FLT3

Gene Summary

Gene:FLT3; fms related tyrosine kinase 3
Aliases: FLK2, STK1, CD135, FLK-2
Location:13q12.2
Summary:This gene encodes a class III receptor tyrosine kinase that regulates hematopoiesis. This receptor is activated by binding of the fms-related tyrosine kinase 3 ligand to the extracellular domain, which induces homodimer formation in the plasma membrane leading to autophosphorylation of the receptor. The activated receptor kinase subsequently phosphorylates and activates multiple cytoplasmic effector molecules in pathways involved in apoptosis, proliferation, and differentiation of hematopoietic cells in bone marrow. Mutations that result in the constitutive activation of this receptor result in acute myeloid leukemia and acute lymphoblastic leukemia. [provided by RefSeq, Jan 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:receptor-type tyrosine-protein kinase FLT3
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (36)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Biomarkers, Tumor
  • Oncogene Fusion Proteins
  • Tissue Donors
  • Chromosome Aberrations
  • Risk Factors
  • DNA Mutational Analysis
  • Infant
  • Recurrence
  • Childhood Cancer
  • Karyotype
  • Antineoplastic Agents
  • Tandem Repeat Sequences
  • CCAAT-Enhancer-Binding Proteins
  • Nuclear Proteins
  • Remission Induction
  • Bone Marrow
  • Protein-Tyrosine Kinases
  • Acute Myeloid Leukaemia
  • Promoter Regions
  • Phenylurea Compounds
  • Signal Transduction
  • Leukaemia
  • High-Throughput Nucleotide Sequencing
  • Cell Proliferation
  • Protein Kinase Inhibitors
  • Drug Resistance
  • Gene Duplication
  • Molecular Targeted Therapy
  • Residual Disease
  • Young Adult
  • Chromosome 13
  • Neoplasm Proteins
  • Apoptosis
  • Adolescents
  • Up-Regulation
  • Leukemic Gene Expression Regulation
  • Gene Expression Profiling
  • Mutation
  • FLT3
  • Disease-Free Survival
  • Gene Expression
  • Hematopoietic Stem Cell Transplantation
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FLT3 (cancer-related)

Ebrahim EK, Assem MM, Amin AI, et al.
FLT3 Internal Tandem Duplication Mutation, cMPL and CD34 Expressions Predict Low Survival in Acute Myeloid Leukemia Patients.
Ann Clin Lab Sci. 2016; 46(6):592-600 [PubMed] Related Publications
OBJECTIVES: To detect FMS-like tyrosine kinase-3 internal tandem duplicate (FLT3 ITD) mutation, Myeloproliferative leukemia virus oncogene (cMPL) and Ephrin A 4 receptor (EphA4) expressions in Acute myeloid leukemia (AML) and their correlation to patient's clinicopathological characteristics and survival.
METHODS: RNA was extracted from blood samples of 58 AML patients (39 adults and 19 children) and 20 age and sex matched controls. FLT3 ITD mutation, cMPL and EphA4 expression was studied using RT-PCR and correlated to the clinical and survival data of the patients.
RESULTS: FLT3 ITD mutation, cMPL and EphA4 expression was positive in 35.9%, 76.9% and 56.4% of adult AML patients respectively and in 15.8%, 47.4% and 36.8% of pediatric AML patients respectively. 76.9% of adult and 89.5% of pediatric patients expressed CD33. 64.1 % of adults and 42.1% of children expressed CD34. CD34 expression was significantly associated with both FLT3 ITD mutation and cMPL expression. CD34, FLT3 and cMPL negative cases have significantly higher overall survival than positive cases.
CONCLUSION: CD34 expression is significantly associated with both FLT3 ITD mutation and cMPL expression which could be used as a marker for low survival. Normal FLT3 and negative expression of CD34 and cMPL may predict a longer overall survival. Further studies are needed to investigate the mechanism that may correlate CD34 to both markers.

Chang H, Sung JH, Moon SU, et al.
EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells.
Yonsei Med J. 2017; 58(1):9-18 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) trigger RET inhibitor resistance in LC-2/ad cells with CCDC6-RET fusion genes.
MATERIALS AND METHODS: The effects of EGF and HGF on the susceptibility of a CCDC6-RET lung cancer cell line to RET inhibitors (sunitinib, E7080, vandetanib, and sorafenib) were examined.
RESULTS: CCDC6-RET lung cancer cells were highly sensitive to RET inhibitors. EGF activated epidermal growth factor receptor (EGFR) and triggered resistance to sunitinib, E7080, vandetanib, and sorafenib by transducing bypass survival signaling through ERK and AKT. Reversible EGFR-TKI (gefitinib) resensitized cancer cells to RET inhibitors, even in the presence of EGF. Endothelial cells, which are known to produce EGF, decreased the sensitivity of CCDC6-RET lung cancer cells to RET inhibitors, an effect that was inhibited by EGFR small interfering RNA (siRNA), anti-EGFR antibody (cetuximab), and EGFR-TKI (Iressa). HGF had relatively little effect on the sensitivity to RET inhibitors.
CONCLUSION: EGF could trigger resistance to RET inhibition in CCDC6-RET lung cancer cells, and endothelial cells may confer resistance to RET inhibitors by EGF. E7080 and other RET inhibitors may provide therapeutic benefits in the treatment of RET-positive lung cancer patients.

Kumsaen P, Fucharoen G, Sirijerachai C, et al.
FLT3-ITD Mutations in Acute Myeloid Leukemia Patients in Northeast Thailand.
Asian Pac J Cancer Prev. 2016; 17(9):4395-4399 [PubMed] Related Publications
The FLT3-ITD mutation is one of the most frequent genetic abnormalities in acute myeloid leukemia (AML) where it is associated with a poor prognosis. The FLT3-ITD mutation could, therefore, be a potential molecular prognostic marker important for risk-stratified treatment options. We amplified the FLT3 gene at exon 14 and 15 in 52 AML patients (aged between 2 months and 74 years) from 4 referral centers (a university hospital and 3 regional hospitals in Northeast Thailand), using a simple PCR method. FLT3-ITD mutations were found in 10 patients (19.2%), being more common in adults than in children (21.1% vs. 14.3%) and more prevalent in patients with acute promyelocytic leukemia (AML-M3) than AML-non M3 (4 of 10 AML-M3 vs. 6 of 42 AML- non M3 patients). Duplication sequences varied in size-between 27 and 171 nucleotides (median=63.5) and in their location. FLT3-ITD mutations with common duplication sequences accounted for a significant percentage in AML patients in northeastern Thailand. This simple PCR method is feasible for routine laboratory practice and these data could help tailor use of the national protocol for AML.

