Gene Summary

Gene:NR0B2; nuclear receptor subfamily 0, group B, member 2
Aliases: SHP, SHP1
Summary:The protein encoded by this gene is an unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-binding domain. The gene product is a member of the nuclear hormone receptor family, a group of transcription factors regulated by small hydrophobic hormones, a subset of which do not have known ligands and are referred to as orphan nuclear receptors. The protein has been shown to interact with retinoid and thyroid hormone receptors, inhibiting their ligand-dependent transcriptional activation. In addition, interaction with estrogen receptors has been demonstrated, leading to inhibition of function. Studies suggest that the protein represses nuclear hormone receptor-mediated transactivation via two separate steps: competition with coactivators and the direct effects of its transcriptional repressor function. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:nuclear receptor subfamily 0 group B member 2
Source:NCBIAccessed: 17 August, 2015


What does this gene/protein do?
Show (24)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Systems Analysis
  • CGH
  • Transcriptional Activation
  • Cancer Gene Expression Regulation
  • Runx3 protein, mouse
  • DNA Methylation
  • Hepatocellular Carcinoma
  • Case-Control Studies
  • Messenger RNA
  • Ligands
  • Receptors, Cytoplasmic and Nuclear
  • RUNX3
  • Transfection
  • Gene Expression Profiling
  • Orphan Nuclear Receptors
  • Polycystic Ovary Syndrome
  • Reproducibility of Results
  • Transcription
  • Transcription Factors
  • Down-Regulation
  • Embryonic Stem Cells
  • Cell Growth Processes
  • Liver Cancer
  • DNA-Binding Proteins
  • beta Catenin
  • NR5A2
  • Apoptosis
  • Diethylnitrosamine
  • Gene Expression
  • Promoter Regions
  • Chromosome 1
  • Tumor Suppressor Gene
  • Gene Expression Regulation
  • Phenotype
  • CpG Islands
  • Adipocytes
  • DNA Copy Number Variations
  • Genomic Instability
  • Xenograft Models
  • Insulin Resistance
Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NR0B2 (cancer-related)

Lee JH, Kim C, Kim SH, et al.
Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway.
Cancer Lett. 2015; 360(2):280-93 [PubMed] Related Publications
Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is frequently observed in multiple myeloma (MM) cancer and can upregulate the expression of several genes involved in proliferation, survival, metastasis, and angiogenesis. The effect of farnesol (FOH) on STAT3 activation, associated protein kinases, its regulated gene products, cellular proliferation, and apoptosis was examined. The in vivo effect of FOH on the growth of human MM xenograft tumors alone and in combination with bortezomib (Bor) in athymic nu/nu female mice was also investigated. We found that FOH suppressed both constitutive and inducible STAT3 activation at Tyr705 in MM cells. The suppression of STAT3 was mediated through the inhibition of activation of upstream JAK1, JAK2, and c-Src kinases. Also, treatment with the protein tyrosine phosphatase (PTP) inhibitor, pervanadate treatment reversed the FOH-induced down-regulation of STAT3, possibly indicating the involvement of a PTP. Indeed, we found that FOH treatment induces the increased expression of SHP-2 protein and knockdown of the SHP-2 gene by small interfering RNA suppressed the ability of FOH to inhibit STAT3 activation. FOH inhibited proliferation and significantly potentiated the apoptotic effects of bortezomib (Bor) in U266 cells. When administered intraperitoneally, FOH enhanced Bor-induced growth suppression of human MM xenograft tumors in athymic nu/nu female mice. Our results suggest that FOH is a novel blocker of STAT3 signaling pathway and exerts both anti-proliferative and apoptotic activities in MM in vitro and in vivo.

Tiscornia MM, González HS, Lorenzati MA, Zapata PD
Association between methylation of SHP-1 isoform I and SSTR2A promoter regions with breast and prostate carcinoma development.
Cancer Invest. 2015; 33(3):61-9 [PubMed] Related Publications
Methylation pattern is presented here for first time as a potential molecular marker of changes on SSTR2A and SHP-1(I) gene promoter related to breast and prostate carcinoma. Our results have shown low concordances with SSTR2A and methylated state in prostate cancer and moderate relationship with unmethylated CpG-27 in breast cancer. We found significant concordances for both cancers and SHP-1(I) unmethylation, and increased HER2 expression and SSTR2A methylation in breast cancer. Moreover, we found a correlation between methylation patterns of two genes in normal breast tissue. These data might assist to select subgroups of patients for the administration of alternative therapies.

Li J, Jie HB, Lei Y, et al.
PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment.
Cancer Res. 2015; 75(3):508-18 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Immune rejection of tumors is mediated by IFNγ production and T-cell cytolytic activity. These processes are impeded by PD-1, a coinhibitory molecule expressed on T cells that is elevated in tumor-infiltrating lymphocytes (TIL). PD-1 elevation may reflect T-cell exhaustion marked by decreased proliferation, production of type I cytokines, and poor cytolytic activity. Although anti-PD-1 antibodies enhance IFNγ secretion after stimulation of the T-cell receptor (TCR), the mechanistic link between PD-1 and its effects on T-cell help (Tc1/Th1 skewing) remains unclear. In prospectively collected cancer tissues, we found that TIL exhibited dampened Tc1/Th1 skewing and activation compared with peripheral blood lymphocytes (PBL). When PD-1 bound its ligand PD-L1, we observed a marked suppression of critical TCR target genes and Th1 cytokines. Conversely, PD-1 blockade reversed these suppressive effects of PD-1:PD-L1 ligation. We also found that the TCR-regulated phosphatase SHP-2 was expressed higher in TIL than in PBL, tightly correlating with PD-1 expression and negative regulation of TCR target genes. Overall, these results defined a PD-1/SHP-2/STAT1/T-bet signaling axis mediating the suppressive effects of PD-1 on Th1 immunity at tumor sites. Our findings argue that PD-1 or SHP-2 blockade will be sufficient to restore robust Th1 immunity and T-cell activation and thereby reverse immunosuppression in the tumor microenvironment.

