Gene Summary

Gene:NOS2; nitric oxide synthase 2
Summary:Nitric oxide is a reactive free radical which acts as a biologic mediator in several processes, including neurotransmission and antimicrobial and antitumoral activities. This gene encodes a nitric oxide synthase which is expressed in liver and is inducible by a combination of lipopolysaccharide and certain cytokines. Three related pseudogenes are located within the Smith-Magenis syndrome region on chromosome 17. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:nitric oxide synthase, inducible
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (40)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NOS2 (cancer-related)

Wang YL, Gong WG, Yuan QL
Effects of miR-27a upregulation on thyroid cancer cells migration, invasion, and angiogenesis.
Genet Mol Res. 2016; 15(4) [PubMed] Related Publications
Thyroid cancer is the most common type of endocrine tumor. MicroRNAs (miRNAs) play a critical role in a variety of diseases, especially cancer occurrence and progression. However, the specific mechanism by which miRNAs trigger disease states has not been fully elucidated. This study aims to investigate the role of miR-27a in thyroid cancer cells. A wound healing assay was adopted to examine cell migration. A transwell assay was applied to assess cell invasion. A thyroid cancer xenograft model was established using BALB/c nude mice. Western blot was performed to quantify iNOS expression. Tumor tissue blood vessel density was evaluated via immunohistochemistry assays. The results indicated that miR-27a downregulation inhibited thyroid cancer cell migration, while upregulation of miR-27a promoted thyroid cancer cell migration (P < 0.05). Furthermore, reduction in miR-27a expression suppressed thyroid cancer cell invasion (P < 0.05). In the nude mouse model of thyroid cancer xenograft, upregulation of miR-27 induced iNOS expression in pathological tumor tissues, whereas miR-27a inhibition resulted in the opposite effect (P < 0.05). CD105 level was also significantly increased during miR-27a upregulation, and was declined when miR-27a was inhibited (P < 0.05). In conclusion, miR-27a upregulation in thyroid cancer cells affects tumor cell migration, invasion, and angiogenesis by targeting downstream genes. Therefore, miR27a may act as a biomarker of thyroid cancer.

Yu Y, Xie Q, Liu W, et al.
Increased intracellular Ca(2+) decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.
Biomed Pharmacother. 2017; 86:8-15 [PubMed] Related Publications
Previous studies have reported that intracellular Ca(2+) signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca(2+) and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP(S)) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.

Maeda M, Moro H, Ushijima T
Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway.
Gastric Cancer. 2017; 20(Suppl 1):8-15 [PubMed] Related Publications
Multiple pathogenic mechanisms by which Helicobacter pylori infection induces gastric cancer have been established in the last two decades. In particular, aberrant DNA methylation is induced in multiple driver genes, which inactivates them. Methylation profiles in gastric cancer are associated with specific subtypes, such as microsatellite instability. Recent comprehensive and integrated analyses showed that many cancer-related pathways are more frequently altered by aberrant DNA methylation than by mutations. Aberrant DNA methylation can even be present in noncancerous gastric mucosae, producing an "epigenetic field for cancerization." Mechanistically, H. pylori-induced chronic inflammation, but not H. pylori itself, plays a direct role in the induction of aberrant DNA methylation. The expression of three inflammation-related genes, Il1b, Nos2, and Tnf, is highly associated with the induction of aberrant DNA methylation. Importantly, the degree of accumulated aberrant DNA methylation is strongly correlated with gastric cancer risk. A recent multicenter prospective cohort study demonstrated the utility of epigenetic cancer risk diagnosis for metachronous gastric cancer. Suppression of aberrant DNA methylation by a demethylating agent was shown to inhibit gastric cancer development in an animal model. Induction of aberrant DNA methylation is the major pathway by which H. pylori infection induces gastric cancer, and this can be utilized for translational opportunities.

Chen GY, Shu YC, Chuang DY, Wang YC
Inflammatory and Apoptotic Regulatory Activity of Tanshinone IIA in Helicobacter pylori-Infected Cells.
Am J Chin Med. 2016; 44(6):1187-1206 [PubMed] Related Publications
Helicobacter pylori infections induce host cell inflammation and apoptosis, however, they are conflicting. Tanshinone IIA is an active compound of Salvia miltiorrhiza Bge. In this study, we investigated the regulatory effects of tanshinone IIA on H. pylori-induced inflammation and apoptosis in vitro. Tanshinone IIA treatments (13.6-54.4[Formula: see text][Formula: see text]M) significantly decreased nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) [p-38 and C-terminal Jun-kinase 1/2 (JNK1/2)] protein expressions and inflammatory substance [cyclooxygenase-2 (COX-2), 5-lipooxygenase (5-LOX), intercellular adhesion molecule-1 (ICAM-1), reactive oxygen species (ROS), nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1[Formula: see text] (IL-1[Formula: see text], IL-6, and IL-8] production in the H. pylori-infected cells. In contrast, tanshinone IIA treatments significantly increased apoptotic relevant protein [Bcl-2-associated X protein (Bax) and caspase 9] expressions and increased mitochondrial transmembrane potential ([Formula: see text] disruption, mitochondrial cytochrome [Formula: see text] (cyt [Formula: see text] release, and caspase cascades. Tanshinone IIA treatments effectively decreased H. pylori-induced inflammation and significantly promoted H. pylori-induced intrinsic apoptosis through NF-kB and MAPK (p-38 and JNK) pathways. Tanshinone IIA has great potential as a candidate to protect host cells from H. pylori-induced severe inflammation and gastric cancer.