Allahyari A, Sadeghi M, Ayatollahi H, et al.
Frequency of FLT3 (ITD, D835) Gene Mutations in Acute Myelogenous Leukemia: a Report from Northeastern Iran.
Asian Pac J Cancer Prev. 2016; 17(9):4319-4322 [PubMed] Related Publications
BACKGROUND: FLT3 is mutated in about 1/3 of acute myelogenous leukemia (AML) patients. The aim of the present study was to report the prevalence of FLT3 mutations and comparison with prognostic factors in AML patients in the Northeastern of Iran.
MATERIALS AND METHODS: This cross-sectional study concerned 100 AML cases diagnosed based on bone marrow aspiration and peripheral blood. DNA for every AML patient was extracted and underwent PCR with FLT3-ITD primers.
RESULTS: The mean age at diagnosis was 28.5 years (range, 1-66 years), 52 patients (52%) being male. Out of 100 AML patients, 21 (21%) had FLT3 mutation, (17 with FLT3- ITD, 81%, and 4 with FLT3-D825, 19%). Of the 21, 14 (66.7%) had heterozygous mutation. There was no significant difference between age, sex and organomegaly between patients with FLT3 mutation versus FLT3 wild-type.
CONCLUSIONS: Our frequency of FLT3 is in line with earlier fidnings of approximately 20 to 30% and also the prevalence of FLT3-ITD is more than FLT3-D35 mutation. There was no significant difference between prognostic factors (age and sex) in the patients with FLT3 mutation versus FLT3 wild-type. The prevalence of FLT3 heterozygous mutations is more that homozygous mutations in AML patients.

Fleischmann M, Schnetzke U, Schrenk KG, et al.
Outcome of FLT3-ITD-positive acute myeloid leukemia: impact of allogeneic stem cell transplantation and tyrosine kinase inhibitor treatment.
J Cancer Res Clin Oncol. 2017; 143(2):337-345 [PubMed] Related Publications
BACKGROUND: Activating mutations of the receptor tyrosine kinase FLT3 (fms-related tyrosine kinase 3) reflect the most frequent molecular aberration in acute myeloid leukemia (AML). In particular, FLT3 internal tandem duplications (FLT3-ITD) are characterized by an unfavorable prognosis and allogeneic stem cell transplantation (allogeneic SCT) in first complete remission is recommended. In case of imminent or frank relapse following allogeneic SCT, treatment with FLT3 tyrosine kinase inhibitors (TKI) constitutes a promising clinical approach to induce hematologic remission without conventional chemotherapy.
PATIENTS AND METHODS: We retrospectively analyzed the response to induction chemotherapy and the outcome of 76 patients with FLT3-ITD-positive AML including 50 patients who underwent allogeneic SCT. Furthermore, efficacy of TKI treatment was evaluated in 18 patients (median age 54 years, range 21-74) with relapsed or refractory FLT3-ITD-positive AML.
RESULTS: Response to induction chemotherapy in 76 FLT3-ITD-positive AML patients was characterized by a complete remission (CR) rate of 68%. In total, 50 of 76 patients (66%) underwent allogeneic SCT including 40 patients (80%) in CR. Relapse of AML was observed in 21 of 47 patients (45%) after allogeneic SCT with a median relapse-free survival (RFS) of 13 months (range 3-224) for patients with CR prior to or at day +30 after SCT. Myeloablative conditioning resulted in an improved median RFS of 29 months (4-217) as compared to a reduced intensity conditioning protocol prior to allogeneic SCT with a RFS of 8 months (1-197, P = 0.048), respectively. Median OS of FLT3-ITD-positive AML was 17 months (5-225) for patients who received an allogeneic SCT as compared to 9 months (1-184) for patients who did not undergo SCT. Response of FLT3-ITD-positive AML to sorafenib was characterized by only 3 of 18 patients achieving a bone marrow response (17%), while there was no response to second-line treatment with ponatinib.
CONCLUSION: This "real-life" data reflect the continuing challenge of FLT3-ITD-positive AML and confirm the poor outcome even after allogeneic SCT. Furthermore, efficacy of TKI treatment of relapsed or refractory FLT3-ITD AML is still limited and requires substantial improvement, e.g., by the introduction of second-generation inhibitors targeting constitutively active FLT3.

Jo SY, Park SH, Kim IS, et al.
Correlation of NPM1 Type A Mutation Burden With Clinical Status and Outcomes in Acute Myeloid Leukemia Patients With Mutated NPM1 Type A.
Ann Lab Med. 2016; 36(5):399-404 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Nucleophosmin gene (NPM1) mutation may be a good molecular marker for assessing the clinical status and predicting the outcomes in AML patients. We evaluated the applicability of NPM1 type A mutation (NPM1-mutA) quantitation for this purpose.
METHODS: Twenty-seven AML patients with normal karyotype but bearing the mutated NPM1 were enrolled in the study, and real-time quantitative PCR of NPM1-mutA was performed on 93 bone marrow (BM) samples (27 samples at diagnosis and 56 at follow-up). The NPM1-mutA allele burdens (represented as the NPM1-mutA/Abelson gene (ABL) ratio) at diagnosis and at follow-up were compared.
RESULTS: The median NPM1-mutA/ABL ratio was 1.3287 at diagnosis and 0.092 at 28 days after chemotherapy, corresponding to a median log10 reduction of 1.7061. Significant correlations were observed between BM blast counts and NPM1-mutA quantitation results measured at diagnosis (γ=0.5885, P=0.0012) and after chemotherapy (γ=0.5106, P=0.0065). Total 16 patients achieved morphologic complete remission at 28 days after chemotherapy, and 14 (87.5%) patients showed a >3 log10 reduction of the NPM1-mutA/ABL ratio. The NPM1-mutA allele was detected in each of five patients who had relapsed, giving a median increase of 0.91-fold of the NPM1-mutA/ABL ratio at relapse over that at diagnosis.
CONCLUSIONS: The NPM1-mutA quantitation results corresponded to BM assessment results with high stability at relapse, and could predict patient outcomes. Quantitation of the NPM1-mutA burden at follow-up would be useful in the management of AML patients harboring this gene mutation.

