Wnt signaling pathway, whereas plakoglobin acts as a tumor/metastasis suppressor through mechanisms that remain unclear. We previously expressed plakoglobin in SCC9 squamous carcinoma cells (SCC9-P) and observed a mesenchymal-to-epidermoid transition. Comparison of the protein and RNA profiles of parental SCC9 cells and SCC9-P transfectants identified various differentially expressed proteins and transcripts, including the nonmetastatic protein 23 (Nm23). In this study, we show that Nm23-H1 mRNA and Nm23-H2 protein are increased after plakoglobin expression. Coimmunoprecipitation and confocal microscopy studies using SCC9-P and various epithelial cell lines with endogenous plakoglobin expression revealed that Nm23 interacts with plakoglobin, cadherins and alpha-catenin. Furthermore, Nm23-H2 is the primary isoform involved in these interactions, which occur prominently in the cytoskeleton-associated pool of cellular proteins. In addition, we show that plakoglobin-Nm23 interaction requires the N-terminal (alpha-catenin interacting) domain of plakoglobin. Our data suggest that by increasing the expression and stability of Nm23, plakoglobin has a role in regulating the metastasis suppressor activity of Nm23, which may further provide a potential mechanism for the tumor/metastasis suppressor function of plakoglobin itself.

Røe OD, Anderssen E, Helge E, et al.
Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype.
PLoS One. 2009; 4(8):e6554 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Malignant pleural mesothelioma is considered an almost incurable tumour with increasing incidence worldwide. It usually develops in the parietal pleura, from mesothelial lining or submesothelial cells, subsequently invading the visceral pleura. Chromosomal and genomic aberrations of mesothelioma are diverse and heterogenous. Genome-wide profiling of mesothelioma versus parietal and visceral normal pleural tissue could thus reveal novel genes and pathways explaining its aggressive phenotype.
METHODOLOGY AND PRINCIPAL FINDINGS: Well-characterised tissue from five mesothelioma patients and normal parietal and visceral pleural samples from six non-cancer patients were profiled by Affymetrix oligoarray of 38 500 genes. The lists of differentially expressed genes tested for overrepresentation in KEGG PATHWAYS (Kyoto Encyclopedia of Genes and Genomes) and GO (gene ontology) terms revealed large differences of expression between visceral and parietal pleura, and both tissues differed from mesothelioma. Cell growth and intrinsic resistance in tumour versus parietal pleura was reflected in highly overexpressed cell cycle, mitosis, replication, DNA repair and anti-apoptosis genes. Several genes of the "salvage pathway" that recycle nucleobases were overexpressed, among them TYMS, encoding thymidylate synthase, the main target of the antifolate drug pemetrexed that is active in mesothelioma. Circadian rhythm genes were expressed in favour of tumour growth. The local invasive, non-metastatic phenotype of mesothelioma, could partly be due to overexpression of the known metastasis suppressors NME1 and NME2. Down-regulation of several tumour suppressor genes could contribute to mesothelioma progression. Genes involved in cell communication were down-regulated, indicating that mesothelioma may shield itself from the immune system. Similarly, in non-cancer parietal versus visceral pleura signal transduction, soluble transporter and adhesion genes were down-regulated. This could represent a genetical platform of the parietal pleura propensity to develop mesothelioma.
CONCLUSIONS: Genome-wide microarray approach using complex human tissue samples revealed novel expression patterns, reflecting some important features of mesothelioma biology that should be further explored.

Schulz DM, Böllner C, Thomas G, et al.
Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry.
J Proteome Res. 2009; 8(7):3430-8 [PubMed] Related Publications
We compared the protein expression pattern of triple-negative breast carcinomas (HER2-, ER-, PR-) versus those being positive for HER2 and negative for the hormone receptors (HER2+, ER-, PR-) by 2-D DIGE and mass spectrometry. We obtained differential expression patterns for several glycolytic enzymes (as for example MDH2, PGK1, TKT, Aldolase1), cytokeratins (CK7, 8, 9, 14, 17, 19), further structure proteins (vimentin, fibronectin, L-plastin), for NME1-NME2, lactoferrin, and members of the Annexin family. Western blot analysis and immunohistochemistry were conducted to verify the results. The identified marker proteins may advance a more detailed characterization of triple-negative breast cancers and may contribute to the development of better treatment strategies.