Li C, Tang C, He G
Tristetraprolin: a novel mediator of the anticancer properties of resveratrol.
Genet Mol Res. 2016; 15(2) [PubMed] Related Publications
Resveratrol is a natural compound that exhibits anticancer properties. Previous studies have proved that it can inhibit the proliferation of breast cancer cell lines and upregulate some cytokines such as cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF). The initiation and progression of cancer are associated with the abnormal expression of multiple cytokines. Tristetraprolin (TTP), an mRNA-binding protein, is one of the key proteins that participate in regulating cytokine expression. Two different proliferation assays on MCF-7 cells showed that the cell proliferation rate significantly reduced following treatment with resveratrol. Most importantly, we found that resveratrol promoted TTP expression at both the mRNA and protein level in a dose- and time-dependent manner. In addition, the expression of COX-2 and VEGF were significantly suppressed by resveratrol while that of inducible nitric oxide synthase (iNOS) was upregulated. Lastly, the effects of resveratrol on both MCF-7 proliferation and expression of COX-2, VEGF, and iNOS were significantly inhibited by TTP knockdown, indicating that TTP mediates the anticancer properties of resveratrol. In summary, we conclude that resveratrol inhibits the proliferation of MCF-7 cells by TTP upregulation, which is associated with downregulation of COX-2 and VEGF and upregulation of iNOS.

Neuendorff NR, Burmeister T, Dörken B, Westermann J
BCR-ABL-positive acute myeloid leukemia: a new entity? Analysis of clinical and molecular features.
Ann Hematol. 2016; 95(8):1211-21 [PubMed] Related Publications
BCR-ABL-positive acute myeloid leukemia (AML) is a rare subtype of AML that is now included as a provisional entity in the 2016 revised WHO classification of myeloid malignancies. Since a clear distinction between de novo BCR-ABL+ AML and chronic myeloid leukemia (CML) blast crisis is challenging in many cases, the existence of de novo BCR-ABL+ AML has been a matter of debate for a long time. However, there is increasing evidence suggesting that BCR-ABL+ AML is in fact a distinct subgroup of AML. In this study, we analyzed all published cases since 1975 as well as cases from our institution in order to present common clinical and molecular features of this rare disease. Our analysis shows that BCR-ABL predominantly occurs in AML-NOS, CBF leukemia, and AML with myelodysplasia-related changes. The most common BCR-ABL transcripts (p190 and p210) are nearly equally distributed. Based on the analysis of published data, we provide a clinical algorithm for the initial differential diagnosis of BCR-ABL+ AML. The prognosis of BCR-ABL+ AML seems to depend on the cytogenetic and/or molecular background rather than on BCR-ABL itself. A therapy with tyrosine kinase inhibitors (TKIs) such as imatinib, dasatinib, or nilotinib is reasonable, but-due to a lack of systematic clinical data-their use cannot be routinely recommended in first-line therapy. Beyond first-line treatment of AML, the use of TKI remains an individual decision, both in combination with intensive chemotherapy and/or as a bridge to allogeneic stem cell transplantation. In each single case, potential benefits have to be weighed against potential risks.

Assawasuparerk K, Rawangchue T, Phonarknguen R
Scabraside D Derived from Sea Cucumber Induces Apoptosis and Inhibits Metastasis via iNOS and STAT-3 Expression in Human Cholangiocarcinoma Xenografts.
Asian Pac J Cancer Prev. 2016; 17(4):2151-7 [PubMed] Related Publications
Scabraside D, a sulfated triterpene glycoside, was extracted from the sea cucumber Holothuria scabra. It shows anti-proliferation in many of cancer cell lines, but the function and mechanisms of action of scabraside D in human cholangiocarcinoma (HuCCA) have not previously determined. In this study, we investigated the activity of scabraside D on HuCCA cell apoptosis, lymphangiogenesis and metastasis in a nude mouse model. Scabraside D induced signs of apoptosis, such as cell shrinkage, nuclear condensation, nuclear fragmentation and DNA fragmentation on TUNEL assays, while effectively decreasing expression of BCl-2 but increasing caspase-3 gene level expression. Immunohistochemistry revealed that scabraside D significantly reduced lymphatic vessel density (LVD). Moreover, scabraside D treatment significantly decreased VEGF-C, MMP-9 and uPA gene expression, which play important roles in the lymphangiogenesis and invasion of cancer cells in metastasis processes. Quantitative real-time PCR showed that scabraside D significantly decreased iNOS and STAT-3 gene expression. This study demonstrated that scabraside D plays a role in activation of HuCCA tumor apoptosis and inhibition of lymphangiogenesis, invasion and metastasis through decreasing BCl-2, MMP-9, uPA and VEGF-C and increasing caspase-3 expression by suppression of iNOS and STAT-3 expression. Therefore, scabraside D could be a promising candidate for cholangiocarcinoma treatment.

Wilhelm IN, Penman EJ
Radiation Associated Angiosarcoma: Case Series from a Community Cancer Center and Review of the Literature.
Del Med J. 2016; 88(3):78-82 [PubMed] Related Publications
BACKGROUND: Radiation associated angiosarcoma (RAAS) of the breast is a rare, but lethal complication of breast conserving surgery (BCS). Early recognition and knowledge of treatment modalities is imperative for successful treatment. We present the experience of a large community cancer center, with review of the literature.
METHODS: The Christiana Care Department of Pathology and the Helen F. Graham Cancer Center and Research Institute databases were queried from 2001-2011 and 2011-2015 respectively for soft tissue neoplasms of the breast. A total of 2,153 patients with diagnosis of malignant neoplasm of the breast not otherwise specified (NOS) were identified. There were seven cases of RAAS identified.
RESULTS: Seven patients with RAAS were identified. Average age at presentation was 70 years with a range of 58-87. Time from radiation therapy to diagnosis was 8.5 years with a range of 4.0 years to 14.9 years. Five of seven patients presented with skin lesions, all with varying clinical signs. Clinical lymphedema was not identified in any of these patients.
CONCLUSION: Radiation associated angiosarcoma of the breast is an aggressive tumor with poor prognosis. Larger studies are needed to evaluate adjuvant treatments; however the small number of cases makes this prohibitive. Genetic testing and potentially targeted therapies are emerging as options for treatment and prevention of this complicated disease process.

