Gene Summary

Gene:RAD21; RAD21 cohesin complex component
Aliases: HR21, MCD1, NXP1, SCC1, CDLS4, hHR21, HRAD21
Summary:The protein encoded by this gene is highly similar to the gene product of Schizosaccharomyces pombe rad21, a gene involved in the repair of DNA double-strand breaks, as well as in chromatid cohesion during mitosis. This protein is a nuclear phospho-protein, which becomes hyperphosphorylated in cell cycle M phase. The highly regulated association of this protein with mitotic chromatin specifically at the centromere region suggests its role in sister chromatid cohesion in mitotic cells. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:double-strand-break repair protein rad21 homolog
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (19)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Radiation Tolerance
  • Biomarkers, Tumor
  • Chromatin
  • Chromosomal Instability
  • Case-Control Studies
  • RT-PCR
  • Cancer Gene Expression Regulation
  • Drug Resistance
  • Apoptosis
  • Up-Regulation
  • Messenger RNA
  • Acute Myeloid Leukaemia
  • Genetic Predisposition
  • DNA Replication
  • Phosphoproteins
  • Chromatids
  • Western Blotting
  • Staging
  • Gene Amplification
  • Survival Rate
  • Cell Proliferation
  • Single Nucleotide Polymorphism
  • Ubiquitin-Protein Ligases
  • Antigens, Nuclear
  • Antineoplastic Agents
  • Chromosomal Proteins, Non-Histone
  • MCF-7 Cells
  • Gene Expression Profiling
  • RNA Interference
  • Cell Cycle Proteins
  • Breast Cancer
  • Nuclear Proteins
  • Neoplasm Proteins
  • Receptor, erbB-2
  • Reproducibility of Results
  • Genes, Neoplasm
  • siRNA
  • Chromosome 8
  • Nucleic Acid Hybridization
  • DNA-Binding Proteins
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAD21 (cancer-related)

Sun L, Liang J, Wang Q, et al.
MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion.
Cell Prolif. 2016; 49(5):628-35 [PubMed] Related Publications
OBJECTIVES: Tongue squamous cell carcinoma (TSCC) is the most frequent type of oral malignancy. Increasing evidence has shown that miRNAs play key roles in many biological processes such as cell development, invasion, proliferation, differentiation, metabolism, apoptosis and migration.
MATERIALS AND METHODS: qRT-PCR analysis was performed to measure miR-137 expression. CCK-8 analysis, cell colony formation, wound-healing analysis and invasion were performed to detect resultant cell functions. The direct target of miR-137 was labelled and measured by luciferase assay and Western blotting.
RESULTS: We demonstrated that expression of miR-137 was downregulated in TSCC tissues compared to matched normal ones. miR-137 expression was downregulated in TSCC lines (SCC4, SCC1, UM1 and Cal27) compared to the immortalized NOK16B cell line and normal oral keratinocytes in culture (NHOK). In addition, we have shown that miR-137 expression was epigenetically regulated in TSCCs. Overexpression of miR-137 suppressed TSCC proliferation and colony formation. Ectopic expression of miR-137 promoted expression of the epithelial biomarker, E-cadherin, and inhibited the mesenchymal biomarker, N-cadherin, as well as vimentin and Snail expression, indicating that miR-137 suppressed TSCC epithelial-mesenchymal transition (EMT). We also showed that ectopic expression of miR-137 inhibited TSCC invasion and migration. In addition, we identified SP1 as a direct target gene of miR-137 in SCC1 cells. SP1 overexpression rescued inhibitory effects exerted by miR-137 on cell proliferation and EMT.
CONCLUSIONS: These results indicate that miR-137 acted as a tumour suppressor in TSCC by targeting SP1.

Dasgupta T, Antony J, Braithwaite AW, Horsfield JA
HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.
J Biol Chem. 2016; 291(24):12761-70 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

Zhu S, Zhao L, Li Y, et al.
Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation.
J Cell Biochem. 2016; 117(6):1359-69 [PubMed] Related Publications
Cellular senescence impedes cancer progression by limiting uncontrolled cell proliferation. To identify new genetic events controlling senescence, we performed a small interfering RNA screening human cancer cells and identified a number of targets potentially involved in senescence of MDA-MB-231 human breast cancer cells. Importantly, we showed that knockdown of RAD21 resulted in the appearance of several senescent markers, including enhanced senescence-associated β-galactosidase activity and heterochromatin focus formation, as well as elevated p21 protein levels and RB1 pathway activation. Further biochemical analyses revealed that RAD21 knockdown led to the downregulation of c-Myc and its targets, including CDK4, a negative regulator of RB1, and blockedRB1 phosphorylation (pRB1), and the RB1-mediated transcriptional repression of E2F. Moreover, c-Myc downregulation was partially mediated by proteasome-dependent degradation within promyelocytic leukemia (PML) nuclear bodies, which were found to be highly abundant during RAD21 knockdown-induced senescence. Exogenous c-Myc reconstitution rescued cells from RAD21 silencing-induced senescence. Altogether, data arising from this study implicate a novel function of RAD21 in cellular senescence in MDA-MB-231 cells that is mainly dependent onRB1 pathway activation via c-Myc downregulation.