Chun J, Li RJ, Cheng MS, Kim YS
Alantolactone selectively suppresses STAT3 activation and exhibits potent anticancer activity in MDA-MB-231 cells.
Cancer Lett. 2015; 357(1):393-403 [PubMed] Related Publications
The important goal of cancer drug discovery is to develop therapeutic agents that are effective, safe, and affordable. In the present study, we demonstrated that alantolactone, which is a sesquiterpene lactone, has potential activity against triple-negative breast cancer MDA-MB-231 cells by suppressing the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Alantolactone effectively suppressed both constitutive and inducible STAT3 activation at tyrosine 705. Alantolactone decreased STAT3 translocation to the nucleus, its DNA-binding, and STAT3 target gene expression. Alantolactone significantly inhibits STAT3 activation with a marginal effect on MAPKs and on NF-κB transcription; however, this effect is not mediated by inhibiting STAT3 upstream kinases. Although SHP-1, SHP-2, and PTEN, which are protein tyrosine phosphatases (PTPs), were not affected by alantolactone, the treatment with a PTP inhibitor reversed the alantolactone-induced suppression of STAT3 activation, indicating that PTP plays an important role in the action of alantolactone. Finally, alantolactone treatment resulted in the inhibition of migration, invasion, adhesion, and colony formation. The in vivo administration of alantolactone inhibited the growth of human breast xenograft tumors. These results provide preclinical evidence to continue the development of alantolactone as a STAT3 inhibitor and as a potential therapeutic agent against breast cancer.

Lee KA, Bae EA, Song YC, et al.
A multimeric carcinoembryonic antigen signal inhibits the activation of human T cells by a SHP-independent mechanism: a potential mechanism for tumor-mediated suppression of T-cell immunity.
Int J Cancer. 2015; 136(11):2579-87 [PubMed] Related Publications
Carcinoembryonic antigen (CEA) is a well-known tumor antigen that is found in the serum of patients with various cancers and is correlated with an increased risk of cancer recurrence and metastasis. To understand the tumor environment and to develop antitumor therapies, CEA has been studied as an antigen to activate/tolerate specific T cells. In this study, we show that CEA can function as a coinhibitory molecule and can inhibit the activation of human peripheral blood mononucleated cell-derived T cells. The addition of CEA-overexpressing tumor cells or immobilized CEA dampened both cell proliferation and the expression of IL-2 and CD69 expression in T cells after TCR stimulation. The phosphorylation of ERK and translocation of NFAT were hampered in these cells, whereas the phosphorylation of proximal TCR signaling molecules such as ZAP70 and phospholipase Cγ was not affected by immobilized CEA. To determine the relevance of carcinoembryonic antigen-related cell adhesion molecule-1 and Src homology region 2 domain-containing phosphatase (SHP) molecules to CEA-mediated suppression, we tested the effect of the SHP inhibitor, NSC-87877, on CEA-mediated suppression of T cells; however, it did not reverse the effect of CEA. Collectively, these results indicate that CEA can function as a modulator of T-cell responses suggesting a novel mechanism of tumor evasion.

Su JC, Chiang HC, Tseng PH, et al.
RFX-1-dependent activation of SHP-1 inhibits STAT3 signaling in hepatocellular carcinoma cells.
Carcinogenesis. 2014; 35(12):2807-14 [PubMed] Related Publications
Regulatory factor X-1 (RFX-1) is a transcription factor that has been linked to negative regulation of tumor progression; however, its biological function and signaling cascades are unknown. Here, we performed several studies to elucidate the roles of RFX-1 in the regulation of SHP-1 in hepatocellular carcinoma (HCC) cells. Overexpression of RFX-1 resulted in the activation of SHP-1 and repressed colony formation of HCC cells. In addition, by a mouse xenograft model, we demonstrated that RFX-1 overexpression also inhibited the tumor growth of HCC cells in vivo, suggesting that RFX-1 is of potential interest for small-molecule-targeted therapy. We also found that SC-2001, a bipyrrole molecule, induced apoptosis in HCC cells through activating RFX-1 expression. SC-2001 induced RFX-1 translocation from the cytosol to nucleus, bound to the SHP-1 promoter, and activated SHP-1 transcription. In a xenograft model, knockdown of RFX-1 reversed the antitumor effect of SC-2001. Notably, SC-2001 is much more potent than sorafenib, a clinically approved drug for HCC, in in vitro and in vivo assays. Our study confirmed that RFX-1 acts as a tumor suppressor in HCC and might be a new target for HCC therapy. The findings of this study also provide a new lead compound for targeted therapy via the activation of the RFX-1/SHP-1 pathway.

Wang J, Zhang L, Chen G, et al.
Small molecule 1'-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway.
Breast Cancer Res Treat. 2014; 148(2):279-89 [PubMed] Related Publications
Signal transducer and activator of transcription 3 (STAT3) is implicated breast cancer metastasis and represents a potential target for developing new anti-tumor metastasis drugs. The purpose of this study is to investigate whether the natural agent 1'-acetoxychavicol acetate (ACA), derived from the rhizomes and seeds of Languas galanga, could suppress breast cancer metastasis by targeting STAT3 signaling pathway. ACA was examined for its effects on breast cancer migration/invasion and metastasis using Transwell assays in vitro and breast cancer skeletal metastasis mouse model in vivo (n = 10 mice per group). The inhibitory effect of ACA on cellular STAT3 signaling pathway was investigated by series of biochemistry analysis. The chavicol preferentially suppressed cancer cell migration and invasion, and this activity was superior to its cytotoxic effects. ACA suppressed both constitutive and interleukin-6-inducible STAT3 activation and diminished the accumulation of STAT3 in the nucleus and its DNA-binding activity. More importantly, ACA treatment led to significant up-regulation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), and the ACA-induced depression of cancer cell migration and STAT3 signaling could be apparently reversed by blockade of SHP-1. Matrix metalloproteinase (MMP)-2 and -9, gene products of STAT3 that regulate cell invasion, were specifically suppressed by ACA. In tumor metastasis model, ACA potently inhibited the human breast cancer cell-induced osteolysis, and had little apparent in vivo toxicity at the test concentrations. ACA is a novel drug candidate for the inhibition of tumor metastasis through interference with the SHP-1/STAT3/MMPs signaling pathway.