Diler SB, Öden A
The T -786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Prostate Cancer Cases.
Genetika. 2016; 52(2):249-54 [PubMed] Related Publications
In previously conducted some studies it has been revealed that nitric oxide (NO) and nitric oxide synthase (NOS) system play a significant role in carcinogenesis. Nitric oxide (NO) is regulated by endothelial nitric oxide synthase (eNOS) enzyme which is one of the isoenzymes of NO synthase (NOS). In this study we have tried to come to a conclusion about whether eNOS gene T -786C, G894T and Intron 4 VNTR (4a/b) polymorphisms might be considered as a risk factor causing prostate cancer (PCa) or not. A total of 200 subjects were included in this research. 84 patients with PCa (mean age 70.0 ± 6.4) and 116 healthy controls (mean age 69.9 ± 7.5) were recruited in this case-control study. Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN GmbH, Maryland, USA), according to the manufacturer's guidelines. The T-786C, G894T and Intron 4 VNTR (4a/b) polymorphisms were amplified using polymerase chain reation (PCR), detected by restriction fragment length polymorphism (RFLP). For T -786C polymorphism CC genotype [odds ratio (OR): 0.34, 95% confidence interval (CI): 0.15-0.78, P = 0.009)] and allele frequency (OR: 0.631, CI: 0.421-0.946, P = 0.026) is significant for control. In patients with PCa eNOS G894T polymorphism, both GT (OR: 0.069, CI: 0.027-0.174; P = 0.0001) and TT (OR: 0.040, CI: 0.013-0.123; P = = 0.0001) genotype distribution, and also T allele frequency (OR: 0.237, CI: 0.155-0.362, P = 0.0001) were considered significant statistically. While genotype distribution for the other polymorphism eNOS, intron 4 VNTR (4a/b), is insignificant statistically, "a" allele frequency was found out to be significant (OR: 2.223, CI: 1.311-3.769, P = 0.003). In this study we indicated that genotype and allele frequencies of eNOS T -786C and G894T polymorphisms are statistically significant in patients with PCa. eNOS T -786C and G894T polymorphisms may be associated with PCa susceptibility in the Turkish population. In contrast, intron 4 VNTR (4a/b) polymorphism may not be related to PCa susceptibility in these patients.

Danella Polli C, Pereira Ruas L, Chain Veronez L, et al.
Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype.
Biomed Res Int. 2016; 2016:2925657 [PubMed] Free Access to Full Article Related Publications
Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies.

Hasan SK, Siddiqi A, Nafees S, et al.
Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2).
Mol Cell Biochem. 2016; 416(1-2):169-77 [PubMed] Related Publications
Hepatocellular carcinoma is one of the most common lethal diseases worldwide and there is no effective treatment till date. Natural products derived from the plants play an important role in chemoprevention and act as therapeutic antitumor agents. Licorice is a plant that has been used in food and medicine for the treatment of various diseases. 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid obtained from the roots of licorice plant, is reported to possess various pharmacological properties such as antitumor and antiinflammatory activities. The present study was designed to elucidate the chemopreventive effect of 18β-GA through antiinflammation, antiproliferation, and induction of apoptosis in human hepatoma cell line HepG2. 18β-GA significantly inhibits the proliferation of HepG2 cell without affecting the normal liver cell line (Chang's). In the present study, 18β-GA increased the formation of reactive oxygen species, nitric oxide production, and loss of mitochondrial membrane potential, suggesting the involvement of 18β-GA in apoptosis which was also confirmed by assessing the markers involved in apoptosis like caspase-3, caspase-9, Bax:Bcl-2 ratio, and cleaved PARP. 18β-GA also downregulated the expression of inflammatory proteins such as NF-κB, iNOS, and COX-2. Keeping these data into consideration, our results suggest that 18β-GA may be used as a chemopreventive agent in liver cancer.

Wang Y, Ren T, Zheng L, et al.
Astragalus saponins Inhibits Lipopolysaccharide-Induced Inflammation in Mouse Macrophages.
Am J Chin Med. 2016; 44(3):579-93 [PubMed] Related Publications
Excessive nitric oxide (NO) and pro-inflammatory cytokines are produced during the pathogenesis of inflammatory diseases and cancer. It has been demonstrated that anti-inflammation contributes Astragalus membranaceus saponins (AST)'s beneficial effects in combination of conventional anticancer drugs. However, the immunomodulating property of AST has not been well characterized. In this study, we found that AST suppressed lipopolysaccharide (LPS)-induced generation of NO without causing cytotoxicity in the mouse macrophage RAW264.7. The gene and protein overexpression of inducible NO synthase (iNOS) as well as the production of tumor necrosis factor-[Formula: see text], evoked by LPS, was consistently down-regulated by AST. AST also inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and suppressed nuclear factor (NF)-[Formula: see text]B activation and the associated I[Formula: see text]B[Formula: see text] degradation during LPS insult. Furthermore, AST induced growth inhibition in promyelocytic leukemic HL-60 cells and T-lymphocyte leukemic Jurkat cells, but exerted no cytotoxic effects in normal human peripheral blood mononuclear cells (PBMC). It is known that the chemotherapeutic drug 5-FU can suppress the immune system, which can be identified by a reduced white blood cell count and decreased hematocrit, while the combination of AST and 5-FU can reverse the above hematologic toxicities. To summarize, non-cytotoxic concentrations of AST suppress LPS-induced inflammatory responses via the modulation of p38 MAPK signaling and the inhibition of NO and cytokine release. Importantly, AST can alleviate the hematologic side effects of current chemotherapeutic agents. These findings can facilitate the establishment of AST in the treatment of inflammatory diseases and inflammation-mediated tumor development.