Zhao J, Fu W, Liao H, et al.
The regulatory and predictive functions of miR-17 and miR-92 families on cisplatin resistance of non-small cell lung cancer.
BMC Cancer. 2015; 15:731 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
BACKGROUND: Chemotherapy is an important therapeutic approach for non-small cell lung cancer (NSCLC). However, a successful long-term treatment can be prevented by the occurring of chemotherapy resistance frequently, and the molecular mechanisms of chemotherapy resistance in NSCLC remain unclear. In this study, abnormal expressions of miR-17 and miR-92 families are observed in cisplatin-resistant cells, suggesting that miR-17 and miR-92 families are involved in the regulation of cisplatin resistance in NSCLC.
METHODS: miRNA microarray shows that miR-17 and miR-92 families are all down-regulated in cisplatin-resistant A549/DDP cells compared with cisplatin-sensitive A549 cells. The aim of this study is to investigate the regulatory functions of miR-17 and miR-92 families on the formation of cisplatin resistance and the predictive functions of them as biomarkers of platinum-based chemotherapy resistance in NSCLC.
RESULTS: The low expressions of miR-17 and miR-92 families can maintain cisplatin resistance through the regulation of CDKN1A and RAD21. As a result of high expressions of CDKN1A and RAD21, the inhibition of DNA synthesis and the repair of DNA damage are achieved and these may be two major contributing factors to cisplatin resistance. Moreover, we demonstrate that the expressions of miR-17 and miR-92 families in NSCLC tissues are significantly associated with platinum-based chemotherapy response.
CONCLUSION: Our study indicates that miR-17 and miR-92 families play important roles in cisplatin resistance and can be used as potential biomarkers for better predicting the clinical response to platinum-based chemotherapy in NSCLC.

Yun J, Song SH, Kang JY, et al.
Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability.
Nucleic Acids Res. 2016; 44(2):558-72 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21-knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.

Kaliyaperumal K, Sharma AK, McDonald DG, et al.
S-Nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma.
Redox Biol. 2015; 6:41-50 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
S-nitrosoglutathione (GSNO) is an endogenous nitric oxide (NO) carrier that plays a critical role in redox based NO signaling. Recent studies have reported that GSNO regulates the activities of STAT3 and NF-κB via S-nitrosylation dependent mechanisms. Since STAT3 and NF-κB are key transcription factors involved in tumor progression, chemoresistance, and metastasis of head and neck cancer, we investigated the effect of GSNO in cell culture and mouse xenograft models of head and neck squamous cell carcinoma (HNSCC). For the cell culture studies, three HNSCC cell lines were tested (SCC1, SCC14a and SCC22a). All three cell lines had constitutively activated (phosphorylated) STAT3 (Tyr(705)). GSNO treatment of these cell lines reversibly decreased the STAT3 phosphorylation in a concentration dependent manner. GSNO treatment also decreased the basal and cytokine-stimulated activation of NF-κB in SCC14a cells and reduced the basal low degree of nitrotyrosine by inhibition of inducible NO synthase (iNOS) expression. The reduced STAT3/NF-κB activity by GSNO treatment was correlated with the decreased cell proliferation and increased apoptosis of HNSCC cells. In HNSCC mouse xenograft model, the tumor growth was reduced by systemic treatment with GSNO and was further reduced when the treatment was combined with radiation and cisplatin. Accordingly, GSNO treatment also resulted in decreased levels of phosphorylated STAT3. In summary, these studies demonstrate that GSNO treatment blocks the NF-κB and STAT3 pathways which are responsible for cell survival, proliferation and that GSNO mediated mechanisms complement cispaltin and radiation therapy, and thus could potentiate the therapeutic effect in HNSCC.

Li X, Zhang TW, Tang JL, et al.
Loss of STAG2 causes aneuploidy in normal human bladder cells.
Genet Mol Res. 2015; 14(1):2638-46 [PubMed] Related Publications
The aim of this study was to determine how the function of human stromal antigen 2 (STAG2) plays an important role in proper chromosome separation. STAG2 mRNA in normal bladder cells and bladder tumor cells was evaluated by RT-PCR. The protein levels of STAG2 in normal bladder cells and bladder tumor cells were determined by western blot. A cell proliferation assay was used to measure the growth of tumor cells and STAG2-inhibited normal cells, and STAG2- inhibited normal cells were subjected to karyotype analysis. Both STAG-2 mRNA and protein expression levels were lower in bladder cancer cells compared to the controls. Knockdown of STAG2 caused aneuploidy in normal bladder cells, leading to a decreased expression of the cohesin complex components SMC1, SMC3 and RAD21, but there was no obvious effect of STAG2 knockdown on cell proliferation. Our study indicated that abnormal expression of STAG2 could cause aneuploidy in normal bladder cells.