Wang YC, Chen CL, Sheu BS, et al.
Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling.
J Immunol. 2014; 193(8):4149-58 [PubMed] Related Publications
Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238(CagAm) failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238(CagAm) differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane-associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance.

Kim SM, Lee JH, Sethi G, et al.
Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells.
Cancer Lett. 2014; 354(1):153-63 [PubMed] Related Publications
Persistent activation of signal transducers and activator of transcription 3 (STAT3) has been closely related to growth, survival, proliferation, metastasis, and angiogenesis of various cancer cells, and thus its inhibition can be considered a potential therapeutic strategy. In this study, we investigated the role of bergamottin (BGM) obtained from grapefruit juice in abrogating the constitutive STAT3 activation in multiple myeloma (MM) cells. This suppression was mediated through the inhibition of phosphorylation of Janus-activated kinase (JAK) 1/2 and c-Src. Pervanadate reversed the BGM induced down-regulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase (PTP). Furthermore, BGM induced the expression of the tyrosine phosphatase SHP-1, and gene silencing of the SHP-1 by small interfering RNA abolished the ability of BGM to inhibit STAT3 activation, suggesting a critical role for SHP-1 in the action of BGM. BGM also downregulated the expression of STAT3-regulated gene products such as COX-2, VEGF, cyclin D1, survivin, IAP-1, Bcl-2, and Bcl-xl in MM cells. This correlated with induction of substantial apoptosis as indicated by an increase in the sub-G1 cell population and caspase-3 induced PARP cleavage. Also, this agent significantly potentiated the apoptotic effects of bortezomib and thalidomide in MM cells. Overall, these results suggest that BGM is a novel blocker of STAT3 activation pathway thus may have a potential in therapy of MM and other cancers.

Siveen KS, Nguyen AH, Lee JH, et al.
Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells.
Br J Cancer. 2014; 111(7):1327-37 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
BACKGROUND: Constitutive activation of signal transducer and activator of transcription signalling 3 (STAT3) has been linked with survival, proliferation and angiogenesis in a wide variety of malignancies including hepatocellular carcinoma (HCC).
METHODS: We evaluated the effect of lupeol on STAT3 signalling cascade and its regulated functional responses in HCC cells.
RESULTS: Lupeol suppressed constitutive activation of STAT3 phosphorylation at tyrosine 705 residue effectively in a dose- and time-dependent manner. The phosphorylation of Janus-activated kinases (JAKs) 1 and 2 and Src was also suppressed by lupeol. Pervanadate treatment reversed the downregulation of phospho-STAT3 induced by lupeol, thereby indicating the involvement of a phosphatase. Indeed, we observed that treatment with lupeol increased the protein and mRNA levels of SHP-2, and silencing of SHP-2 abolished the inhibitory effects of lupeol on STAT3 activation. Treatment with lupeol also downregulated the expression of diverse STAT3-regulated genes and decreased the binding of STAT3 to VEGF promoter. Moreover, the proliferation of various HCC cells was significantly suppressed by lupeol, being associated with substantial induction of apoptosis. Depletion of SHP-2 reversed the observed antiproliferative and pro-apoptotic effects of lupeol.
CONCLUSIONS: Lupeol exhibited its potential anticancer effects in HCC through the downregulation of STAT3-induced pro-survival signalling cascade.

Wang J, Huang T, Sun J, et al.
CIP2A is overexpressed and involved in the pathogenesis of chronic myelocytic leukemia by interacting with breakpoint cluster region-Abelson leukemia virus.
Med Oncol. 2014; 31(8):112 [PubMed] Related Publications
To detect the expression of cancerous inhibitor of phosphatase 2A (CIP2A) in chronic myelocytic leukemia (CML) and investigate the mechanism underlying CIP2A knockdown-mediated cell proliferation and apoptosis as well as the interaction of CIP2A with breakpoint cluster region-Abelson leukemia virus (BCR-ABL). CIP2A mRNA and protein expression in chronic myelocytic leukemia-chronic (CML-CP) patients and healthy controls were determined by RT-PCR and Western blot. In vivo, c-Myc expression, PP2A activity, cell proliferation, and apoptosis of CML cells were detected with CIP2A depletion. In addition, the relationship among CIP2A, BCR-ABL, and tyrosine phosphatase SHP-1 was explored by depleting/overexpressing CIP2A or inhibiting BCR-ABL. The level of CIP2A mRNA was higher in CML-CP patients than healthy controls (56/74, 75.7 % vs. 1/35, 2.9 %, P < 0.001), and CIP2A protein was overexpressed in corresponding specimens. CIP2A knockdown by siRNA reduced the level of c-Myc protein and clonogenic formation, inhibited the activity of PP2A, K562 cell proliferation, and promoted cell apoptosis. Suppressing BCR-ABL by imatinib mesylate (IM) significantly decreased CIP2A expression. CIP2A knockdown decreased BCR-ABL but increased SHP-1 expression, and CIP2A overexpression had the reverse effect. CIP2A is overexpressed in CML-CP patients, and its expression may promote CML pathogenesis. CIP2A and BCR-ABL can regulate each other in a positive feedback loop. CIP2A may be a useful therapeutic target in CML-CP, particularly in patients with IM resistance. However, further studies are needed to validate the interaction between CIP2A and BCR-ABL using other tyrosine kinase inhibitors than IM.