Zhang H, Liang C, Hou X, et al.
Study of the combined treatment of lung cancer using gene-loaded immunomagnetic albumin nanospheres in vitro and in vivo.
Int J Nanomedicine. 2016; 11:1039-50 [PubMed] Free Access to Full Article Related Publications
Combination therapy for lung cancer has garnered widespread attention. Radiation therapy, gene therapy, and molecular targeted therapy for lung cancer have certain effects, but the disadvantages of these treatment methods are evident. Combining these methods can decrease their side effects and increase their curative effects. In this study, we constructed a pYr-ads-8-5HRE-cfosp-iNOS-IFNG plasmid (a gene circuit that can express IFNγ), which is a gene circuit, and used that plasmid together with C225 (cetuximab) to prepare gene-loaded immunomagnetic albumin nanospheres (IMANS). Moreover, we investigated the therapeutic effects of gene-loaded IMANS in combination with radiation therapy on human lung cancer in vitro and in vivo. The results showed that this gene circuit was successively constructed and confirmed that the expression of INFγ was increased due to the gene circuit. Gene-loaded IMANS combined with radiation therapy demonstrated improved results in vitro and in vivo. In conclusion, gene-loaded IMANS enhanced the efficacy of combination therapy, solved problems related to gene transfer, and specifically targeted lung cancer cells.

Basmaci C, Pehlivan M, Tomatir A, et al.
Effects of TNFα, NOS3, MDR1 Gene Polymorphisms on Clinical Parameters, Prognosis and Survival of Multiple Myeloma Cases.
Asian Pac J Cancer Prev. 2016; 17(3):1009-14 [PubMed] Related Publications
It is not clear how gene polymorphisms affecting drugs can contributes totheir efficacy in multiple myeloma (MM). We here aimed to explore associations among gene polymorphisms of tumor necrosis factor alpha (TNFα), nitric oxide synthesis 3 (NOS3) and multi-drug resistance 1 (MDR1), clinical parameters, prognosis and survival in MM patients treated with VAD (vincristine-adriamycine-dexamethasone), MP (mephalane-prednisolone), autolougus stem cell transplantation (ASCT), BODEC (bortezomib-dexamethasone-cyclophosphamide) and TD (thalidomide-dexamethasone). We analyzed TNFα, NOS 3 and MDR1 in 77 patients with MM and 77 healthy controls. The genotyping was performed with PCR and/or PCR-RFLP. There was no clinically significant difference between MM and control groups when TNF α(-238) and (-857) and MDR1 gene polymorphisms were studied. However, the TNFαgene polymorphism (-308) GG genotype (p=0.012) and NOS3 (+894) TT genotype (p=0.008) were more common in the MM group compared to healthy controls. NOS3 (VNTR) AA (p=0.007) and NOS3 (+894) GG genotypes (p=0.004) were decreased in the MM group in contrast. In conclusion, the NOS3 (+894) TT and TNF α(-308) GG genotypes may have roles in myeloma pathogenesis.

Dong W, Gong M, Shi Z, et al.
Programmed Cell Death-1 Polymorphisms Decrease the Cancer Risk: A Meta-Analysis Involving Twelve Case-Control Studies.
PLoS One. 2016; 11(3):e0152448 [PubMed] Free Access to Full Article Related Publications
Programmed cell death-1 (PD-1) plays an important inhibitory role in anti-tumor responses, so it is considered as a powerful candidate gene for individual's genetic susceptibility to cancer. Recently, some epidemiological studies have evaluated the association between PD-1 polymorphisms and cancer risk. However, the results of the studies are conflicting. Therefore, a meta-analysis was performed. We identified all studies reporting the relationship between PD-1 polymorphisms and cancers by electronically searches. According to the inclusion criteria and the quality assessment of Newcastle-Ottawa Scale (NOS), only high quality studies were included. A total of twelve relevant studies involving 5,206 cases and 5,174 controls were recruited. For PD-1.5 (rs2227981) polymorphism, significantly decreased cancer risks were obtained among overall population, Asians subgroup and population-based subgroup both in TT vs. CC and TT vs. CT+CC genetic models. In addition, a similar result was also found in T vs. C allele for overall population. However, there were no significant associations between either PD-1.9 (rs2227982) or PD-1 rs7421861 polymorphisms and cancer risks in all genetic models and alleles. For PD-1.3 (rs11568821) polymorphism, we found different cancer susceptibilities between GA vs. GG and AA vs. AG+GG genetic models, and no associations between AA vs. GG, AA+AG vs. GG genetic models or A vs. G allele and cancer risks. In general, our results firstly indicated that PD-1.5 (rs2227981) polymorphism is associated a strongly decreased risk of cancers. Additional epidemiological studies are needed to confirm our findings.