Davis SJ, Sheppard KE, Anglesio MS, et al.
Enhanced GAB2 Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition.
Mol Cancer Ther. 2015; 14(6):1495-503 [PubMed] Related Publications
Identification of genomic alterations defining ovarian carcinoma subtypes may aid the stratification of patients to receive targeted therapies. We characterized high-grade serous ovarian carcinoma (HGSC) for the association of amplified and overexpressed genes with clinical outcome using gene expression data from 499 HGSC patients in the Ovarian Tumor Tissue Analysis cohort for 11 copy number amplified genes: ATP13A4, BMP8B, CACNA1C, CCNE1, DYRK1B, GAB2, PAK4, RAD21, TPX2, ZFP36, and URI. The Australian Ovarian Cancer Study and The Cancer Genome Atlas datasets were also used to assess the correlation between gene expression, patient survival, and tumor classification. In a multivariate analysis, high GAB2 expression was associated with improved overall and progression-free survival (P = 0.03 and 0.02), whereas high BMP8B and ATP13A4 were associated with improved progression-free survival (P = 0.004 and P = 0.02). GAB2 overexpression and copy number gain were enriched in the AOCS C4 subgroup. High GAB2 expression correlated with enhanced sensitivity in vitro to the dual PI3K/mTOR inhibitor PF-04691502 and could be used as a genomic marker for identifying patients who will respond to treatments inhibiting PI3K signaling.

Bian Y, Han J, Kannabiran V, et al.
MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer.
Int J Biol Sci. 2015; 11(4):411-22 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation.

Xu H, Yan Y, Deb S, et al.
Cohesin Rad21 mediates loss of heterozygosity and is upregulated via Wnt promoting transcriptional dysregulation in gastrointestinal tumors.
Cell Rep. 2014; 9(5):1781-97 [PubMed] Related Publications
Loss of heterozygosity (LOH) of the adenomatous polyposis coli (APC) gene triggers a series of molecular events leading to intestinal adenomagenesis. Haploinsufficiency of the cohesin Rad21 influences multiple initiating events in colorectal cancer (CRC). We identify Rad21 as a gatekeeper of LOH and a β-catenin target gene and provide evidence that Wnt pathway activation drives RAD21 expression in human CRC. Genome-wide analyses identified Rad21 as a key transcriptional regulator of critical CRC genes and long interspersed element (LINE-1 or L1) retrotransposons. Elevated RAD21 expression tracks with reactivation of L1 expression in human sporadic CRC, implicating cohesin-mediated L1 expression in global genomic instability and gene dysregulation in cancer.

Hsiung CN, Chu HW, Huang YL, et al.
Functional variants at the 21q22.3 locus involved in breast cancer progression identified by screening of genome-wide estrogen response elements.
Breast Cancer Res. 2014; 16(5):455 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
INTRODUCTION: Estrogen forms a complex with the estrogen receptor (ER) that binds to estrogen response elements (EREs) in the regulatory region of estrogen-responsive genes and regulates their transcription. Sequence variants in the regulatory regions have the potential to affect the transcription factor-regulatory sequence interaction, resulting in altered expression of target genes. This study explored the association between single-nucleotide polymorphisms (SNPs) within the ERE-associated sequences and breast cancer progression.
METHODS: The ERE-associated sequences throughout the whole genome that have been demonstrated to bind ERα in vivo were blasted against online information from SNP data sets and 54 SNPs located adjacent to estrogen-responsive genes were selected for genotyping in two independent cohorts of breast cancer patients: 779 patients in the initial screening stage and another 888 in the validation stage. Deaths due to breast cancer or recurrence of breast cancer were defined as the respective events of interest, and the hazard ratios of individual SNPs were estimated based on the Cox proportional hazards model. Furthermore, functional assays were performed, and information from publicly available genomic data and bioinformatics platforms were used to provide additional evidence for the associations identified in the association analyses.
RESULTS: The SNPs at 21q22.3 ERE were significantly associated with overall survival and disease-free survival of patients. Furthermore, these 21q22.3 SNPs (rs2839494 and rs1078272) could affect the binding of this ERE-associated sequence to ERα or Rad21 (an ERα coactivator), respectively, which resulted in a difference in ERα-activated expression of the reporter gene.
CONCLUSION: These findings support the idea that functional variants in the ERα-regulating sequence at 21q22.3 are important in determining breast cancer progression.

Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW
Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel.
PLoS One. 2014; 9(9):e108511 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response.