Sun TT, Tang JY, Du W, et al.
Bidirectional regulation between TMEFF2 and STAT3 may contribute to Helicobacter pylori-associated gastric carcinogenesis.
Int J Cancer. 2015; 136(5):1053-64 [PubMed] Related Publications
The transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is a single-pass transmembrane protein, and it is downregulated in human gastric cancer and levels correlate with tumor progression and time of survival. However, the mechanism of its dysregulation in gastric cancer is little known. Here we investigate its regulatory mechanism and the bidirectional regulation between TMEFF2 and STAT3 in gastric carcinogenesis. TMEFF2 expression was decreased after Helicobacter pylori (H. pylori) infection in vivo and in vitro. STAT3 directly binds to the promoter of TMEFF2 and regulates H. pylori-induced TMEFF2 downregulation in normal gastric GES-1 cells and gastric cancer AGS cells. Conversely, TMEFF2 may suppress the phosphorylation of STAT3 and TMEFF2-induced downregulation of STAT3 phosphorylation may depend on SHP-1. A highly inverse correlation between the expression of TMEFF2 and pSTAT3 was also revealed in gastric tissues. We now show the deregulation mechanism of TMEFF2 in gastric carcinogenesis and identify TMEFF2 as a new target gene of STAT3. The phosphorylation of STAT3 may be negatively regulated by TMEFF2, and the bidirectional regulation between TMEFF2 and STAT3 may contribute to H. pylori-associated gastric carcinogenesis.

Sun T, Du W, Xiong H, et al.
TMEFF2 deregulation contributes to gastric carcinogenesis and indicates poor survival outcome.
Clin Cancer Res. 2014; 20(17):4689-704 [PubMed] Related Publications
PURPOSE: The role and clinical implication of the transmembrane protein with EGF and two follistatin motifs 2 (TMEFF2) in gastric cancer is poorly understood.
EXPERIMENTAL DESIGN: Gene expression profile analyses were performed and Gene Set Enrichment Analysis (GSEA) was used to explore its gene signatures. AGS and MKN45 cells were transfected with TMEFF2 or control plasmids and analyzed for gene expression patterns, proliferation, and apoptosis. TMEFF2 expression was knocked down with shRNAs, and the effects on genome stability were assessed. Interactions between TMEFF2 and SHP-1 were determined by mass spectrometry and immunoprecipitation assays.
RESULTS: Integrated analysis revealed that TMEFF2 expression was significantly decreased in gastric cancer cases and its expression was negatively correlated with the poor pathologic stage, large tumor size, and poor prognosis. GSEA in The Cancer Genome Atlas (TCGA) and Jilin datasets revealed that cell proliferation, apoptosis, and DNA damage-related genes were enriched in TMEFF2 lower expression patients. Gain of TMEFF2 function decreased cell proliferation by increasing of apoptosis and blocking of cell cycle in gastric cancer cells. The protein tyrosine phosphatase SHP-1 was identified as a binding partner of TMEEF2 and mediator of TMEFF2 function. TMEFF2 expression positively correlated with SHP-1, and a favorable prognosis was more likely in patients with gastric cancer with higher levels of both TMEFF2 and SHP-1.
CONCLUSION: TMEFF2 acts as a tumor suppressor in gastric cancer through direct interaction with SHP-1 and can be a potential biomarker of carcinogenesis.

Mitsumori T, Nozaki Y, Kawashima I, et al.
Hypoxia inhibits JAK2V617F activation via suppression of SHP-2 function in myeloproliferative neoplasm cells.
Exp Hematol. 2014; 42(9):783-92.e1 [PubMed] Related Publications
The hypoxic microenvironment of the bone marrow, known as the hypoxic niche, supports hematopoietic stem cell quiescence and maintains long-term repopulation activity. Hypoxia also affects the expansion of progenitor cells and enhances erythropoiesis and megakaryopoiesis. In contrast to the known effects of hypoxia on normal hematopoiesis, the effects of the hypoxic environment of the bone marrow on the pathogenesis of myeloproliferative neoplasms (MPNs) have not been well studied. In the present study, we investigated the role of the hypoxic environment in the pathophysiology of MPNs, focusing on JAK2V617F, a major driver of mutation in Philadelphia-negative MPNs. We found that the activity of JAK2V617F was suppressed in hypoxic conditions not only in JAK2V617F-positive leukemia cells, but also in primary peripheral blood mononuclear cells from patients with polycythemia vera. Concomitant with the inhibition of JAK2V617F activity, hypoxia increased the expression of p27/KIP1, the primary negative regulator of the cell cycle, and inhibited cell cycle progression in JAK2V617F-positive leukemia cell lines. The spontaneous erythroid colony formation of primary cells from polycythemia vera patients was also suppressed under hypoxic conditions. We also revealed that the hypoxia-induced overproduction of reactive oxygen species played a crucial role in the inhibition of JAK2V617F through the oxidation and inhibition of SHP-2, a protein tyrosine phosphatase that contains SH-2, which is required for JAK2 activation. In conclusion, a hypoxic environment may modulate JAK2-positive MPN cell fate and disease progression through the suppression of SHP-2 function and the subsequent suppression of JAK2V617F activity.

Yamamoto J, Ohnuma K, Hatano R, et al.
Regulation of somatostatin receptor 4-mediated cytostatic effects by CD26 in malignant pleural mesothelioma.
Br J Cancer. 2014; 110(9):2232-45 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
BACKGROUND: Malignant pleural mesothelioma (MPM) is an aggressive neoplasm arising from mesothelial lining of pleura. CD26 molecules preferentially expressed on epithelioid type of MPM. This study investigates the molecular mechanisms of CD26 regulating MPM cells in vitro and in vivo.
METHODS: Biochemical and cell biological approaches were used for identifying a novel molecular target of MPM. Its contribution to tumour expansion has been also assessed using animal models. The clinical samples of MPM were also assessed for its expression.
RESULTS: We identify that cytostatic effects in MPM are mediated by somatostatin (SST) receptor 4 (SSTR4), being inhibited by the interaction of CD26 molecules. We also indicates that SSTR4-mediated cytostatic effects are regulated by SHP-2 PTP, and that this inhibitory effect by SST agonist is enhanced via lipid raft clustering of associated molecules following crosslinking of anti-CD26 antibody. Finally, using an in vivo xenograft model, we demonstrate that the anti-tumour effect of anti-CD26 mAb is enhanced when combined with SSTR4 agonist treatment, and that SSTR4 is highly coexpressed with CD26 on epithelioid or biphasic types of MPM tissues obtained from patients' surgical specimens.
CONCLUSIONS: Combination therapy with humanised anti-CD26 mAb and SSTR4 agonist may therefore potentiate anti-tumour effect on MPM.