Saygideğer-Kont Y, Minas TZ, Jones H, et al.
Ezrin Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non-Small Cell Lung Cancer Cells.
Neoplasia. 2016; 18(2):111-20 [PubMed] Free Access to Full Article Related Publications
Ezrin is a scaffolding protein that is involved in oncogenesis by linking cytoskeletal and membrane proteins. Ezrin interacts with epidermal growth factor receptor (EGFR) in the cell membrane, but little is known about the effects of this interaction on EGFR signaling pathway. In this study, we established the biological and functional significance of ezrin-EGFR interaction in non-small cell lung cancer (NSCLC) cells. Endogenous ezrin and EGRF interaction was confirmed by co-immunoprecipitation and immunofluorescent staining. When expression of ezrin was inhibited, EGFR activity and phosphorylation levels of downstream signaling pathway proteins ERK and STAT3 were decreased. Cell fractionation experiments revealed that nuclear EGFR was significantly diminished in ezrin-knockdown cells. Consequently, mRNA levels of EGFR target genes AURKA, COX-2, cyclin D1, and iNOS were decreased in ezrin-depleted cells. A small molecule inhibitor of ezrin, NSC305787, reduced EGF-induced phosphorylation of EGFR and downstream target proteins, EGFR nuclear translocation, and mRNA levels of nuclear EGFR target genes similar to ezrin suppression. NSC305787 showed synergism with erlotinib in wild-type EGFR-expressing NSCLC cells, whereas no synergy was observed in EGFR-null cells. Phosphorylation of ezrin on Y146 was found as an enhancer of ezrin-EGFR interaction and required for increased proliferation, colony formation, and drug resistance to erlotinib. These findings suggest that ezrin-EGFR interaction augments oncogenic functions of EGFR and that targeting ezrin may provide a potential novel approach to overcome erlotinib resistance in NSCLC cells.

Gobert AP, Wilson KT
The Immune Battle against Helicobacter pylori Infection: NO Offense.
Trends Microbiol. 2016; 24(5):366-76 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Helicobacter pylori is a successful pathogen of the human stomach. Despite a vigorous immune response by the gastric mucosa, the bacterium survives in its ecological niche, thus favoring diseases ranging from chronic gastritis to adenocarcinoma. The current literature demonstrates that high-output of nitric oxide (NO) production by the inducible enzyme NO synthase-2 (NOS2) plays major functions in host defense against bacterial infections. However, pathogens have elaborated several strategies to counteract the deleterious effects of NO; this includes inhibition of host NO synthesis and transcriptional regulation in response to reactive nitrogen species, allowing the bacteria to face the nitrosative stress. Moreover, NO is also a critical mediator of inflammation and carcinogenesis. In this context, we review the recent findings on the expression of NOS2 in H. pylori-infected gastric tissues and epithelial cells, the role of NO in H. pylori-related diseases and H. pylori gene expression, and the mechanisms whereby H. pylori regulates NO synthesis by host cells.

Haller F, Knopf J, Ackermann A, et al.
Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern.
J Pathol. 2016; 238(5):700-10 [PubMed] Related Publications
Neoplasms with a myopericytomatous pattern represent a morphological spectrum of lesions encompassing myopericytoma of the skin and soft tissue, angioleiomyoma, myofibromatosis/infantile haemangiopericytoma and putative neoplasms reported as malignant myopericytoma. Lack of reproducible phenotypic and genetic features of malignant myopericytic neoplasms have prevented the establishment of myopericytic sarcoma as an acceptable diagnostic category. Following detection of a LMNA-NTRK1 gene fusion in an index case of paediatric haemangiopericytoma-like sarcoma by combined whole-genome and RNA sequencing, we identified three additional sarcomas harbouring NTRK1 gene fusions, termed 'spindle cell sarcoma, NOS with myo/haemangiopericytic growth pattern'. The patients were two children aged 11 months and 2 years and two adults aged 51 and 80 years. While the tumours of the adults were strikingly myopericytoma-like, but with clear-cut atypical features, the paediatric cases were more akin to infantile myofibromatosis/haemangiopericytoma. All cases contained numerous thick-walled dysplastic-like vessels with segmental or diffuse nodular myxohyaline myo-intimal proliferations of smooth muscle actin-positive cells, occasionally associated with thrombosis. Immunohistochemistry showed variable expression of smooth muscle actin and CD34, but other mesenchymal markers, including STAT6, were negative. This study showed a novel variant of myo/haemangiopericytic sarcoma with recurrent NTRK1 gene fusions. Given the recent introduction of a novel therapeutic approach targeting NTRK fusion-positive neoplasms, recognition of this rare but likely under-reported sarcoma variant is strongly encouraged.

Allenbach Y, Leroux G, Suárez-Calvet X, et al.
Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression.
Am J Pathol. 2016; 186(3):691-700 [PubMed] Related Publications
The anti-melanoma differentiation-associated gene 5 (MDA5) autoantibody is specifically associated with dermatomyositis (DM). Nevertheless, anti-MDA5(+)-patients experience characteristic symptoms distinct from classic DM, including severe signs of extramuscular involvement; however, the clinical signs of myopathy are mild or even absent. The morphological and immunological features are not yet described in adulthood. Data concerning the pathophysiology of anti-MDA5 DM are sparse; however, the importance of the interferon (IFN) type I pathway involved in DM has been shown. Our aim was to define morphological alterations of the skeletal muscle and the intrinsic immune response of anti-MDA5-positive DM patients. Immunohistological and RT-PCR analysis of muscle biopsy specimens from anti-MDA5 and classic DM were compared. Those with anti-MDA5 DM did not present the classic features of perifascicular fiber atrophy and major histocompatibility complex class I expression. They did not show significant signs of capillary loss; tubuloreticular formations were observed less frequently. Inflammation was focal, clustering around single vessels but significantly less intense. Expression of IFN-stimulated genes was up-regulated in anti-MDA5 DM; however, the IFN score was significantly lower. Characteristic features were observed in anti-MDA5 DM and not in classic DM patients. Only anti-MDA5 DM showed numerous nitric oxide synthase 2-positive muscle fibers with sarcoplasmic colocalization of markers of regeneration and cell stress. Anti-MDA5-positive patients demonstrate a morphological pattern distinct from classic DM.