Thota S, Viny AD, Makishima H, et al.
Genetic alterations of the cohesin complex genes in myeloid malignancies.
Blood. 2014; 124(11):1790-8 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Somatic cohesin mutations have been reported in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). To account for the morphologic and cytogenetic diversity of these neoplasms, a well-annotated cohort of 1060 patients with myeloid malignancies including MDS (n = 386), myeloproliferative neoplasms (MPNs) (n = 55), MDS/MPNs (n = 169), and AML (n = 450) were analyzed for cohesin gene mutational status, gene expression, and therapeutic and survival outcomes. Somatic cohesin defects were detected in 12% of patients with myeloid malignancies, whereas low expression of these genes was present in an additional 15% of patients. Mutations of cohesin genes were mutually exclusive and mostly resulted in predicted loss of function. Patients with low cohesin gene expression showed similar expression signatures as those with somatic cohesin mutations. Cross-sectional deep-sequencing analysis for clonal hierarchy demonstrated STAG2, SMC3, and RAD21 mutations to be ancestral in 18%, 18%, and 47% of cases, respectively, and each expanded to clonal dominance concordant with disease transformation. Cohesin mutations were significantly associated with RUNX1, Ras-family oncogenes, and BCOR and ASXL1 mutations and were most prevalent in high-risk MDS and secondary AML. Cohesin defects were associated with poor overall survival (27.2 vs 40 months; P = .023), especially in STAG2 mutant MDS patients surviving >12 months (median survival 35 vs 50 months; P = .017).

Solomon DA, Kim JS, Waldman T
Cohesin gene mutations in tumorigenesis: from discovery to clinical significance.
BMB Rep. 2014; 47(6):299-310 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations.

Quintin J, Le Péron C, Palierne G, et al.
Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities.
Mol Cell Biol. 2014; 34(13):2418-36 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.

Sundaram K, Sambandam Y, Tsuruga E, et al.
1α,25-dihydroxyvitamin D3 modulates CYP2R1 gene expression in human oral squamous cell carcinoma tumor cells.
Horm Cancer. 2014; 5(2):90-7 [PubMed] Related Publications
Oral squamous cell carcinomas (OSCC) are the most common malignant neoplasms associated with mucosal surfaces of the oral cavity and oropharynx. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is implicated as an anticancer agent. Cytochrome P450 2R1 (CYP2R1) is a microsomal vitamin D 25-hydroxylase which plays an important role in converting dietary vitamin D to active metabolite, 25-(OH)D3. We identified high levels of CYP2R1 expression using tissue microarray of human OSCC tumor specimens compared to normal adjacent tissue. Therefore, we hypothesize that 1,25(OH)2D3 regulates CYP2R1 gene expression in OSCC tumor cells. Interestingly, real-time RT-PCR analysis of total RNA isolated from OSCC cells (SCC1, SCC11B, and SCC14a) treated with 1,25(OH)2D3 showed a significant increase in CYP2R1 and vitamin D receptor (VDR) mRNA expression. Also, Western blot analysis demonstrated that 1,25(OH)2D3 treatment time-dependently increased CYP2R1 expression in these cells. 1,25(OH)2D3 stimulation of OSCC cells transiently transfected with the hCYP2R1 promoter (-2 kb)-luciferase reporter plasmid demonstrated a 4.3-fold increase in promoter activity. In addition, 1,25(OH)2D3 significantly increased c-Fos, p-c-Jun expression, and c-Jun N-terminal kinase (JNK) activity in these cells. The JNK inhibitor suppresses 1,25(OH)2D3, inducing CYP2R1 mRNA expression and gene promoter activity in OSCC cells. Furthermore, JNK inhibitor significantly decreased 1,25(OH)2D3 inhibition of OSCC tumor cell proliferation. Taken together, our results suggest that AP-1 is a downstream effector of 1,25(OH)2D3 signaling to modulate CYP2R1 gene expression in OSCC tumor cells, and vitamin D analogs could be potential therapeutic agents to control OSCC tumor progression.

Thol F, Bollin R, Gehlhaar M, et al.
Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications.
Blood. 2014; 123(6):914-20 [PubMed] Related Publications
Mutations in the cohesin complex are novel, genetic lesions in acute myeloid leukemia (AML) that are not well characterized. In this study, we analyzed the frequency, clinical, and prognostic implications of mutations in STAG1, STAG2, SMC1A, SMC3, and RAD21, all members of the cohesin complex, in a cohort of 389 uniformly treated AML patients by next generation sequencing. We identified a total of 23 patients (5.9%) with somatic mutations in 1 of the cohesin genes. All gene mutations were mutually exclusive, and STAG1 (1.8%), STAG2 (1.3%), and SMC3 (1.3%) were most frequently mutated. Patients with any cohesin complex mutation had lower BAALC expression levels. We found a strong association between mutations affecting the cohesin complex and NPM1. Mutated allele frequencies were similar between NPM1 and cohesin gene mutations. Overall survival (OS), relapse-free survival (RFS), and complete remission rates (CR) were not influenced by the presence of cohesin mutations (OS: hazard ratio [HR] 0.98; 95% confidence interval [CI], 0.56-1.72 [P = .94]; RFS: HR 0.7; 95% CI, 0.36-1.38 [P = .3]; CR: mutated 83% vs wild-type 76% [P = .45]). The cohesin complex presents a novel pathway affected by recurrent mutations in AML. This study is registered at www.clinicaltrials.gov as #NCT00209833.