Wang CY, Chao TT, Tai WT, et al.
Signal transducer and activator of transcription 3 as molecular therapy for non-small-cell lung cancer.
J Thorac Oncol. 2014; 9(4):488-96 [PubMed] Related Publications
INTRODUCTION: Targeting signal transducer and activator of transcription 3 (STAT3), a transcription factor that modulates survival-directed transcription, is often persistently activated in epidermal growth factor receptor (EGFR) wild-type non-small-cell lung cancer (NSCLC). The aim of this study was to determine whether sorafenib and its derivative can inhibit EGFR wild-type NSCLC via STAT3 inactivation.
METHODS: EGFR wild-type NSCLC cell lines (A549 H292 H322 H358 and H460) were treated with sorafenib or SC-1, a sorafenib derivative that closely resembled sorafenib structurally but was devoid of kinase inhibitory activity. Apoptosis and signal transduction were analyzed. In vivo efficacy was determined in nude mice with H460 and A549 xenograft.
RESULTS: SC-1 had better effects than sorafenib on growth inhibition and apoptosis in all tested EGFR wild-type NSCLC lines. SC-1 reduced STAT3 phosphorylation at tyrosine 705 in all tested EGFR wild-type NSCLC cells. The expression of STAT3-driven genes, including cylcin D1 and survivin, was also repressed by SC-1. Ectopic expression of STAT3 in H460 cells abolished apoptosis in SC-1-treated cells. Sorafenib and SC-1 enhanced Src homology-2 containing protein tyrosine phosphatase-1 (SHP-1) activity, whereas knockdown of SHP-1, but not SHP-2 or protein-tyrosine phosphatase 1B (PTP-1B), by small interference RNA reduced SC-1-induced apoptosis. SC-1 significantly reduced H460 and A549 tumor growth in vivo through SHP-1/STAT3 pathway.
CONCLUSIONS: SC-1 provides proof that targeting STAT3 signaling pathway may be a novel approach for the treatment of EGFR wild-type NSCLC.

Li Y, Yang L, Pan Y, et al.
Methylation and decreased expression of SHP-1 are related to disease progression in chronic myelogenous leukemia.
Oncol Rep. 2014; 31(5):2438-46 [PubMed] Related Publications
Despite the unprecedented success of tyrosine kinase inhibitors (TKIs) in treating chronic myelogenous leukemia (CML), some patients nevertheless progress to advanced stages of the disease. Thus far, the biological basis leading to CML progression remains poorly understood. SH2-containing tyrosine phosphatase 1 (SHP-1) is reported to bind to p210BCR‑ABL1 and to function as a tumor suppressor. Furthermore, its substrates have been found to be essential for p210BCR-ABL1 leukemogenesis or CML progression. In the present study, we found that SHP-1 mRNA and protein levels were markedly decreased in patients in the accelerated and blastic phases of CML (AP-CML and BP-CML) compared to those in the chronic phase (CP-CML). In vitro, we demonstrated that overexpression of SHP-1 reduced p210BCR-ABL1 protein expression and activity in the K562 CML cell line and negatively regulated the AKT, MAPK, MYC and JAK2/STAT5 signaling pathways. Moreover, using a methylation-specific polymerase chain reaction (MSP) assay, abnormal methylation of the SHP-1 gene promoter region was found both in K562 cells and bone marrow (BM) or peripheral blood (PB) cells from AP-CML and BP-CML patients. In conclusion, our findings suggest that decreased expression levels of SHP-1 caused by aberrant promoter hypermethylation may play a key role in the progression of CML by dysregulating BCR-ABL1, AKT, MAPK, MYC and JAK2/STAT5 signaling.

Liu H, Devraj K, Möller K, et al.
EphrinB-mediated reverse signalling controls junctional integrity and pro-inflammatory differentiation of endothelial cells.
Thromb Haemost. 2014; 112(1):151-63 [PubMed] Related Publications
The EphB/ephrinB receptor-ligand system is pivotal for the development of the embryonic vasculature and for angiogenesis in the adult organism. We observed that (i) the expression of ephrinB2 and ephrinB1 is up-regulated in capillaries during inflammation, that (ii) these ligands are localised on the luminal endothelial surface, and that (iii) they interact with the ephrinB-receptor EphB2 on monocyte/macrophages. This study delineates the impact of ephrinB-mediated reverse signalling on the integrity and proinflammatory differentiation of the endothelium. To this end, in vitro analyses with human cultured endothelial cells reveal that knockdown of ephrinB2 or ephrinB1 impairs monocyte transmigration through the endothelium. While ephrinB2 but not ephrinB1 interacts with PECAM-1 (CD31) in this context, reverse signalling by ephrinB1 but not ephrinB2 elicits a c-Jun N-terminal kinase (JNK)-dependent up-regulation of E-selectin expression. Furthermore, treatment of endothelial cells with soluble EphB2 receptor bodies or EphB2-overexpressing mouse myeloma cells links ephrinB2 to PECAM-1 and induces its Src-dependent phosphorylation while diminishing Src homology phosphotyrosyl phosphatase-2 (SHP-2) activity and increasing endothelial cell permeability. We conclude that extravasation of EphB2 positive leukocyte populations is facilitated by lowering the integrity of endothelial cell junctions and enhancing the pro-inflammatory phenotype of the endothelium through activation of ephrinB ligands.