Kim SH, Hashimoto Y, Cho SN, et al.
Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression.
Pigment Cell Melanoma Res. 2016; 29(3):297-308 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy.

Tang R, Xu X, Yang W, et al.
MED27 promotes melanoma growth by targeting AKT/MAPK and NF-κB/iNOS signaling pathways.
Cancer Lett. 2016; 373(1):77-87 [PubMed] Related Publications
The inhibitors of BRAF and MEK targeting MAPK signaling pathway provide a comparatively effective therapeutic strategy for melanoma caused by BRAF mutation. However, melanoma, especially metastatic melanoma, has become one of the most threatening malignancies. Thus, the identification of exact molecular mechanisms and the key components involved in such mechanisms is urgently needed in order to provide new therapeutic options for patients with melanoma. Here, we identified MED27 as a potential melanoma target and explored its role and the associated molecular mechanism involved in melanoma progression. MED27 was found to be highly expressed in melanoma cells and tumor tissues. Its silencing led to melanoma cell proliferation inhibition, cell cycle arrest and apoptosis induction accompanied by the inactivation of PI3K/AKT and MAPK/ERK signaling and the activation of Bax/Cyto-C/Caspase-dependent apoptotic pathway. In addition, silencing of MED27 led to the decrease of iNOS expression through inhibiting the activation of a serial of upstream key proteins of NF-κB signaling pathway and the translocation of p50/p65 from cytoplasm to nucleus. MED27 was also found to be able to interact with NF-κB and p300 and to be acetylated by p300. Furthermore, the results in a xenograft tumor model indicated that melanoma progression was effectively suppressed by MED27 knockdown accompanied by the down-regulation of p-AKT, p-ERK, p-MEK1/2, MMP-9, Bcl-2 and iNOS expressions in the tumor tissues. Taken together, our study not only demonstrated the new function of MED27 as an oncogenic protein and the associated molecular mechanisms involved in melanoma progression, but also provided a possibility for the development of MED27 as a new anticancer target in melanoma therapy.

Mehibel M, Singh S, Cowen RL, et al.
Radiation enhances the therapeutic effect of Banoxantrone in hypoxic tumour cells with elevated levels of nitric oxide synthase.
Oncol Rep. 2016; 35(4):1925-32 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Banoxantrone (AQ4N) is a prototype hypoxia selective cytotoxin that is activated by haem containing reductases such as inducible nitric oxide synthase (iNOS). In the present study, we evaluate whether elevated levels of iNOS in human tumour cells will improve their sensitivity to AQ4N. Further, we examine the potential of radiation to increase cellular toxicity of AQ4N under normoxic (aerobic) and hypoxic conditions. We employed an expression vector containing the cDNA for human iNOS to transfect human fibrosarcoma HT1080 tumour cells. Alternatively, parental cells were exposed to a cytokine cocktail to induce iNOS gene expression and enzymatic activity. The cells were then treated with AQ4N alone and in combination with radiation in the presence or absence of the iNOS inhibitor N-methyl-L‑arginine. In parental cells, AQ4N showed little difference in toxicity under hypoxic verses normoxic conditions. Notably, cells with upregulated iNOS activity showed a significant increase in sensitivity to AQ4N, but only under conditions of reduced oxygenation. When these cells were exposed to the combination of AQ4N and radiation, there was much greater cell killing than that observed with either modality alone. In the clinical development of hypoxia selective cytotoxins it is likely they will be used in combination with radiotherapy. In the present study, we demonstrated that AQ4N can selectively kill hypoxic cells via an iNOS-dependent mechanism. This hypoxia-selective effect can be augmented by combining AQ4N with radiation without increasing cytotoxicity to well‑oxygenated tissues. Collectively, these results suggest that targeting hypoxic tumours with high levels of iNOS with a combination of AQ4N and radiotherapy could be a useful clinical therapeutic strategy.

Kitagawa J, Goto N, Shibata Y, et al.
Peripheral T-Cell Lymphoma, Not Otherwise Specified and Concurrent Seminoma in Testis.
J Clin Exp Hematop. 2015; 55(3):169-74 [PubMed] Related Publications
Concurrent seminoma and malignant lymphoma of the testis is rare. We present a case of concurrent seminoma and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) in a 54-year-old man who complained of painless left testicular enlargement. Radical left orchiectomy was performed. Macroscopically, the tumor (4.0 × 3.0 cm) was creamy, soft, and homogeneous, and microscopic evaluation revealed an alveolar structure of large cells that formed sheets, as well as colonization by other abnormal cells in a 1.0 × 1.0 cm area. The portion of the tumor comprising large abnormal cells was diagnosed as a seminoma, which was positive for c-kit by immunohistochemistry; the other portion was diagnosed as CD3/CD8, TIA, and granzyme B-positive PTCL-NOS. These two portions were clearly differentiated from one another. The patient received CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) therapy and achieved complete response for 50 months. To our knowledge, this is the first reported case of synchronous advanced seminoma and PTCL.