Zhou Y, Kurukuti S, Saffrey P, et al.
Chromatin looping defines expression of TAL1, its flanking genes, and regulation in T-ALL.
Blood. 2013; 122(26):4199-209 [PubMed] Related Publications
TAL1 is an important regulator of hematopoiesis and its expression is tightly controlled despite complexities in its genomic organization. It is frequently misregulated in T-cell acute lymphoblastic leukemia (T-ALL), often due to deletions between TAL1 and the neighboring STIL gene. To better understand the events that lead to TAL1 expression in hematopoiesis and in T-ALL, we studied looping interactions at the TAL1 locus. In TAL1-expressing erythroid cells, the locus adopts a looping "hub" which brings into close physical proximity all known TAL1 cis-regulatory elements including CTCF-bound insulators. Loss of GATA1 results in disassembly of the hub and loss of CTCF/RAD21 from one of its insulators. Genes flanking TAL1 are partly dependent on hub integrity for their transcriptional regulation. We identified looping patterns unique to TAL1-expressing T-ALL cells, and, intriguingly, loops occurring between the TAL1 and STIL genes at the common TAL1/STIL breakpoints found in T-ALL. These findings redefine how TAL1 and neighboring genes communicate within the nucleus, and indicate that looping facilitates both normal and aberrant TAL1 expression and may predispose to structural rearrangements in T-ALL. We also propose that GATA1-dependent looping mechanisms may facilitate the conservation of TAL1 regulation despite cis-regulatory remodeling during vertebrate evolution.

Mahmood SF, Gruel N, Chapeaublanc E, et al.
A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation.
Carcinogenesis. 2014; 35(3):670-82 [PubMed] Related Publications
RNA interference has boosted the field of functional genomics, by making it possible to carry out 'loss-of-function' screens in cultured cells. Here, we performed a small interfering RNA screening, in three breast cancer cell lines, for 101 candidate driver genes overexpressed in amplified breast tumors and belonging to eight amplicons on chromosomes 8q and 17q, investigating their role in cell survival/proliferation. This screening identified eight driver genes that were amplified, overexpressed and critical for breast tumor cell proliferation or survival. They included the well-described oncogenic driver genes for the 17q12 amplicon, ERBB2 and GRB7. Four of six other candidate driver genes-RAD21 and EIF3H, both on chromosome 8q23, CHRAC1 on chromosome 8q24.3 and TANC2 on chromosome 17q23-were confirmed to be driver genes regulating the proliferation/survival of clonogenic breast cancer cells presenting an amplification of the corresponding region. Indeed, knockdown of the expression of these genes decreased cell viability, through both cell cycle arrest and apoptosis induction, and inhibited the formation of colonies in anchorage-independent conditions, in soft agar. Strategies for inhibiting the expression of these genes or the function of the proteins they encode are therefore of potential value for the treatment of breast cancers presenting amplifications of the corresponding genomic region.

Ma Z, Lin M, Li K, et al.
Knocking down SMC1A inhibits growth and leads to G2/M arrest in human glioma cells.
Int J Clin Exp Pathol. 2013; 6(5):862-9 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Cohesin, a multiunit complex of SMC1A, SMC3 and Rad21, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. It has been reported that SMC1A is mutated in some cancer types, leading to genomic instability and abnormal cell growth. In this study, we investigated the role of SMC1A in human glioma. We found that SMC1A was expressed at abnormally high levels in human glioma tissue and in cultured U251 glioma cells. Knocking down SMC1A expression in U251 cells with SMC1A-targeted interfering RNAs inhibited cell growth and induced G2/M cell cycle arrest. Furthermore, expression of the cell cycle associated gene CCNB1IP1 was dramatically increased, whereas expression of Cyclin B1 was decreased in SMC1A-deficienct U251 cells. These results suggest that SMC1A upregulation is involved in the pathogenesis of glioma.

McEwan MV, Eccles MR, Horsfield JA
Cohesin is required for activation of MYC by estradiol.
PLoS One. 2012; 7(11):e49160 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Cohesin is best known as a multi-subunit protein complex that holds together replicated sister chromatids from S phase until G2. Cohesin also has an important role in the regulation of gene expression. We previously demonstrated that the cohesin complex positively regulates expression of the oncogene MYC. Cell proliferation driven by MYC contributes to many cancers, including breast cancer. The MYC oncogene is estrogen-responsive and a transcriptional target of estrogen receptor alpha (ERα). Estrogen-induced cohesin binding sites coincide with ERα binding at the MYC locus, raising the possibility that cohesin and ERα combine actions to regulate MYC transcription. The objective of this study was to investigate a putative role for cohesin in estrogen induction of MYC expression. We found that siRNA-targeted depletion of a cohesin subunit, RAD21, decreased MYC expression in ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231) breast cancer cell lines. In addition, RAD21 depletion blocked estradiol-mediated activation of MYC in ER-positive cell lines, and decreased ERα binding to estrogen response elements (EREs) upstream of MYC, without affecting total ERα levels. Treatment of MCF7 cells with estradiol caused enrichment of RAD21 binding at upstream enhancers and at the P2 promoter of MYC. Enriched binding at all sites, except the P2 promoter, was dependent on ERα. Since RAD21 depletion did not affect transcription driven by an exogenous reporter construct containing a naked ERE, chromatin-based mechanisms are likely to be involved in cohesin-dependent MYC transcription. This study demonstrates that ERα activation of MYC can be modulated by cohesin. Together, these results demonstrate a novel role for cohesin in estrogen-mediated regulation of MYC and the first evidence that cohesin plays a role in ERα binding.