Yokdang N, Buxton ND, Buxton IL
Measurement of human breast tumor cell-secreted shNDPK-B in a murine breast cancer model suggests its role in metastatic progression.
Proc West Pharmacol Soc. 2009; 52:88-91 [PubMed] Free Access to Full Article Related Publications
Human breast cancers metastasize early in tumorigenesis and distant lesions, though dormant are very likely extant at the time of diagnosis and treatment in the majority of cases. Removal of primary tumors by surgeons as an imperative of the current treatment approach, also removes inhibitory factors secreted by the primary tumor that had maintained the dormancy of the metastases. We have identified a factor secreted by human breast cancer cells that supports the formation of blood vessels and may be a principal early factor supporting the growth and development of metastases in human disease. Here we demonstrate for the first time that this factor, secreted (s) human (h) nucleoside diphosphate kinase type B (shNDPK-B), product of the nm23-h2 gene, can be detected specifically with high sensitivity (50 pg/ml; 2.5 pM) in an ELISA assay of our own design. We further demonstrate that shNDPK-B is released into the circulation in immunocompromized mice carrying the human breast carcinoma cell MDA-MB-231. These data support the hypothesis that shNDPK-B may be responsible for the early events in angiogenesis supporting both primary and metastatic tumor growth and development.

Herak Bosnar M, Bago R, Konjevoda P, Pavelić J
Gene expression profiling of Nm23-H2 overexpressing CAL 27 cells using DNA microarray.
Neoplasma. 2008; 55(5):447-54 [PubMed] Related Publications
Nm23-H1/NDPKA and Nm23-H2/NDPKB belong to a large family of NDP kinases, group of structurally and functionally closely related enzymes. The Nm23/NDPs are known to catalyse the transfer of terminal phosphates from ATP to other NTPs and dNTPs. Besides their role in the maintenance of the cells NTP pool the nm23 genes/proteins are known to have additional different biological functions, the most important being its metastasis suppressor activity. The complete picture of roles, actions and targets of nm23 genes/proteins is yet to be discovered. Our goal was to identify the downstream targets of Nm23-H2 by subjecting Nm23-H2 overexpressing CAL 27 cells (oral squamous cell carcinoma of the tongue) to microarray analysis. Using this powerful technology we identified genes, groups of genes and signalling pathways that could be clustered into several groups: apoptosis related genes, cell cycle and DNA damage, TGFbeta (transforming growth factor beta) signalling pathway and related molecules, WNT signalling pathway, differentiation and epithelial structural and related molecules, cell adhesion, metalloproteinases and their inhibitors, vesicular transport related molecules, proteasome associated, ubiquitin mediated proteolysis and several metabolic pathways. Based on these results we suggest that nm23-H2 might have an important role in oral squamous cell carcinoma which is to be confirmed by future studies.

Curtis CD, Likhite VS, McLeod IX, et al.
Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue H1 and estrogen receptor alpha alters estrogen-responsive gene expression.
Cancer Res. 2007; 67(21):10600-7 [PubMed] Related Publications
Metastasis of cancer cells from the primary tumor is associated with poor prognosis and decreased overall survival. One protein implicated in inhibiting metastasis is the tumor metastasis suppressor nonmetastatic protein 23 homologue 1 (NM23-H1). NM23-H1 is a multifunctional protein, which, in addition to limiting metastasis, has DNase and histidine protein kinase activities. We have identified new functions for NM23-H1 in influencing estrogen receptor alpha (ER alpha)-mediated gene expression. Using a battery of molecular and biochemical techniques, we show that NM23-H1 interacts with ER alpha and increases the ER alpha-estrogen response element (ERE) interaction. When NM23-H1 expression is increased in U2 osteosarcoma and MDA-MB-231 breast cancer cells, transcription of a transiently transfected, estrogen-responsive reporter plasmid is decreased. More importantly, when endogenous NM23-H1 expression is knocked down in MCF-7 human breast cancer cells using small interfering RNA, estrogen responsiveness of the progesterone receptor (PR), Bcl-2, cathepsin D, and cyclin D1 genes, but not the pS2 gene, is enhanced. Furthermore, NM23-H1 associates with the region of the PR gene containing the +90 activator protein 1 site, but not with the ERE-containing region of the pS2 gene, indicating that NM23-H1 mediates gene-specific effects by association with endogenous chromatin. Our studies suggest that the capacity of NM23-H1 to limit the expression of estrogen-responsive genes such as cathepsin D and Bcl-2, which are involved in cell migration, apoptosis, and angiogenesis, may help to explain the metastasis-suppressive effects of this protein. The complementary abilities of ER alpha and NM23-H1 together to influence gene expression, cell migration, and apoptosis could be key factors in helping to determine tumor cell fate.