Jiang Y, Li W, He X, et al.
Lgr5 expression is a valuable prognostic factor for colorectal cancer: evidence from a meta-analysis.
BMC Cancer. 2016; 16:12 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Lgr5 has recently been identified as a reliable biomarker of cancer stem cells (CSCs) in colorectal cancer (CRC); however, its prognostic value is still controversial.
METHODS: We searched PubMed, Web of Science, and Wanfang databases with identical strategies to retrieve articles. We evaluated the impact of Lgr5 expression on survival of CRC patients through meta-analysis.
RESULTS: A total of 12 studies comprising 2600 patients revealed that Lgr5 overexpression was negatively associated with overall survival (OS) (HR = 1.73, 95% CI: 1.28-2.33; P = 0.00) and disease free survival (DFS) (HR = 2.89, 95% CI: 1.89-4.44; P = 0.000) in CRC patients. Subgroup analysis suggested that Lgr5 overexpression was significantly associated with worse OS in subgroups with IHC as the method of Lgr5 assessment (HR = 2.01, 95% CI: 1.39-2.89; P = 0.001), patients from Asia (HR = 1.81, 95% CI: 1.27-2.58; P = 0.000), and NOS scores greater than 6 (HR = 2.12, 95% CI: 1.41-3.19; P = 0.000). Furthermore, sensitivity analysis showed that the estimated HR ranged from 1.6 to 1.86 upon excluding one study sequentially from each analysis. In addition, Lgr5 overexpression was significantly associated with deep invasion of CRC (OR = 0.39, 95% CI: 0.17-0.87; P = 0.002), lymphnode metastasis (OR = 0.45, 95% CI: 0.26-0.76; P = 0.003), distant metastasis (OR = 0.37, 95% CI: 0.22-0.62; P = 0.000), and AJCC stage (OR = 0.35, 95% CI: 0.15-0.78; P = 0.01). However, Lgr5 overexpression was not correlated with tumor grade (OR = 0.75 95% CI: 0.37-1.54; P = 0.433).
CONCLUSIONS: This study shows that Lgr5 can be a valuable and reliable prognostic factor of colorectal cancer progression.

Papaevangelou E, Whitley GS, Johnstone AP, et al.
Investigating the role of tumour cell derived iNOS on tumour growth and vasculature in vivo using a tetracycline regulated expression system.
Int J Cancer. 2016; 138(11):2678-87 [PubMed] Related Publications
Nitric oxide (NO) is a free radical signalling molecule involved in various physiological and pathological processes, including cancer. Both tumouricidal and tumour promoting effects have been attributed to NO, making its role in cancer biology controversial and unclear. To investigate the specific role of tumour-derived NO in vascular development, C6 glioma cells were genetically modified to include a doxycycline regulated gene expression system that controls the expression of an antisense RNA to inducible nitric oxide synthase (iNOS) to manipulate endogenous iNOS expression. Xenografts of these cells were propagated in the presence or absence of doxycycline. Susceptibility magnetic resonance imaging (MRI), initially with a carbogen (95% O2/5% CO2) breathing challenge and subsequently an intravascular blood pool contrast agent, was used to assess haemodynamic vasculature (ΔR2*) and fractional blood volume (fBV), and correlated with histopathological assessment of tumour vascular density, maturation and function. Inhibition of NO production in C6 gliomas led to significant growth delay and inhibition of vessel maturation. Parametric fBV maps were used to identify vascularised regions from which the carbogen-induced ΔR2* was measured and found to be positively correlated with vessel maturation, quantified ex vivo using fluorescence microscopy for endothelial and perivascular cell staining. These data suggest that tumour-derived iNOS is an important mediator of tumour growth and vessel maturation, hence a promising target for anti-vascular cancer therapies. The combination of ΔR2* response to carbogen and fBV MRI can provide a marker of tumour vessel maturation that could be applied to non-invasively monitor treatment response to iNOS inhibitors.

Talekar M, Trivedi M, Shah P, et al.
Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles.
Mol Ther. 2016; 24(4):759-69 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Mutations in KRAS and p53 signaling pathways contribute to loss of responsiveness to current therapies and a decreased survival in lung cancer. In this study, we have investigated the delivery and transfection of wild-type (wt-) p53 and microRNA-125b (miR-125b) expressing plasmid DNA, in SK-LU-1 human lung adenocarcinoma cells as well as in Kras(G12D)/p53(fl/fl) (KP) genetically engineered mouse model of lung cancer. Systemic plasmid DNA delivery with dual CD44/EGFR-targeted hyaluronic acid (HA)-based nanoparticles (NPs) resulted in a 2- to 20-fold increase in wt-p53 and miR-125b gene expression in SK-LU-1 cells. This resulted in enhanced apoptotic activity as seen with increased APAF-1 and caspase-3 gene expression. Similarly, in vivo evaluations in KP mouse model indicated successful CD44/EGFR-targeted delivery. Tumor growth inhibition and apoptotic induction were also observed with (wt-p53+miR125b) combination therapy in KP tumor model. Lastly, J774.A1 murine macrophages co-cultured with transfected SK-LU-1 cells showed a 14- to 35-fold increase in the iNOS-Arg-1 ratio, supportive of previous results demonstrating a role of miR-125b in macrophage repolarization. Overall, these results show tremendous promise of wt-p53 and miR-125b gene therapy using dual CD44/EGFR-targeting HA NP vector for effective treatment of lung cancer.

Yang Y, Zhang J, Liu Y, et al.
Role of nitric oxide synthase in the development of bone cancer pain and effect of L-NMMA.
Mol Med Rep. 2016; 13(2):1220-6 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Spinal nitric oxide is involved in the mechanisms of pain generation and transmission during inflammatory and neuropathic pain. The aim of the present study was to explore the role of spinal nitric oxide in the development of bone cancer pain. 2 x 10(5) osteosarcoma cells were implanted into the intramedullary space of right femurs of C3H/HeJ mice to induce a model of ongoing bone cancer. Polymerase chain reaction and immunohistochemical analyses were performed to assess the expression of neuronal nitric oxide synthase (nNOS) and inducible (i)NOS in the spinal cord following inoculation. The results showed that inoculation of osteosarcoma cells induced progressive bone cancer, accompanied with pain-associated behavior. The levels of nNOS mRNA in the spinal cord of tumor mice began to increase at day 10 and then decreased to the level in sham mice at day 14, while iNOS mRNA markedly increased in the tumor group at days 10 and 14. Immunohistochemical analysis showed that nNOS- and iNOS-positive neurons were mainly located in the superficial dorsal horn and around the central canal of the L3-L5 spinal cord. Intrathecal injection of 50 µg NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) attenuated cancer-evoked pain behaviors at day 14. These findings indicated that an upregulation of nNOS and iNOS in the spinal cord is associated with bone cancer pain and suggests that exogenously administered L-NMMA may have beneficial effects to alleviate bone cancer pain.