Deng Z, Wang Z, Stong N, et al.
A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection.
EMBO J. 2012; 31(21):4165-78 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
The contribution of human subtelomeric DNA and chromatin organization to telomere integrity and chromosome end protection is not yet understood in molecular detail. Here, we show by ChIP-Seq that most human subtelomeres contain a CTCF- and cohesin-binding site within ∼1-2 kb of the TTAGGG repeat tract and adjacent to a CpG-islands implicated in TERRA transcription control. ChIP-Seq also revealed that RNA polymerase II (RNAPII) was enriched at sites adjacent to the CTCF sites and extending towards the telomere repeat tracts. Mutation of CTCF-binding sites in plasmid-borne promoters reduced transcriptional activity in an orientation-dependent manner. Depletion of CTCF by shRNA led to a decrease in TERRA transcription, and a loss of cohesin and RNAPII binding to the subtelomeres. Depletion of either CTCF or cohesin subunit Rad21 caused telomere-induced DNA damage foci (TIF) formation, and destabilized TRF1 and TRF2 binding to the TTAGGG proximal subtelomere DNA. These findings indicate that CTCF and cohesin are integral components of most human subtelomeres, and important for the regulation of TERRA transcription and telomere end protection.

Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, et al.
Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing.
Blood. 2012; 120(18):e83-92 [PubMed] Related Publications
Acute myeloid leukemia (AML) is characterized by molecular heterogeneity. As commonly altered genomic regions point to candidate genes involved in leukemogenesis, we used microarray-based comparative genomic hybridization and single nucleotide polymorphism profiling data of 391 AML cases to further narrow down genomic regions of interest. Targeted resequencing of 1000 genes located in the critical regions was performed in a representative cohort of 50 AML samples comprising all major cytogenetic subgroups. We identified 120 missense/nonsense mutations as well as 60 insertions/deletions affecting 73 different genes (∼ 3.6 tumor-specific aberrations/AML). While most of the newly identified alterations were nonrecurrent, we observed an enrichment of mutations affecting genes involved in epigenetic regulation including known candidates like TET2, TET1, DNMT3A, and DNMT1, as well as mutations in the histone methyltransferases NSD1, EZH2, and MLL3. Furthermore, we found mutations in the splicing factor SFPQ and in the nonclassic regulators of mRNA processing CTCF and RAD21. These splicing-related mutations affected 10% of AML patients in a mutually exclusive manner. In conclusion, we could identify a large number of alterations in genes involved in aberrant splicing and epigenetic regulation in genomic regions commonly altered in AML, highlighting their important role in the molecular pathogenesis of AML.

Cuadrado A, Remeseiro S, Gómez-López G, et al.
The specific contributions of cohesin-SA1 to cohesion and gene expression: implications for cancer and development.
Cell Cycle. 2012; 11(12):2233-8 [PubMed] Related Publications
Besides its well-established role in sister chromatid cohesion, cohesin has recently emerged as major player in the organization of interphase chromatin. Such important function is related to its ability to entrap two DNA segments also in cis, thereby facilitating long-range DNA looping which is crucial for transcriptional regulation, organization of replication factories and V(D)J recombination. Vertebrate somatic cells have two different versions of cohesin, containing Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity has been largely ignored. We recently generated a knockout mouse model for the gene encoding SA1, and found that this protein is essential to complete embryonic development. Cohesin-SA1 mediates cohesion at telomeres, which is required for their replication. Telomere defects in SA1- deficient cells provoke chromosome segregation errors resulting in aneuploidy despite robust centromere cohesion. This aneuploidy could explain why heterozygous animals have an earlier onset of tumorigenesis. In addition, the genome-wide distribution of cohesin changes dramatically in the absence of SA1, and the complex shows reduced accumulation at promoters and CTCF sites. As a consequence, gene expression is altered, leading to downregulation of biological processes related to a developmental disorder linked to cohesin function, the Cornelia de Lange Syndrome (CdLS). These results point out a prominent role of cohesin-SA1 in transcriptional regulation, with clear implications in the etiology of CdLS.