Rayner K, Chen YX, Hibbert B, et al.
Discovery of NM23-H2 as an estrogen receptor beta-associated protein: role in estrogen-induced gene transcription and cell migration.
J Steroid Biochem Mol Biol. 2008; 108(1-2):72-81 [PubMed] Related Publications
The regulation of the estrogenic responses may be influenced by the proteins that associate with estrogen receptors (ERs) rather than solely with the receptors themselves. ERbeta is expressed in blood vessels and may play an important role in vascular disease. We hypothesized that specific proteins interact with ERbeta to modulate its response to estrogens. By means of a yeast two hybrid screen, we discovered that NM23-H2, a multi-faceted protein associates specifically with ERbeta. NM23-H2 and ERbeta consistently co-localize in a variety of human tissues (e.g. breast tissue), whereas ERalpha and NM23-H2 did not co-localize. Estrogen response element-mediated transcription increased by 97% when NM23-H2 and ERbeta were over-expressed in MCF-7 cells (p< or =0.001). Moreover, there was a synergistic effect of NM23-H2 over-expression with estrogen treatment on the reduction of MCF-7 cell migration (p< or =0.001). These results suggest that NM23-H2 associates with ERbeta and is capable of modulating estrogen-induced gene transcription, as well as cell migration. Hence, NM23-H2 may play an important role in modulating the response to endogenous and exogenous estrogens, perhaps even within the context of vascular disease.

Shimada M, Yamashita Y, Tanaka S, et al.
Characteristic gene expression induced by polyurethane foam/spheroid culture of hepatoma cell line, Hep G2 as a promising cell source for bioartificial liver.
Hepatogastroenterology. 2007 Apr-May; 54(75):814-20 [PubMed] Related Publications
BACKGROUND/AIMS: Polyurethane foam (PUF)/ spheroid-culture can improve liver-specific functions of hepatoma cell line, Hep G2. Therefore, gene expression profile in the PUF/spheroid culture is hypothesized to be different from that in the monolayer culture. The aim of this study is to clarify the characteristic gene expression in PUF/spheroid-cultured Hep G2 cells, as a cell source for bioartificial liver (BAL), using microarray analysis.
METHODOLOGY: Morphological change and liver specific functions of ammonia removal rate and albumin synthesis rate of Hep G2 were compared between in a monolayer or PUF/spheroid culture. Microarray analysis was performed using cDNA microarrays made in Hitachi Software Engineering Co., Ltd., (Yokohama, Japan), which contains a total of 1,281 cDNA clones.
RESULTS: The ammonia removal rate of Hep G2 spheroids increased to 369%, and the albumin synthesis rate of Hep G2 spheroids also increased 311% when compared with monolayer culture. In addition, the ammonia removal capacity of primary human hepatocytes in the PUF/spheroid culture was superior to that in the monolayer culture. The microarray analysis demonstrated that the PUF/spheroid-cultured Hep G2 cells expressed 39 up-regulated (more than 3.0-fold) and 31 down-regulated (less than 0.333-fold) genes. Among the 70 genes differentially expressed in PUF/spheroid cultured Hep G2 cells, subsets of glutathione S-transferase- and angio-tensin-related genes were drastically up-regulated, on the other hand, subsets of assigned for growth factor, glucocorticoid, and stress response, were down-regulated.
CONCLUSIONS: Hepatoma cell line, Hep G2 cells in the PUF/spheroid culture is a promising hepatocyte source for BAL. Microarray analysis revealed a number of characteristic genes altered by the PUF/spheroid.