Neuendorff NR, Burmeister T, Dörken B, Westermann J
BCR-ABL-positive acute myeloid leukemia: a new entity? Analysis of clinical and molecular features.
Ann Hematol. 2016; 95(8):1211-21 [PubMed] Related Publications
BCR-ABL-positive acute myeloid leukemia (AML) is a rare subtype of AML that is now included as a provisional entity in the 2016 revised WHO classification of myeloid malignancies. Since a clear distinction between de novo BCR-ABL+ AML and chronic myeloid leukemia (CML) blast crisis is challenging in many cases, the existence of de novo BCR-ABL+ AML has been a matter of debate for a long time. However, there is increasing evidence suggesting that BCR-ABL+ AML is in fact a distinct subgroup of AML. In this study, we analyzed all published cases since 1975 as well as cases from our institution in order to present common clinical and molecular features of this rare disease. Our analysis shows that BCR-ABL predominantly occurs in AML-NOS, CBF leukemia, and AML with myelodysplasia-related changes. The most common BCR-ABL transcripts (p190 and p210) are nearly equally distributed. Based on the analysis of published data, we provide a clinical algorithm for the initial differential diagnosis of BCR-ABL+ AML. The prognosis of BCR-ABL+ AML seems to depend on the cytogenetic and/or molecular background rather than on BCR-ABL itself. A therapy with tyrosine kinase inhibitors (TKIs) such as imatinib, dasatinib, or nilotinib is reasonable, but-due to a lack of systematic clinical data-their use cannot be routinely recommended in first-line therapy. Beyond first-line treatment of AML, the use of TKI remains an individual decision, both in combination with intensive chemotherapy and/or as a bridge to allogeneic stem cell transplantation. In each single case, potential benefits have to be weighed against potential risks.

Byun JM, Kim YJ, Yoon HJ, et al.
Cytogenetic profiles of 2806 patients with acute myeloid leukemia-a retrospective multicenter nationwide study.
Ann Hematol. 2016; 95(8):1223-32 [PubMed] Related Publications
The cytogenetic and molecular data is recognized as the most valuable prognostic factor in acute myeloid leukemia (AML). Our aim was to systemically analyze the cytogenetics of Korean AML patients and to compare the cytogenetic profiles of various races to identify possible geographic heterogeneity. We retrospectively reviewed medical records of 2806 AML patients diagnosed at 11 tertiary teaching hospitals in Korea between January 2007 and December 2011. The most common recurrent chromosomal abnormality was t(8;21) (8.8 %, 238/2717), but t(15;17) showed an almost same number (8.6 %,235/2717). Among de novo AML, the most frequent aberrations were t(15;17), observed in 229 (10.7 %). The most common French-American-British (FAB) classification type was M2 (32.2 %), and recurrent cytogenetic abnormalities correlated with the FAB subtypes. Among 283 secondary AML cases, myelodysplastic syndrome was the most common predisposing factor. About 67.1 % of the secondary AML cases were associated with chromosomal aberrations, and chromosome 7 abnormalities (n = 45, 15.9 %) were most common. The incidence of FLT3 internal tandem duplication mutation was relatively low at 15 %. Our study reports certain similarities and differences in comparison to previous reports. Such discrepancies call for extensive epidemiological studies to clarify the role of genetic as well as geographic heterogeneity in the pathogenesis of AML.

Rustagi N, Hampton OA, Li J, et al.
ITD assembler: an algorithm for internal tandem duplication discovery from short-read sequencing data.
BMC Bioinformatics. 2016; 17:188 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Detection of tandem duplication within coding exons, referred to as internal tandem duplication (ITD), remains challenging due to inefficiencies in alignment of ITD-containing reads to the reference genome. There is a critical need to develop efficient methods to recover these important mutational events.
RESULTS: In this paper we introduce ITD Assembler, a novel approach that rapidly evaluates all unmapped and partially mapped reads from whole exome NGS data using a De Bruijn graphs approach to select reads that harbor cycles of appropriate length, followed by assembly using overlap-layout-consensus. We tested ITD Assembler on The Cancer Genome Atlas AML dataset as a truth set. ITD Assembler identified the highest percentage of reported FLT3-ITDs when compared to other ITD detection algorithms, and discovered additional ITDs in FLT3, KIT, CEBPA, WT1 and other genes. Evidence of polymorphic ITDs in 54 genes were also found. Novel ITDs were validated by analyzing the corresponding RNA sequencing data.
CONCLUSIONS: ITD Assembler is a very sensitive tool which can detect partial, large and complex tandem duplications. This study highlights the need to more effectively look for ITD's in other cancers and Mendelian diseases.

Khaled S, Al Malki M, Marcucci G
Acute Myeloid Leukemia: Biologic, Prognostic, and Therapeutic Insights.
Oncology (Williston Park). 2016; 30(4):318-29 [PubMed] Related Publications
Acute myeloid leukemia (AML) is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence is increasing as the population ages. Unfortunately, currently used "one-size-fits-all" chemotherapy regimens result in cure for only a minority of patients. Although progress has been made in identifying subsets of patients who require chemotherapy alone-as compared with those who require initial chemotherapy followed by allogeneic stem cell transplantation to maximize the chance for cure-clinical and cytogenetic prognosticators are not sufficiently accurate for such a risk-adapted stratification approach. New molecular technologies have allowed for in-depth molecular analyses of AML patients. These studies have revealed novel mutations, epigenetic changes, and/or aberrant expression levels of protein-coding and noncoding genes involved in leukemogenesis. These molecular aberrations are now being increasingly used not only to select risk-adapted treatment strategies, but also to incorporate newer molecularly targeted agents into conventional chemotherapy and/or transplant treatments. The hope is that this approach will lead to a better selection of "personalized" treatments for individual patients at diagnosis, the ability to assess these treatments in real time, and the ability, if necessary, to modify these therapies utilizing molecular endpoints for guidance regarding their antileukemia activity. We review here the state of the art of diagnosis and treatment of AML and provide insights into the emerging novel biomarkers and therapeutic agents that are anticipated to be useful for the implementation of personalized medicine in AML.