Yan M, Xu H, Waddell N, et al.
Enhanced RAD21 cohesin expression confers poor prognosis in BRCA2 and BRCAX, but not BRCA1 familial breast cancers.
Breast Cancer Res. 2012; 14(2):R69 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
INTRODUCTION: The RAD21 gene encodes a key component of the cohesin complex, which is essential for chromosome segregation, and together with BRCA1 and BRCA2, for high-fidelity DNA repair by homologous recombination. Although its expression correlates with early relapse and treatment resistance in sporadic breast cancers, it is unclear whether familial breast cancers behave in a similar manner.
METHODS: We performed an immunohistochemical analysis of RAD21 expression in a cohort of 94 familial breast cancers (28 BRCA1, 27 BRCA2, and 39 BRCAX) and correlated these data with genotype and clinicopathologic parameters, including survival. In these cancers, we also correlated RAD21 expression with genomic expression profiling and gene copy-number changes and miRNAs predicted to target RAD21.
RESULTS: No significant differences in nuclear RAD21 expression were observed between BRCA1 (12 (43%) of 28), BRCA2 (12 (44%) of 27), and BRCAX cancers (12 (33%) of 39 (p = 0.598). No correlation was found between RAD21 expression and grade, size, or lymph node, ER, or HER2 status (all P > 0.05). As for sporadic breast cancers, RAD21 expression correlated with shorter survival in grade 3 (P = 0.009) and but not in grade 1 (P = 0.065) or 2 cancers (P = 0.090). Expression of RAD21 correlated with poorer survival in patients treated with chemotherapy (P = 0.036) but not with hormonal therapy (P = 0.881). RAD21 expression correlated with shorter survival in BRCA2 (P = 0.006) and BRCAX (P = 0.008), but not BRCA1 cancers (P = 0.713). Changes in RAD21 mRNA were reflected by genomic changes in DNA copy number (P < 0.001) and by RAD21 protein expression, as assessed with immunohistochemistry (P = 0.047). High RAD21 expression was associated with genomic instability, as assessed by the total number of base pairs affected by genomic change (P = 0.048). Of 15 miRNAs predicted to target RAD21, mir-299-5p inversely correlated with RAD21 expression (P = 0.002).
CONCLUSIONS: Potential use of RAD21 as a predictive and prognostic marker in familial breast cancers is hence feasible and may therefore take into account the patient's BRCA1/2 mutation status.

Pang LY, Bergkvist GT, Cervantes-Arias A, et al.
Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition.
Vet J. 2012; 193(1):46-52 [PubMed] Related Publications
Feline oral squamous cell carcinoma is considered a highly invasive cancer that carries a high level of morbidity. Despite aggressive surgery, patients often succumb to disease, the tumour having inherent insensitivity to radiation and chemotherapy. In this study we sought to identify cells within the feline SCC1 line that have stem cell properties, including inherent resistance mechanisms. When feline cells were subjected to harsh growth conditions, they formed sphere colonies consistent with a stem cell phenotype. Utilising CD133, we were able to identify a small fraction of cells within the population that had enhanced sphere-forming ability, reduced sensitivity to radiation and conventional chemotherapy and demonstrated resistance to the EGFR-targeting drug, gefitinib. In addition, long-term culture of feline SSC1 cells in gefitinib caused a change in cell morphology and gene expression reminiscent of an epithelial to mesenchymal transition. Taken together, these results suggest that feline SCC may be driven by small subset of cancer stem cells.

Sapkota Y, Robson P, Lai R, et al.
A two-stage association study identifies methyl-CpG-binding domain protein 2 gene polymorphisms as candidates for breast cancer susceptibility.
Eur J Hum Genet. 2012; 20(6):682-9 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Genome-wide association studies for breast cancer have identified over 40 single-nucleotide polymorphisms (SNPs), a subset of which remains statistically significant after genome-wide correction. Improved strategies for mining of genome-wide association data have been suggested to address heritable component of genetic risk in breast cancer. In this study, we attempted a two-stage association design using markers from a genome-wide study (stage 1, Affymetrix Human SNP 6.0 array, cases=302, controls=321). We restricted our analysis to DNA repair/modifications/metabolism pathway related gene polymorphisms for their obvious role in carcinogenesis in general and for their known protein-protein interactions vis-à-vis, potential epistatic effects. We selected 22 SNPs based on linkage disequilibrium patterns and high statistical significance. Genotyping assays in an independent replication study of 1178 cases and 1314 controls were attempted using Sequenom iPLEX Gold platform (stage 2). Six SNPs (rs8094493, rs4041245, rs7614, rs13250873, rs1556459 and rs2297381) showed consistent and statistically significant associations with breast cancer risk in both stages, with allelic odds ratios (and P-values) of 0.85 (0.0021), 0.86 (0.0026), 0.86 (0.0041), 1.17 (0.0043), 1.20 (0.0103) and 1.13 (0.0154), respectively, in combined analysis (N=3115). Of these, three polymorphisms were located in methyl-CpG-binding domain protein 2 gene regions and were in strong linkage disequilibrium. The remaining three SNPs were in proximity to RAD21 homolog (S. pombe), O-6-methylguanine-DNA methyltransferase and RNA polymerase II-associated protein 1. The identified markers may be relevant to breast cancer susceptibility in populations if these findings are confirmed in independent cohorts.