Manavi M, Hudelist G, Fink-Retter A, et al.
Gene profiling in Pap-cell smears of high-risk human papillomavirus-positive squamous cervical carcinoma.
Gynecol Oncol. 2007; 105(2):418-26 [PubMed] Related Publications
OBJECTIVE: The purpose of the study was to investigate benign and malignant squamous cervical cells obtained by cervical swabs with regard to differentially expressed genes and gene expression profiling, in order to evaluate the biological behavior and clinical outcome of cervical malignancies.
METHODS: Cervical squamous cells from six women with high-risk human papillomavirus positive [HR-HPV(+)] cervical carcinoma and from six HPV-negative women with normal ectocervical cells were analyzed by cDNA array.
RESULTS: cDNA over-expression of several genes such as MET (c-met), Nm23-H1 (NME1), EGFR, KGFR, Nm23-H2 (NME2), ERBB2 (c-erbB-2), cyclin-dependent kinase inhibitor 4 (CDKN2A, p16INK4A), cytokeratin 8 (KRT8), KRAS (K-ras), FLT1, KGF (FGF7), BCL2-like 2 protein (BCL2L2), ERBB4, MYCN (N-myc), cyclin D1 (CCND1), KIT (c-kit), secreted phosphoprotein 1 (SPP1) and STAT1, was significant in cervical squamous cell carcinoma (CSCC). Gene expression was downregulated for 13 genes in CSCC, such as interleukin 1 alpha (IL1A), the transforming growth factor receptor beta superfamily (TGFbeta; TGFB), some members of the insulin-like growth factor binding proteins (IGFBPs) and the integrin family (ITGA6, ITGB1).
CONCLUSION: This study was focused on the gene expression profiling of HR-HPV(-) and (+) cervical squamous cells and CSCC obtained by cytobrush. We observed gene expression patterns and signaling pathways that permit the investigator to distinguish between benign squamous cervical cells and CSCC with and without HPV infection.

Mileo AM, Piombino E, Severino A, et al.
Multiple interference of the human papillomavirus-16 E7 oncoprotein with the functional role of the metastasis suppressor Nm23-H1 protein.
J Bioenerg Biomembr. 2006; 38(3-4):215-25 [PubMed] Related Publications
High-risk human papillomaviruses (HPV) are linked to human cervical and other ano-genital cancers. Integration of the viral genome in the transformed epithelial cells is restricted to the coding regions for the E6 and E7 oncoproteins. Nevertheless, E7 plays the major role in cell transformation. We report a novel interaction between HPV-16 E7 and the Nm23-H1 and Nm23-H2 proteins identified in yeast by the two-hybrid system and confirmed by co-immunoprecipitation in the human keratinocyte HaCaT cell line. Expression of the E7 oncoprotein in HaCaT cells induces modified keratinocyte proliferation and differentiation patterns, and leads to down-modulation and functional inactivation of the metastasis suppressor Nm23-H1 protein. Both transcriptional down-regulation and protein degradation contribute to reduce Nm23-H1 intracellular content. Besides metastasis suppression, Nm23-H1 displays multiple functions in cell cycle regulation and differentiation, development, DNA regulation and caspase-independent apoptosis. As a consequence of Nm23-H1 inhibition, HPV-16 E7 expressing HaCaT cells, acquire invasiveness capabilities and resistance to granzyme A-induced apoptosis. We propose that impairment of the multifunctional role of Nm23-H1 is an important feature consistent with the complex strategy carried out by HPV-16 E7 to promote cell transformation and tumor progression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NME2, Cancer Genetics Web: http://www.cancer-genetics.org/NME2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999