Julamanee J, Kayasut K, Lekhakula A
The Expressions of P53, Bcl-2, and P-Glycoprotein and Prognostic Impact in Patients with Peripheral T-Cell Lymphoma (PTCL).
J Med Assoc Thai. 2015; 98(10):950-6 [PubMed] Related Publications
OBJECTIVE: To define the expressions of p53, Bcl-2, and p-glycoprotein and prognostic impact in patients with peripheral T-cell lymphoma (PTCL).
MATERIAL AND METHOD: Adult patients with newly diagnosed as PTCL were reviewedfrom 2001 to 2012. Clinical parameters and outcome data were extracted The specimens were stained for p53, Bcl-2, and p-glycoprotein. The results were analyzed for association with disease stage, International Prognostic Index (IPI), Prognostic Index for T-cell lymphoma (PIT), overall response rate (ORR), and overall survival (OS).
RESULTS: Of eligible 159 patients (113 males, 46 females), median age was 53 years old The histological subtypes included peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) 35.8%, angioimmunoblastic T-cell lymphoma (AITL) 18.2%, extranodal NK/T-cell lymphoma (ENKL) 17.0%, subcutaneous panniculitis-like T-cell lymphoma (SPTCL) 12.6%, cutaneous T-cell lymphoma (CTCL) 11.3%, anaplastic large cell lymphoma (ALCL) 4.4%, and enteropathy-associated T-cell lymphoma (EATL) 0.6%. Tissue samples were obtainedfor analysis in 135 patients. P53, Bcl-2, and p-glycoprotein were positive in 87%, 49%, and 28%, respectively. Median OS was 25 months. The expressions of p53, Bcl-2, and p-glycoprotein were not significantly correlated with advanced stage, high prognostic scores, ORR, and OS. However Bcl-2 expression was statistically associated with histological subtypes. From Cox regression analyses, advanced stage, high prognostic scores, and histological subtypes were independent prognostic factors for OS.
CONCLUSION: The biomarker expressions varied in different types of PTCL and did not show any correlation with prognostic factors, ORR, or OS.

Han CK, Chiang HC, Lin CY, et al.
Comparison of Immunomodulatory and Anticancer Activities in Different Strains of Tremella fuciformis Berk.
Am J Chin Med. 2015; 43(8):1637-55 [PubMed] Related Publications
Tremella fuciformis Berk (TF) is a common edible and medicinal mushroom, and has long been used in food and in Chinese medicine. It possesses anticancer, anti-inflammation, anti-oxidative, and neuroprotective abilities. Since their cultivation is a problem, TFs in Taiwan are primarily imported from China, which has a problem with pesticide residues. Thus, the question of whether the Taiwan cultivated TFs, T1, and T6 showed similar or even better results than TFs from China (CH) was assessed in the present study. The results of the physicochemical tests of these TFs showed that T1 extracted by hot water (T1H) has the highest concentration of polysaccharide; meanwhile, T6 extracted by cold water (T6C) showed the highest amount of protein. Regarding the immune modulatory effects of these TFs, hot water extracts of these TFs augmented significantly the inducible nitric oxide synthetase (iNOS), interleukin (IL)-6, and tumor necrosis factor (TNF)-[Formula: see text] mRNA expression than those of cold water extracts. On the other hand, the cold water extracts of TFs, especially of T1C, obviously suppressed cancer cell survival better than those of hot water extracts. Interestingly, we found that hot water extracts of TFs may augment necrotic cell death, whereas, cold water extracts of TFs induce apoptosis. Furthermore, we also showed that these TFs activate caspase-3 cleavage, up regulate the Bax/Bcl-2 ratio, and decrease MMP-9 expressions in PC-3 cells. Taken together, our results indicated that T1 and T6 strains of TFs showed the similar immune modulatory and anticancer abilities were better than the CH strain of TFs.

Zhao L, Yu C, Zhou S, et al.
Epigenetic repression of PDZ-LIM domain-containing protein 2 promotes ovarian cancer via NOS2-derived nitric oxide signaling.
Oncotarget. 2016; 7(2):1408-20 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Ovarian cancer constitutes one of the most lethal gynaecological malignancies worldwide and currently no satisfactory therapeutic approaches have been established. Therefore, elucidation of molecular mechanisms to develop targeted therapy of ovarian cancer is crucial. PDLIM2 is critical to promote ubiquitination of nuclear p65 and thus its role in inflammation has been highlighted recently. We demonstrate that PDLIM2 is decreased in both ovarian high-grade serous carcinoma and in various human ovarian cancer cell lines compared with normal ovary tissues and human ovarian surface epithelial cells (HOSE). Further functional analysis revealed that PDLIM2 is epigenetically repressed in ovarian cancer development and inhibition of PDLIM2 promoted ovarian cancer growth both in vivo and in vitro via NOS2-derived nitric oxide signaling, leading to recruitment of M2 type macrophages. These results suggest that PDLIM2 might be involved in ovarian cancer pathogenesis, which could serve as a promising therapeutic target for ovarian cancer patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NOS2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999