Lu JW, Wang AN, Liao HA, et al.
Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD).
Cancer Lett. 2016; 376(2):218-25 [PubMed] Related Publications
Cabozantinib is an oral multikinase inhibitor that exhibits anti-tumor activity in several cancers. We found that cabozantinib was significantly cytotoxic to MV4-11 and Molm-13 cells that harbored FLT3-ITD, resulting in IC50 values of 2.4 nM and 2.0 nM, respectively. However, K562, OCI-AML3 and THP-1 (leukemia cell lines lacking FLT3-ITD) were resistant to cabozantinib, showing IC50 values in the micromolar range. Cabozantinib arrested MV4-11 cell growth at the G0/G1 phase within 24 h, which was associated with decreased phosphorylation of FLT3, STAT5, AKT and ERK. Additionally, cabozantinib induced MV4-11 cell apoptosis in a dose-dependent manner (as indicated by annexin V staining and high levels of cleaved caspase 3 and PARP-1), down-regulated the anti-apoptotic protein survivin and up-regulated the pro-apoptotic protein Bak. Thus, cabozantinib is selectively cytotoxic to leukemia cells with FLT3-ITD, causing cell-cycle arrest and apoptosis. In mouse xenograft model, cabozantinib significantly inhibited MV4-11 and Molm-13 tumor growth at a dosage of 10 mg/kg and showed longer survival rate. Clinical trials evaluating the efficacy of cabozantinib in acute myeloid leukemia (AML) with FLT3-ITD are warranted.

Sontakke P, Koczula KM, Jaques J, et al.
Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation.
PLoS One. 2016; 11(4):e0153226 [PubMed] Free Access to Full Article Related Publications
The Warburg effect is probably the most prominent metabolic feature of cancer cells, although little is known about the underlying mechanisms and consequences. Here, we set out to study these features in detail in a number of leukemia backgrounds. The transcriptomes of human CB CD34+ cells transduced with various oncogenes, including BCR-ABL, MLL-AF9, FLT3-ITD, NUP98-HOXA9, STAT5A and KRASG12V were analyzed in detail. Our data indicate that in particular BCR-ABL, KRASG12V and STAT5 could impose hypoxic signaling under normoxic conditions. This coincided with an upregulation of glucose importers SLC2A1/3, hexokinases and HIF1 and 2. NMR-based metabolic profiling was performed in CB CD34+ cells transduced with BCR-ABL versus controls, both cultured under normoxia and hypoxia. Lactate and pyruvate levels were increased in BCR-ABL-expressing cells even under normoxia, coinciding with enhanced glutaminolysis which occurred in an HIF1/2-dependent manner. Expression of the glutamine importer SLC1A5 was increased in BCR-ABL+ cells, coinciding with an increased susceptibility to the glutaminase inhibitor BPTES. Oxygen consumption rates also decreased upon BPTES treatment, indicating a glutamine dependency for oxidative phosphorylation. The current study suggests that BCR-ABL-positive cancer cells make use of enhanced glutamine metabolism to maintain TCA cell cycle activity in glycolytic cells.

Sloan CE, Luskin MR, Boccuti AM, et al.
A Modified Integrated Genetic Model for Risk Prediction in Younger Patients with Acute Myeloid Leukemia.
PLoS One. 2016; 11(4):e0153016 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Although cytogenetics-based prognostication systems are well described in acute myeloid leukemia (AML), overall survival (OS) remains highly variable within risk groups. An integrated genetic prognostic (IGP) model using cytogenetics plus mutations in nine genes was recently proposed for patients ≤60 years to improve classification. This model has not been validated in clinical practice.
METHODS AND FINDINGS: We retrospectively studied 197 patients with newly diagnosed de novo AML. We compared OS curves among the mutational profiles defined by the IGP model. The IGP model assigned patients with intermediate cytogenetics as having favorable, intermediate or unfavorable mutational profiles. The IGP model reassigned 50 of 137 patients with intermediate cytogenetics to favorable or unfavorable mutational profiles. Median OS was 2.8 years among 14 patients with intermediate cytogenetics and favorable mutational profiles (mutant NPM1 and mutant IDH1 or IDH2) and 1.3 years among patients with intermediate mutational profiles. Among patients with intermediate cytogenetics labeled as having unfavorable mutational profiles, median OS was 0.8 years among 24 patients with FLT3-ITD positive AML and high-risk genetic changes (trisomy 8, TET2 and/or DNMT3A) and 1.7 years among 12 patients with FLT3-ITD negative AML and high-risk mutations (TET2, ASXL1 and/or PHF6). OS for patients with intermediate cytogenetics and favorable mutational profiles was similar to OS for patients with favorable cytogenetics (p = 0.697) and different from patients with intermediate cytogenetics and intermediate mutational profiles (p = 0.028). OS among patients with FLT3-ITD positive AML and high-risk genetic changes was similar to patients with unfavorable cytogenetics (p = 0.793) and different from patients with intermediate IGP profile (p = 0.022). Patients with FLT3-ITD negative AML and high-risk mutations, defined as 'unfavorable' in the IGP model, had OS similar to patients with intermediate IGP profile (p = 0.919).
CONCLUSIONS: The IGP model was not completely validated in our cohort. However, mutations in six out of the nine genes can be used to characterize survival (NPMI, IDH1, IDH2, FLT3-ITD, TET2, DNMT3A) and allow for more robust prognostication in the patients who are re-categorized by the IGP model. These mutations should be incorporated into clinical testing for younger patients outside of clinical trials, in order to guide therapy.