Wang F, Liu WW, Chen XM, et al.
Differential genes in adipocytes induced from polycystic and non-polycystic ovary syndrome-derived human embryonic stem cells.
Syst Biol Reprod Med. 2014; 60(3):136-42 [PubMed] Related Publications
We explored the molecular mechanisms of obesity and insulin resistance in patients with polycystic ovary syndrome (PCOS) using a human embryonic stem cell model (hESCs). Three PCOS-derived and one non-PCOS-derived hESC lines were induced into adipocytes, and then total RNA was extracted. The differentially expressed PCOS-derived and non-PCOS-derived adipocytes genes were identified using the Boao Biological human V 2.0 whole genome oligonucleotide microarray. Signals of interest were then validated by real-time PCR. A total of 153 differential genes were expressed of which 91 genes were up-regulated and 62 down-regulated. Nuclear receptor subfamily 0, group B, member 2 (NR0B2) was an up-regulated gene, and the GeneChip CapitalBio® Molecule Annotation System V4.0 indicated that it was associated with obesity and diabetes (Ratio ≥ 2.0X). Multiple genes are involved in PCOS. Nuclear receptor subfamily 0, group B, member 2 may play a role in obesity and insulin resistance in patients with PCOS.

Sooman L, Ekman S, Tsakonas G, et al.
PTPN6 expression is epigenetically regulated and influences survival and response to chemotherapy in high-grade gliomas.
Tumour Biol. 2014; 35(5):4479-88 [PubMed] Related Publications
The prognosis of high-grade glioma patients is poor, and the tumors are characterized by resistance to therapy. The aims of this study were to analyze the prognostic value of the expression of the protein tyrosine phosphatase non-receptor type 6 (PTPN6, also referred to as SHP1) in high-grade glioma patients, the epigenetic regulation of the expression of PTPN6, and the role of its expression in chemotherapy resistance in glioma-derived cells. PTPN6 expression was analyzed with immunohistochemistry in 89 high-grade glioma patients. Correlation between PTPN6 expression and overall survival was analyzed with Kaplan-Meier univariate analysis and Cox regression multivariate analysis. Differences in drug sensitivity to a panel of 16 chemotherapeutic drugs between PTPN6-overexpressing clones and control clones were analyzed in vitro with the fluorometric microculture cytotoxicity assay. Cell cycle analysis was done with Krishan staining and flow cytometry. Apoptosis was analyzed with a cell death detection ELISA kit as well as cleaved caspase-3 and caspase-9 Western blotting. Autophagy was analyzed with LC3B Western blotting. Methylation of the PTPN6 promoter was analyzed with bisulfite pyrosequencing, and demethylation of PTPN6 was done with decitabine treatment. The PTPN6 expression correlated in univariate analysis to poor survival for anaplastic glioma patients (p = 0.026). In glioma-derived cell lines, overexpression of PTPN6 caused increase resistance (p < 0.05) to the chemotherapeutic drugs bortezomib, cisplatin, and melphalan. PTPN6 expression did not affect bortezomib-induced cell cycle arrest, apoptosis, or autophagy. Low PTPN6 promoter methylation correlated to protein expression, and the protein expression was increased upon demethylation in glioma-derived cells. PTPN6 expression may be a factor contributing to poor survival for anaplastic glioma patients, and in glioma-derived cells, its expression is epigenetically regulated and influences the response to chemotherapy.

Schmitz R, Ceribelli M, Pittaluga S, et al.
Oncogenic mechanisms in Burkitt lymphoma.
Cold Spring Harb Perspect Med. 2014; 4(2) [PubMed] Related Publications
Burkitt lymphoma is a germinal center B-cell-derived cancer that was instrumental in the identification of MYC as an important human oncogene more than three decades ago. Recently, new genomics technologies have uncovered several additional oncogenic mechanisms that cooperate with MYC to create this highly aggressive cancer. The transcription factor TCF-3 is central to Burkitt lymphoma pathogenesis. TCF-3 is rendered constitutively active in Burkitt lymphoma by two related mechanisms: (1) somatic mutations that inactivate its negative regulator ID3, and (2) somatic mutations in TCF-3 that block the ability of ID3 to bind and interfere with its activity as a transcription factor. TCF-3 is also a master regulator of normal germinal center B-cell differentiation. Within the germinal center, TCF-3 up-regulates genes that are characteristically expressed in the rapidly dividing centroblasts, the putative cell of origin for Burkitt lymphoma, while repressing genes expressed in the less proliferative centrocytes. TCF-3 promotes antigen-independent (tonic) B-cell-receptor signaling in Burkitt lymphoma by transactivating immunoglobulin heavy- and light-chain genes while repressing PTPN6, which encodes the phosphatase SHP-1, a negative regulator of B-cell-receptor signaling. Tonic B-cell-receptor signaling sustains Burkitt lymphoma survival by engaging the PI3 kinase pathway. In addition, TCF-3 promotes cell-cycle progression by transactivating CCND3, encoding a D-type cyclin that regulates the G1-S phase transition. Additionally, CCND3 accumulates oncogenic mutations that stabilize cyclin D3 protein expression and drive proliferation. These new insights into Burkitt lymphoma pathogenesis suggest new therapeutic strategies, which are sorely needed in developing regions of the world where this cancer is endemic.

Cai P, Guo W, Yuan H, et al.
Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer.
Biomed Pharmacother. 2014; 68(3):285-90 [PubMed] Related Publications
Protein-tyrosine phosphatase SHP-2, encoded by gene PTPN11, has been identified as a tumor-promoting factor in several types of leukemia and is hyper-activated by other mechanisms in some solid tumors including gastric cancer, breast cancer, non-small cell lung cancer (NSCLC), etc. But few were reported on the expression and significances of SHP-2 in colon cancer. Here, we detect SHP-2 expression in colon cancer cells, colon cancer-induced by AOM+DSS in mice and 232 human colon cancer specimens, including 58 groups of self-matched adjacent peritumor tissues and normal tissues. We found that compared to the normal colon tissues, SHP-2 significantly decreased in tumor tissues (P<0.001). The same results were got in colon tumor cells as well as mice colon tumors. And in humans samples, low SHP-2 expression showed a significantly correlation with poor tumor differentiation (P<0.05), late TNM stage (P=0.1666) and lymph node metastasis (P<0.05).