Yu L, Guo W, Zhao S, et al.
Knockdown of Mad2 induces osteosarcoma cell apoptosis-involved Rad21 cleavage.
J Orthop Sci. 2011; 16(6):814-20 [PubMed] Related Publications
BACKGROUND: Besides Mad2's role in carcinogenesis, recent study has shown that it is essential in cell survival. Here we found that knockdown of Mad2 causes osteosarcoma cell death through apoptosis, with the apoptotic signal resulting from Rad21 cleavage.
METHODS: U2OS and MG63 cells were divided into three groups: the Mad2 siRNA group, mock group and normal control group; the Mad2 siRNA group and mock group are transfected with Mad2 shRNA plasmid and mock plasmid, respectively. G418 was used to increase the transfection efficacy, which was evaluated by GFP fluorescence. Quantitative PCR and Western blotting analyses were used to detect the transcription and expression of Mad2, Rad21 and caspase-3, respectively. Flow cytometry assay using PE-labeled Annexin-V and PI, TUNEL assay and Hoechst 33258 staining were used to evaluate cell apoptosis.
RESULTS: We successfully achieved knockdown of Mad2 expression in cancer cells using RNA interference. We observed obvious apoptosis in the Mad2 siRNA group compared with the Mock and control group. We found that the apoptosis induced by Mad2 knockdown correlated with Rad21 cleavage.
CONCLUSION: These results confirmed that knockdown of Mad2 causes osteosarcoma cell death through apoptosis and provides evidence that the apoptotic signal resulted from Rad21 cleavage. This study suggested that Mad2 has potential to be a novel target for cancer therapy.

Quan Q, Yang M, Gao H, et al.
Imaging tumor endothelial marker 8 using an 18F-labeled peptide.
Eur J Nucl Med Mol Imaging. 2011; 38(10):1806-15 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
PURPOSE: Tumor endothelial marker 8 (TEM8) has been reported to be upregulated in both tumor cells and tumor-associated endothelial cells in several cancer types. TEM8 antagonists and TEM8-targeted delivery of toxins have been developed as effective cancer therapeutics. The ability to image TEM8 expression would be of use in evaluating TEM8-targeted cancer therapy.
METHODS: A 13-meric peptide, KYNDRLPLYISNP (QQM), identified from the small loop in domain IV of protective antigen of anthrax toxin was evaluated for TEM8 binding and labeled with 18F for small-animal PET imaging in both UM-SCC1 head-and-neck cancer and MDA-MB-435 melanoma models.
RESULTS: A modified ELISA showed that QQM peptide bound specifically to the extracellular vWA domain of TEM8 with an IC50 value of 304 nM. Coupling 4-nitrophenyl 2-(18)F-fluoropropionate with QQM gave almost quantitative yield and a high specific activity (79.2±7.4 TBq/mmol, n=5) of 18F-FP-QQM at the end of synthesis. 18F-FP-QQM showed predominantly renal clearance and had significantly higher accumulation in TEM8 high-expressing UM-SCC1 tumors (2.96±0.84 %ID/g at 1 h after injection) than TEM8 low-expressing MDA-MB-435 tumors (1.38±0.56 %ID/g at 1 h after injection).
CONCLUSION: QQM peptide bound specifically to the extracellular domain of TEM8. 18F-FP-QQM peptide tracer would be a promising lead compound for measuring TEM8 expression. Further efforts to improve the affinity and specificity of the tracer and to increase its metabolic stability are warranted.

Stevens KN, Wang X, Fredericksen Z, et al.
Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer.
Breast Cancer Res Treat. 2011; 129(2):617-22 [PubMed] Article available free on PMC after 10/06/2017 Related Publications
Mitotic regulatory pathways insure proper timing of mitotic entry, sister chromatid cohesion and separation, and cytokinesis. Disruption of this process results in inappropriate chromosome segregation and aneuploidy, and appears to contribute to cancer. Specifically, disregulation and somatic mutation of mitotic regulators has been observed in human cancers, and overexpression of mitotic regulators is common in aggressive and late stage tumors. However, the role of germline variation in mitotic pathways and risk of cancer is not well understood. We tested 1,084 haplotype-tagging and functional variants from 164 genes in mitotic regulatory pathways in 791 Caucasian women with breast cancer and 843 healthy controls for association with risk of overall and high grade breast cancer. Sixty-one single nucleotide polymorphisms (SNPs) from 40 genes were associated (P < 0.05) with risk of breast cancer in a log-additive model. In addition, 60 SNPs were associated (P < 0.05) with risk of high grade breast cancer. However, none of these associations were significant after Bonferroni correction for multiple testing. In gene-level analyses, CDC25C, SCC1/RAD21, TLK2, and SMC6L1 were associated (P < 0.05) with overall breast cancer risk, CDC6, CDC27, SUMO3, RASSF1, KIF2, and CDC14A were associated with high grade breast cancer risk, and EIF3S10 and CDC25A were associated with both. Further investigation in breast and other cancers are needed to understand the influence of inherited variation in mitotic genes on tumor grade and cancer risk.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAD21, Cancer Genetics Web: http://www.cancer-genetics.org/RAD21.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999