Hiemenz MC, Kadauke S, Lieberman DB, et al.
Building a Robust Tumor Profiling Program: Synergy between Next-Generation Sequencing and Targeted Single-Gene Testing.
PLoS One. 2016; 11(4):e0152851 [PubMed] Free Access to Full Article Related Publications
Next-generation sequencing (NGS) is a powerful platform for identifying cancer mutations. Routine clinical adoption of NGS requires optimized quality control metrics to ensure accurate results. To assess the robustness of our clinical NGS pipeline, we analyzed the results of 304 solid tumor and hematologic malignancy specimens tested simultaneously by NGS and one or more targeted single-gene tests (EGFR, KRAS, BRAF, NPM1, FLT3, and JAK2). For samples that passed our validated tumor percentage and DNA quality and quantity thresholds, there was perfect concordance between NGS and targeted single-gene tests with the exception of two FLT3 internal tandem duplications that fell below the stringent pre-established reporting threshold but were readily detected by manual inspection. In addition, NGS identified clinically significant mutations not covered by single-gene tests. These findings confirm NGS as a reliable platform for routine clinical use when appropriate quality control metrics, such as tumor percentage and DNA quality cutoffs, are in place. Based on our findings, we suggest a simple workflow that should facilitate adoption of clinical oncologic NGS services at other institutions.

Farrar JE, Schuback HL, Ries RE, et al.
Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse.
Cancer Res. 2016; 76(8):2197-205 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The genomic and clinical information used to develop and implement therapeutic approaches for acute myelogenous leukemia (AML) originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative used whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML. One hundred forty-five somatic variants at diagnosis (median 6 mutations/patient) and 149 variants at relapse (median 6.5 mutations) were identified and verified by orthogonal methodologies. Recurrent somatic variants [in (greater than or equal to) 2 patients] were identified for 10 genes (FLT3, NRAS, PTPN11, WT1, TET2, DHX15, DHX30, KIT, ETV6, KRAS), with variable persistence at relapse. The variant allele fraction (VAF), used to measure the prevalence of somatic mutations, varied widely at diagnosis. Mutations that persisted from diagnosis to relapse had a significantly higher diagnostic VAF compared with those that resolved at relapse (median VAF 0.43 vs. 0.24, P < 0.001). Further analysis revealed that 90% of the diagnostic variants with VAF >0.4 persisted to relapse compared with 28% with VAF <0.2 (P < 0.001). This study demonstrates significant variability in the mutational profile and clonal evolution of pediatric AML from diagnosis to relapse. Furthermore, mutations with high VAF at diagnosis, representing variants shared across a leukemic clonal structure, may constrain the genomic landscape at relapse and help to define key pathways for therapeutic targeting. Cancer Res; 76(8); 2197-205. ©2016 AACR.

Nardi V, Hasserjian RP
Genetic Testing in Acute Myeloid Leukemia and Myelodysplastic Syndromes.
Surg Pathol Clin. 2016; 9(1):143-63 [PubMed] Related Publications
Cytogenetic analysis of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) is essential for disease diagnosis, classification, prognostic stratification, and treatment guidance. Molecular genetic analysis of CEBPA, NPM1, and FLT3 is already standard of care in patients with AML, and mutations in several additional genes are assuming increasing importance. Mutational analysis of certain genes, such as SF3B1, is also becoming an important tool to distinguish subsets of MDS that have different biologic behaviors. It is still uncertain how to optimally combine karyotype with mutation data in diagnosis and risk-stratification of AML and MDS, particularly in cases with multiple mutations and/or several mutationally distinct subclones.

Petrushev B, Boca S, Simon T, et al.
Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy.
Int J Nanomedicine. 2016; 11:641-60 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND AND AIMS: Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care. Two-thirds of patients achieve complete remission, although most of them ultimately relapse. Since the FLT3 mutation is the most frequent, it serves as a key molecular target for tyrosine kinase inhibitors (TKIs) that inhibit FLT3 kinase. In this study, we report the conjugation of TKIs onto spherical gold nanoparticles.
MATERIALS AND METHODS: The internalization of TKI-nanocarriers was proved by the strongly scattered light from gold nanoparticles and was correlated with the results obtained by transmission electron microscopy and dark-field microscopy. The therapeutic effect of the newly designed drugs was investigated by several methods including cell counting assay as well as the MTT assay.
RESULTS: We report the newly described bioconjugates to be superior when compared with the drug alone, with data confirmed by state-of-the-art analyses of internalization, cell biology, gene analysis for FLT3-IDT gene, and Western blotting to assess degradation of the FLT3 protein.
CONCLUSION: The effective transmembrane delivery and increased efficacy validate its use as a potential therapeutic.

Saleh AM, Taha MO, Aziz MA, et al.
Novel anticancer compound [trifluoromethyl-substituted pyrazole N-nucleoside] inhibits FLT3 activity to induce differentiation in acute myeloid leukemia cells.
Cancer Lett. 2016; 375(2):199-208 [PubMed] Related Publications
Anticancer properties of chemically synthesized compounds have continuously been optimized for better efficacy and selectivity. Derivatives of heterocyclic compounds are well known to have selective antiproliferative effect against many types of cancer. In this study, we investigated the ability of an indigenously synthesized anticancer molecule, G-11 [1-(2",3",4",6"-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(3'-trifluoromethylphenylhydrazono)-3-trifluoromethyl-1,4-dihydropyrazol-5-one], to cause selective cytotoxicity and induce differentiation in the acute myeloid leukemia HL-60 cells. G-11 was able to exert cytotoxic effect on hematological (Jurkat, U937, K562, HL-60, CCRF-SB) and solid tumor (MCF-7, HepG2, HeLa, Caco-2) cell lines, with IC50 values significantly lower than noncancerous cells (HEK-293, BJ and Vero) and normal peripheral blood mononuclear cells. G-11 induced differentiation of HL-60 cells to granulocytes and monocytes/macrophages by inhibiting the activation of FLT3 (CD135 tyrosine kinase). ITD-FLT3 mutation found in many acute myeloid leukemia patients could also be targeted by G-11 as exhibited by its inhibitory effect on MOLM-13 and MV4-11 cell lines. Molecular docking studies suggest the involvement of Leu616, Asp698, Cys694 and Cys828 residues in binding of G-11 to FLT3. The ability of G-11 to cause selective cytotoxicity and induce differentiation in cancer cells could be clinically relevant for therapeutic gains.

Hua X, Hyland PL, Huang J, et al.
MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations.
Am J Hum Genet. 2016; 98(3):442-55 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.