Ku HJ, Kim HY, Kim HH, et al.
Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells.
World J Gastroenterol. 2014; 20(1):175-82 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
AIM: To investigate the effect of bile acid on the expression of histidine decarboxylase (HDC), which is a major enzyme involved in histamine production, and gene expression of gastric transcription factors upon cooperative activation.
METHODS: HDC expression was examined by immunohistochemistry, reverse transcriptase polymerase chain reaction, and promoter assay in human gastric precancerous tissues, normal stomach tissue, and gastric cancer cell lines. The relationship between gastric precancerous state and HDC expression induced by bile acid was determined. The association between the expression of HDC and various specific transcription factors in gastric cells was also evaluated. MKN45 and AGS human gastric carcinoma cell lines were transfected with farnesoid X receptor (FXR), small heterodimer partner (SHP), and caudal-type homeodomain transcription factor (CDX)1 expression plasmids. The effects of various transcription factors on HDC expression were monitored by luciferase-reporter promoter assay.
RESULTS: Histamine production and secretion in the stomach play critical roles in gastric acid secretion and in the pathogenesis of gastric diseases. Here, we show that bile acid increased the expression of HDC, which is a rate-limiting enzyme of the histamine production pathway. FXR was found to be a primary regulatory transcription factor for bile acid-induced HDC expression. In addition, the transcription factors CDX1 and SHP synergistically enhanced bile acid-induced elevation of HDC gene expression. We confirmed similar expression patterns for HDC, CDX1, and SHP in patient tissues.
CONCLUSION: HDC production in the stomach is associated with bile acid exposure and its related transcriptional regulation network of FXR, SHP, and CDX1.

Lee JH, Chiang SY, Nam D, et al.
Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases.
Cancer Lett. 2014; 345(1):140-8 [PubMed] Related Publications
Signal transducers and activators of transcription (STAT)-3 is a latent cytosolic transcription factor that has been closely associated with survival, proliferation, chemoresistance, and metastasis of tumor cells. Whether the anti-proliferative, pro-apoptotic, and anti-metastatic effects of capillarisin (CPS), derived from Artemisia capillaris (Compositae), are linked to its capability to inhibit STAT3 activation was investigated. We found that CPS specifically inhibited both constitutive and inducible STAT3 activation at tyrosine residue 705 but not at serine residue 727 in human multiple myeloma cells. Besides the inhibition of STAT3 phosphorylation, CPS also abrogated STAT3 constitutive activity and nuclear translocation. The suppression of STAT3 was mediated through the inhibition of activation of upstream JAK1, JAK2, and c-Src kinases. Treatment with the protein tyrosine phosphatase (PTP) inhibitor pervanadate treatment reversed the CPS-induced down-regulation of JAK1/2 and STAT3, thereby suggesting the involvement of a PTP. Indeed, knockdown of the SHP-1 and SHP-2 genes by small interfering RNA suppressed the ability of CPS to inhibit JAK1 and STAT3 activation, suggesting the critical role of both SHP-1 and SHP-2 in its possible mechanism of action. CPS downregulated the expression of STAT3-regulated antiapoptotic and proliferative gene products; and this correlated with suppression of cell viability, the accumulation of cells in sub-G1 phase of cell cycle and induction of apoptosis. Moreover, CPS potentiated bortezomib-induced apoptotic effects in MM cells, and this correlated with down-regulation of various gene products that mediate cell proliferation (Cyclin D1 and COX-2), cell survival (Bcl-2, Bcl-xl, IAP1, IAP2, and Survivin), invasion (MMP-9), and angiogenesis (VEGF). Thus, overall, our results suggest that CPS is a novel blocker of STAT3 activation and thus may have a potential in negative regulation of growth, metastasis, and chemoresistance of tumor cells.

Safe S, Jin UH, Hedrick E, et al.
Minireview: role of orphan nuclear receptors in cancer and potential as drug targets.
Mol Endocrinol. 2014; 28(2):157-72 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
The nuclear orphan receptors for which endogenous ligands have not been identified include nuclear receptor (NR)0B1 (adrenal hypoplasia congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), NR1D1/2 (Rev-Erbα/β), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 4), NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (v-erbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor-specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of adrenal hypoplasia congenita critical region on chromosome X gene for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric, and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration, and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate, and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.

Okon IS, Coughlan KA, Zou MH
Liver kinase B1 expression promotes phosphatase activity and abrogation of receptor tyrosine kinase phosphorylation in human cancer cells.
J Biol Chem. 2014; 289(3):1639-48 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
Aberrant receptor tyrosine kinase phosphorylation (pRTK) has been associated with diverse pathological conditions, including human neoplasms. In lung cancer, frequent liver kinase B1 (LKB1) mutations correlate with tumor progression, but potential links with pRTK remain unknown. Heightened and sustained receptor activation was demonstrated by LKB1-deficient A549 (lung) and HeLaS3 (cervical) cancer cell lines. Depletion (siRNA) of endogenous LKB1 expression in H1792 lung cancer cells also correlated with increased pRTK. However, ectopic LKB1 expression in A549 and HeLaS3 cell lines, as well as H1975 activating-EGF receptor mutant lung cancer cell resulted in dephosphorylation of several tumor-enhancing RTKs, including EGF receptor, ErbB2, hepatocyte growth factor receptor (c-Met), EphA2, rearranged during transfection (RET), and insulin-like growth factor I receptor. Receptor abrogation correlated with attenuation of phospho-Akt and increased apoptosis. Global phosphatase inhibition by orthovanadate or depletion of protein tyrosine phosphatases (PTPs) resulted in the recovery of receptor phosphorylation. Specifically, the activity of SHP-2, PTP-1β, and PTP-PEST was enhanced by LKB1-expressing cells. Our findings provide novel insight on how LKB1 loss of expression or function promotes aberrant RTK signaling and rapid growth of cancer cells.