Huang K, Yang M, Pan Z, et al.
Leukemogenic potency of the novel FLT3-N676K mutant.
Ann Hematol. 2016; 95(5):783-91 [PubMed] Related Publications
The novel FMS-like tyrosine kinase 3 (FLT3)-N676K point mutation within the FLT3 kinase domain-1 was recently identified in 6 % of de novo acute myeloid leukemia (AML) patients with inv(16). Because FLT3-N676K was encountered almost exclusively in inv(16) AML, we investigated the transforming potential of FLT3-N676K, the cooperation between FLT3-N676K and core binding factor ß-smooth muscle myosin heavy chain (CBFß-SMMHC) (encoded by the inv(16) chimeric gene CBFB-MYH11) in inducing acute leukemia, and tested the sensitivity of FLT3-N676K-positive leukemic cells to FLT3 inhibitors. Retroviral expression of FLT3-N676K in myeloid 32D cells induced AML in syngeneic C3H/HeJ mice (n = 11/13, median latency 58 days), with a transforming activity similar to FLT3-internal tandem duplication (ITD) (n = 8/8), FLT3-TKD D835Y (n = 8/9), and FLT3-ITD-N676K (n = 9/9) mutations. Three out of 14 (21.4 %) C57BL/6J mice transplanted with FLT3-N676K-transduced primary hematopoietic progenitor cells developed acute leukemia (latency of 68, 77, and 273 days), while no hematological malignancy was observed in the control groups including FLT3-ITD. Moreover, co-expression of FLT3-N676K/CBFß-SMMHC did not promote acute leukemia in three independent experiments (n = 16). In comparison with FLT3-ITD, FLT3-N676K induced much higher activation of FLT3 and tended to trigger stronger phosphorylation of MAPK and AKT. Importantly, leukemic cells carrying the FLT3-N676K mutant in the absence of an ITD mutation were highly sensitive to FLT3 inhibitors AC220 and crenolanib, and crenolanib even retained activity against the AC220-resistant FLT3-ITD-N676K mutant. Taken together, the FLT3-N676K mutant is potent to transform murine hematopoietic stem/progenitor cells in vivo. This is the first report of acute leukemia induced by an activating FLT3 mutation in C57BL/6J mice. Moreover, further experiments investigating molecular mechanisms for leukemogenesis induced by FLT3-N676K mutation and clinical evaluation of FLT3 inhibitors in FLT3-N676K-positive AML seem warranted.

Noronha EP, Andrade FG, Zampier C, et al.
Immunophenotyping with CD135 and CD117 predicts the FLT3, IL-7R and TLX3 gene mutations in childhood T-cell acute leukemia.
Blood Cells Mol Dis. 2016; 57:74-80 [PubMed] Related Publications
With the combination of immunophenotyping and molecular tests, it is still a challenge to identify the characteristics of T cell acute lymphoblastic leukemia (T-ALL) associated with distinct outcomes. This study tests the possible correlation of cellular expression of CD135 and CD117 with somatic gene mutations in T-ALL. One hundred sixty-two samples were tested, including 143 at diagnosis, 15 from T-lymphoblastic lymphoma at relapse, and four relapse samples from sequential follow-up of T-ALL. CD135 and CD117 monoclonal antibodies were included in the T-ALL panel of flow cytometry. The percentage of cells positivity and the median fluorescence intensity were correlated with gene mutational status. STIL-TAL1, TLX3, FLT3 and IL7R mutations were tested using standard techniques. STIL-TAL1 was found in 24.8%, TLX3 in 12%, IL7R in 10% and FLT3-ITD in 5% of cases. FLT3 and IL7R mutations were mutually exclusive, as were FLT3-ITD and STIL-TAL1. Associations of CD135(high) (p<0.01), CD117(intermediate/high) (p=0.02) and FLT3-ITD, CD117(low) with IL7R(mutated) (p<0.01) and CD135(high) with TLX3(pos) were observed. We conclude that the addition of CD135 and CD117 to the diagnosis can predict molecular aberrations in T-ALL settings, mainly segregating patients with FLT3-ITD, who would benefit from treatment with inhibitors of tyrosine.

Chougule RA, Kazi JU, Rönnstrand L
FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia.
Oncotarget. 2016; 7(9):9964-74 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
FYN is a non-receptor tyrosine kinase belonging to the SRC family of kinases, which are frequently over-expressed in human cancers, and play key roles in cancer biology. SRC has long been recognized as an important oncogene, but little attention has been given to its other family members. In this report, we have studied the role of FYN in FLT3 signaling in respect to acute myeloid leukemia (AML). We observed that FYN displays a strong association with wild-type FLT3 as well as oncogenic FLT3-ITD and is dependent on the kinase activity of FLT3 and the SH2 domain of FYN. We identified multiple FYN binding sites in FLT3, which partially overlapped with SRC binding sites. To understand the role of FYN in FLT3 signaling, we generated FYN overexpressing cells. We observed that expression of FYN resulted in slightly enhanced phosphorylation of AKT, ERK1/2 and p38 in response to ligand stimulation. Furthermore, FYN expression led to a slight increase in FLT3-ITD-dependent cell proliferation, but potent enhancement of STAT5 phosphorylation as well as colony formation. We also observed that FYN expression is deregulated in AML patient samples and that higher expression of FYN, in combination with FLT3-ITD mutation, resulted in enrichment of the STAT5 signaling pathway and correlated with poor prognosis in AML. Taken together our data suggest that FYN cooperates with oncogenic FLT3-ITD in cellular transformation by selective activation of the STAT5 pathway. Therefore, inhibition of FYN, in combination with FLT3 inhibition, will most likely be beneficial for this group of AML patients.

Gill H, Leung AY, Kwong YL
Molecularly targeted therapy in acute myeloid leukemia.
Future Oncol. 2016; 12(6):827-38 [PubMed] Related Publications
Acute myeloid leukemia (AML) is molecularly heterogeneous. Formerly categorized cytogenetically and molecularly, AML may be classified by genomic and epigenomic analyses. These genetic lesions provide therapeutic targets. Genes targeted currently include mutated FLT3, NPM1 and KIT with drugs entering Phase III trials. Complete remission can be achieved in relapsed/refractory AML, albeit mostly transient. Mutated epigenetic modifiers, including DNMT3A, IDH1/2 and TET2, can be targeted by small molecule inhibitors, hypomethylating agents and histone deacetylase inhibitors. Other agents include cellular signaling pathway inhibitors and monoclonal antibodies against myeloid-associated antigens. Combinatorial strategies appear logical, mostly involving smaller molecular inhibitors partnering with hypomethylating agents. Currently limited to relapsed/refractory AML, targeted therapies are increasingly tested in frontline treatment with or without standard chemotherapy.

Bănescu C, Iancu M, Trifa AP, et al.
From Six Gene Polymorphisms of the Antioxidant System, Only GPX Pro198Leu and GSTP1 Ile105Val Modulate the Risk of Acute Myeloid Leukemia.
Oxid Med Cell Longev. 2016; 2016:2536705 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Oxidative stress might contribute to the occurrence of cancers, including the hematological ones. Various genetic polymorphisms were shown to increase the quantity of reactive oxygen species, a phenomenon that is able to induce mutations and thus promote cancers. The purpose of the study was to evaluate the association between CAT C262T, GPX1 Pro198Leu, MnSOD Ala16Val, GSTM1, GSTT1, and GSTP1 Ile105Val gene polymorphisms and acute myeloid leukemia risk, in a case-control study comprising 102 patients and 303 controls. No association was observed between AML and variant genotypes of CAT, MnSOD, GSTM1, and GSTT1 polymorphisms. Our data revealed a statistically significant difference regarding the frequencies of GPX1 Pro198Leu and GSTP1 Ile105Val variant genotypes between AML patients and controls (p < 0.001). Our results showed no association in the distribution of any of the CAT C262T, GPX1 Pro198Leu, GSTM1, GSTT1, and GSTP1 polymorphisms regarding age, gender, FAB subtype, cytogenetic risk groups, FLT3 and DNMT3 gene mutations, and overall survival. Our data suggests that the presence of variant allele and genotype of GPX1 Pro198Leu and GSTP1 Ile105Val gene polymorphisms may modulate the risk of developing AML.

Lim B, Kim C, Kim JH, et al.
Genetic alterations and their clinical implications in gastric cancer peritoneal carcinomatosis revealed by whole-exome sequencing of malignant ascites.
Oncotarget. 2016; 7(7):8055-66 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Peritoneal carcinomatosis accompanied by malignant ascites is a major cause of death of advanced gastric cancer (GC). To comprehensively characterize the underlying genomic events involved in GC peritoneal carcinomatosis, we analyzed whole-exome sequences of normal gastric tissues, primary tumors, and malignant ascites from eight GC patients. We identified a unique mutational signature biased toward C-to-A substitutions in malignant ascites. In contrast, the patients who received treatment of adjuvant chemotherapy showed a high rate of C-to-T substitutions along with hypermutation in malignant ascites. Comparative analysis revealed several candidate mutations for GC peritoneal carcinomatosis: recurrent mutations in COL4A6, INTS2, and PTPN13; mutations in druggable genes including TEP1, PRKCD, BRAF, ERBB4, PIK3CA, HDAC9, FYN, FASN, BIRC2, FLT3, ROCK1, CD22, and PIK3C2B; and mutations in metastasis-associated genes including TNFSF12, L1CAM, DIAPH3, ROCK1, TGFBR1, MYO9B, NR4A1, and RHOA. Notably, gene ontology analysis revealed the significant enrichment of mutations in the Rho-ROCK signaling pathway-associated biological processes in malignant ascites. At least four of the eight patients acquired somatic mutations in the Rho-ROCK pathway components, suggesting the possible relevance of this pathway to GC peritoneal carcinomatosis. These results provide a genome-wide molecular understanding of GC peritoneal carcinomatosis and its clinical implications, thereby facilitating the development of effective therapeutics.

Wang YX, Zhang TJ, Yang DQ, et al.
Reduced miR-215 expression predicts poor prognosis in patients with acute myeloid leukemia.
Jpn J Clin Oncol. 2016; 46(4):350-6 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
OBJECTIVE: Abnormal expression of microRNA-215 has been identified in a variety of solid cancers. However, little is known about the expression pattern of microRNA-215 in acute myeloid leukemia. This study was to investigate the status of microRNA-215 expression and further analyze its clinical significance in acute myeloid leukemia.
METHODS: Real-time quantitative polymerase chain reaction assay was performed to evaluate the expression level of microRNA-215 in 113 patients with acute myeloid leukemia. Besides, the relationship between microRNA-215 levels and clinical and pathological factors was explored.
RESULTS: Compared with the healthy individuals, microRNA-215 expression in acute myeloid leukemia patients was significantly down-regulated (P= 0.001). MicroRNA-215 low-expressed patients had higher white blood cells than microRNA-215 high-expressed patients (P= 0.014). The incidence of FLT3/ITD mutation in the patients with low microRNA-215 expression was significantly higher than those with high microRNA-215 expression (P= 0.025). MicroRNA-215 low-expressed patients had significantly shorter overall survival than microRNA-215 high-expressed patients in both non-M3 acute myeloid leukemia patients and cytogenetically normal patients (P= 0.017 and P= 0.044, respectively). Meanwhile, multivariate analysis confirmed the adverse prognostic value of microRNA-215 expression in acute myeloid leukemia patients with non-M3 subtypes.
CONCLUSIONS: Our study demonstrates that reduced microRNA-215 expression is a common event and is associated with poor clinical outcome in acute myeloid leukemia.