Zhang L, Wang M, Wang W, Mo J
Incidence and prognostic value of multiple gene promoter methylations in gliomas.
J Neurooncol. 2014; 116(2):349-56 [PubMed] Related Publications
Aberrant CpG island methylation is a common phenomenon in malignancy. The methylation status of multiple tumor suppressor genes may serve as a biomarker for early diagnostics and the prediction of prognosis. In this study, we quantitatively determined the promoter methylation status of five tumor-related genes in tumor tissue and paired serum from 240 patients with gliomas. The relationship between hyper-methylation and clinic-pathological parameters was evaluated, and the prognostic value of the methylation status was determined. Hypermethylation in serum was shown to be accompanied by hypermethylation in paired tumor tissues. In both tumors and serum, methylation of polymerase-1 (PARP-1), SHP-1, DAPK-1 and TIMP-3 genes was at significantly higher levels in high-grade compared with low-grade gliomas, indicating that the promoter methylation status positively correlates with tumor grade. In malignant gliomas, the serum methylation levels of PARP-1, and SHP-1 together with IDH-1 mutations were found to be independent prognostic factors for overall survival. Moreover, hypermethylation of PARP-1 in serum correlated with a shorter progression-free survival time. These results suggest that hypermethylation in gliomas correlates with increased malignancy and poor prognosis. Analysis of the serum promoter methylation status of multiple genes could therefore be used as a biomarker for the detection and evaluation of the prognosis of glioma patients.

Geletu M, Guy S, Raptis L
Effects of SRC and STAT3 upon gap junctional, intercellular communication in lung cancer lines.
Anticancer Res. 2013; 33(10):4401-10 [PubMed] Related Publications
BACKGROUND: We have previously demonstrated a positive correlation between SRC and its effector signal transducer and activator of transcription-3 (STAT3), and a reverse relation between SRC and gap junctional communication (GJIC) in seven non-small cell lung cancer (NSCLC) lines. Since a number of oncogenes besides SRC can affect GJIC, here we examined the actual contribution of the SRC/STAT3 axis to GJIC suppression.
MATERIALS AND METHODS: SRC and STAT3 activity levels were examined in SK-LuCi-6, LC-T, QU-DB, SW-1573, BH-E, Calu-6, FR-E, SK-MES, H1299, BEN, WT-E, A549 and SHP-77 cells by western blott analysis, probing with antibodies specific for SRC-ptyr418 or STAT3-ptyr705. GJIC was examined by in situ electroporation.
RESULTS: Confluence of all cultured NSCLC cells tested induces a dramatic increase in STAT3 activity, which is independent of SRC action. In addition, the LC-T line had high STAT3-705, despite the fact that SRC-418 expression was low, indicating that other, SRC-independent factors must be responsible for STAT3 activation and GJIC suppression in these cells; however, BH-E and SHP-77 cells with low GJIC, both SRC-418 and STAT3-705 expression were low, indicating that GJIC suppression can be independent of the SRC/STAT3 axis altogether. Our results also show that STAT3 inhibition does not restore GJIC in any of the examined lines, while in the non-transformed rat F111 fibroblast line which has extensive GJIC, STAT3 inhibition actually eliminated junctional permeability.
CONCLUSION: Our results indicate a further level of complexity in the relationship between SRC, STAT3 and GJIC in NSCLC than what has been previously demonstrated. In addition, STAT3 is actually required for, rather than suppressing GJIC.

Evren S, Wan S, Ma XZ, et al.
Characterization of SHP-1 protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells.
Genomics. 2013 Nov-Dec; 102(5-6):491-9 [PubMed] Related Publications
We identified 7 SHP-1 (PTPN6) transcripts using epithelial cancer-derived cell lines. Four were shown to utilize the epithelial promoter 1 to transcribe a full-length, a partial (exon 3) or complete (exons 3 & 4) deletion of the N-SH2 domain, and also a non-coding transcript having a stop codon caused by a frame shift due to intron 2 retention. Three additional transcripts were shown to utilize the hematopoietic promoter 2 to transcribe a full-length, a partial (exon 3) deletion of the N-SH2 domain and a non-coding transcript with intron 2 retention. We show that endogenous proteins corresponding to the open-reading-frame (ORF) transcripts are produced. Using GST-fusion proteins we show that each product of the ORF SHP-1 transcripts has phosphatase activity and isoforms with an N-SH2 deletion have increased phosphatase activity and novel protein-protein interactions. This study is the first to document utilization of promoter 2 by SHP-1 transcripts and a noncoding transcript in human epithelial cells.

Yang Z, Tsuchiya H, Zhang Y, et al.
MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein.
J Biol Chem. 2013; 288(40):28893-9 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
We show for the first time that potent microRNA-433 (miR-433) inhibition of expression of the cAMP response element-binding protein CREB1 represses hepatocellular carcinoma (HCC) cell migration. We identified a miR-433 seed match region in human and mouse CREB1 3'-UTRs. Overexpression of miR-433 markedly decreased human CREB1 3'-UTR reporter activity, and the inhibitory effect of miR-433 was alleviated upon mutation of its binding site. Ectopic expression of miR-433 reduced CREB1 protein levels in a variety of human and mouse cancer cells, including HeLa, Hepa1, Huh7, and HepG2. Human CREB1 protein levels in highly invasive MHCC97H cells were diminished by expression of miR-433 but were induced by miR-433 antagomir (anti-miR-433). The expression of mouse CREB1 protein negatively correlated with miR-433 levels in nuclear receptor Shp(-/-) liver tissues and liver tumors compared with wild-type mice. miR-433 exhibited a significant repression of MHCC97H cell migration, which was reversed by anti-miR-433. Overexpressing miR-433 inhibited focus formation dramatically, demonstrating that miR-433 may exert a tumor suppressor function. Knockdown of CREB1 by siRNAs impeded MHCC97H cell migration and invasion and antagonized the effect of anti-miR-433. Interestingly, CREB1 siRNA decreased MHCC97H cell proliferation, which was not influenced by anti-miR-433. Overexpressing CREB1 decreased the inhibitory activity of miR-433. The CpG islands surrounding miR-433 were hypermethylated, and the DNA methylation agent 5'-aza-2'-deoxycytidine, but not the histone deacetylase inhibitor trichostatin A, drastically stimulated the expression of miR-433 and miR-127 in HCC cells. The latter is clustered with miR-433. The results reveal a critical role of miR-433 in mediating HCC cell migration via CREB1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NR0B2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999