Au CH, Wa A, Ho DN, et al.
Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms.
Diagn Pathol. 2016; 11:11 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Genomic techniques in recent years have allowed the identification of many mutated genes important in the pathogenesis of acute myeloid leukemia (AML). Together with cytogenetic aberrations, these gene mutations are powerful prognostic markers in AML and can be used to guide patient management, for example selection of optimal post-remission therapy. The mutated genes also hold promise as therapeutic targets themselves. We evaluated the applicability of a gene panel for the detection of AML mutations in a diagnostic molecular pathology laboratory.
METHODS: Fifty patient samples comprising 46 AML and 4 other myeloid neoplasms were accrued for the study. They consisted of 19 males and 31 females at a median age of 60 years (range: 18-88 years). A total of 54 genes (full coding exons of 15 genes and exonic hotspots of 39 genes) were targeted by 568 amplicons that ranged from 225 to 275 bp. The combined coverage was 141 kb in sequence length. Amplicon libraries were prepared by TruSight myeloid sequencing panel (Illumina, CA) and paired-end sequencing runs were performed on a MiSeq (Illumina) genome sequencer. Sequences obtained were analyzed by in-house bioinformatics pipeline, namely BWA-MEM, Samtools, GATK, Pindel, Ensembl Variant Effect Predictor and a novel algorithm ITDseek.
RESULTS: The mean count of sequencing reads obtained per sample was 3.81 million and the mean sequencing depth was over 3000X. Seventy-seven mutations in 24 genes were detected in 37 of 50 samples (74 %). On average, 2 mutations (range 1-5) were detected per positive sample. TP53 gene mutations were found in 3 out of 4 patients with complex and unfavorable cytogenetics. Comparing NGS results with that of conventional molecular testing showed a concordance rate of 95.5 %. After further resolution and application of a novel bioinformatics algorithm ITDseek to aid the detection of FLT3 internal tandem duplication (ITD), the concordance rate was revised to 98.2 %.
CONCLUSIONS: Gene panel testing by NGS approach was applicable for sensitive and accurate detection of actionable AML gene mutations in the clinical laboratory to individualize patient management. A novel algorithm ITDseek was presented that improved the detection of FLT3-ITD of varying length, position and at low allelic burden.

Keino D, Kinoshita A, Tomizawa D, et al.
Residual disease detected by multidimensional flow cytometry shows prognostic significance in childhood acute myeloid leukemia with intermediate cytogenetics and negative FLT3-ITD: a report from the Tokyo Children's Cancer Study Group.
Int J Hematol. 2016; 103(4):416-22 [PubMed] Related Publications
Residual disease (RD) after induction chemotherapy may predict clinical outcome in acute myeloid leukemia (AML). In the present study, we investigated the prognostic significance of RD detected by multidimensional flow cytometry (MDF) among 34 children treated for AML in a clinical trial (JPLSG AML-05) in Japan. Bone marrow samples were analyzed at the points of the end of the first induction course (BMA-1) and second induction course (BMA-2) by MDF. RD was evaluated by detecting the immature cells showing abnormal antigen expression pattern; CD34(+), CD15(+), CD7(+). Thirteen (39.4 %) of 34 patients at BMA-1 and 8 (27.6 %) of 34 at BMA-2 had RD levels ≥0.1 %. There was no significant difference in 3y-EFS and 3y-OS between patients with RD levels ≥0.1 % and those with RD levels <0.1 % (53.8 versus 70.0 %, P = 0.30 and 50.0 versus 66.7 %, P = 0.27, respectively). However, IR cytogenetics and negative FLT3-ITD patients with RD levels ≥0.1 % exhibited significantly lower 3y-EFS and 3y-OS than those with RD levels <0.1 % (33.3 versus 83.3 %, P = 0.02 and 20.0 versus 76.9 %, P = 0.005, respectively). Our study suggests that RD shows prognostic relevance in pediatric patients with IR cytogenetics and negative FLT3-ITD AML.

Wang Y, Han R, Chen Z, et al.
A transcriptional miRNA-gene network associated with lung adenocarcinoma metastasis based on the TCGA database.
Oncol Rep. 2016; 35(4):2257-69 [PubMed] Related Publications
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC), leading to the largest number of cancer-related deaths worldwide. The high mortality rate may be attributed to the delay of detection. Therefore, it is of great importance to explore the mechanism of lung adenocarcinoma metastasis and the strategy to block metastasis of the disease. We searched and downloaded mRNA and miRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify differences in mRNA and miRNA expression of primary tumor tissues from lung adenocarcinoma that did and did not metastasize. In addition, combined with bioinformatic prediction, we constructed an miRNA-target gene regulatory network. Finally, we employed RT-qPCR to validate the bioinformatic approach by determining the expression of 10 significantly differentially expressed genes which were also putative targets of several dysregulated miRNAs. RT-qPCR results indicated that the bioinformatic approach in our study was acceptable. Our data suggested that some of the genes including PKM2, STRAP and FLT3, may participate in the pathology of lung adenocarcinoma metastasis and could be applied as potential markers or therapeutic targets for lung adenocarcinoma.

Bănescu C, Iancu M, Trifa AP, et al.
Influence of XPC, XPD, XPF, and XPG gene polymorphisms on the risk and the outcome of acute myeloid leukemia in a Romanian population.
Tumour Biol. 2016; 37(7):9357-66 [PubMed] Related Publications
XPC, XPD, XPF, and XPG genes are implicated in the nucleotide excision repair (NER) system. Gene polymorphisms in NER repair system may influence the individual's capacity to recognize and repair DNA lesions, thus increasing the cancer risk. We hypothesized that these gene polymorphisms might influence the probability of developing acute myeloid leukemia (AML). We investigated the XPC, XPD, XPF, and XPG gene polymorphisms in 108 AML cases and 163 healthy controls. Also cytogenetic analyses besides FLT3 and DNMT3A mutations status were investigated. We found that variant genotypes (heterozygous and homozygous) of XPD 2251A > C and 22541A > C and the heterozygous genotype of XPG 3507G > C were associated with the risk of developing AML (OR = 2.55; 95% CI = 1.53-4.25; p value <0.001; OR = 1.66, 95 % CI = 1.02-2.72; p value = 0.047, and OR = 2.36; 95 % CI = 1.32-4.21; p value = 0.004, respectively). No association was found between white blood cell counts, FLT3, DNMT3A mutations, cytogenetic risk group, and variant genotypes of none of the analyzed polymorphisms. Variant homozygous XPF 673C > T genotype was associated with higher dose of cytosine arabinoside treatment administrated to AML patients (p value = 0.04). No differences were found regarding survival time and variant genotype in the investigated gene polymorphisms with the exception of XPD 2251A > C. In conclusion, XPD 22541A > C, XPD 2251A > C, and XPG 3507G > C gene polymorphisms confer susceptibility to AML, while XPC 2920A > C, XPF-673C > T, XPF 11985A > G are not associated with AML.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FLT3, Cancer Genetics Web: http://www.cancer-genetics.org/FLT3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999