SMAD3

Gene Summary

Gene:SMAD3; SMAD family member 3
Aliases: LDS3, LDS1C, MADH3, JV15-2, HSPC193, HsT17436
Location:15q22.33
Summary:The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein functions as a transcriptional modulator activated by transforming growth factor-beta and is thought to play a role in the regulation of carcinogenesis. [provided by RefSeq, Apr 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:mothers against decapentaplegic homolog 3
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (116)
Pathways:What pathways are this gene/protein implicaed in?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Chromosome 15
  • Antineoplastic Agents
  • Cell Movement
  • Signal Transduction
  • Hepatocellular Carcinoma
  • Adenocarcinoma
  • Disease Progression
  • Promoter Regions
  • Lung Cancer
  • Down-Regulation
  • Western Blotting
  • Neoplasm Invasiveness
  • Gene Expression
  • Transforming Growth Factor beta Receptors
  • Apoptosis
  • Protein Binding
  • Neoplasm Proteins
  • Cancer Gene Expression Regulation
  • Transcription Factor AP-1
  • Gene Expression Regulation
  • Liver Cancer
  • Cell Proliferation
  • Mice, Inbred BALB C
  • Uterus
  • SMAD3
  • Zearalenone
  • Messenger RNA
  • Phosphorylation
  • Up-Regulation
  • Epithelial-Mesenchymal Transition
  • Breast Cancer
  • RTPCR
  • RNA Interference
  • Tumor Microenvironment
  • Gene Knockdown Techniques
  • Gene Expression Profiling
  • MicroRNAs
  • rab GTP-Binding Proteins
  • siRNA
  • Protein-Serine-Threonine Kinases
  • Neoplasm Metastasis
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SMAD3 (cancer-related)

Hao Y, Yang X, Zhang D, et al.
Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through Epithelial-Mesenchymal-Transition in lung cancer.
Gene. 2017; 608:1-12 [PubMed] Related Publications
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are crucial regulators of the Epithelial-Mesenchymal-Transition (EMT). TGF-β signaling is a major inducer of EMT and can facilitate lung cancer metastasis. However, the role of lncRNAs in this process remains largely unknown. Here, we have identified 291 lncRNAs which were differentially expressed in lung cancer tissues compared with adjacent normal tissues. Of these, the gene body or vicinity of 19 transcripts were also bound by SMAD3. The expression of LINC01186 was significantly decreased in A549 cells treated with TGF-β1. Furthermore, LINC01186 was stably down-regulated in lung cancer tissues compared with normal tissues in TCGA data sets and another published lung cancer data sets. The bioinformatics analysis suggested that LINC01186 was associated with TGF-β and might participate in EMT process. Moreover, knocking-down LINC01186 promoted cell migration and invasion, whereas, LINC01186 overexpression prevented cell metastasis. Importantly, LINC01186 expression was regulated by SMAD3. And LINC01186 affected several EMT markers expression. These findings suggest that LINC01186, a mediator of TGF-β signaling, can play a significant role in the regulation of EMT and lung cancer cell migration and invasion.

Zhou Q, Zheng X, Chen L, et al.
Smad2/3/4 Pathway Contributes to TGF-β-Induced MiRNA-181b Expression to Promote Gastric Cancer Metastasis by Targeting Timp3.
Cell Physiol Biochem. 2016; 39(2):453-66 [PubMed] Related Publications
BACKGROUND/AIMS: Transforming growth factor beta (TGF-β) plays a major role in tumorigenesis. MicroRNA-181b (miRNA-181b) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. This study aimed to confirm the relationship of miRNA-181b and the TGF-β-Smad2/3/4 pathway with the induction of the epithelial-to-mesenchymal transition (EMT) in gastric cancer.
METHODS: This study investigated the ability of TGF-β to induce migration by wound healing and transwell invasion assays in human gastric cancer cell lines. miRNA expression was altered using miRNA-181b mimic and inhibitor in the same system. Expression of miRNA-181b, the hypothetical target gene Timp3 and EMT-related markers were analyzed by real-time real-time quantitative RT-PCR. Immunoblotting was used to investigate the levels of phospho-Smad2 and Smad4. Dual-luciferase reporter assays were performed to confirm the direct binding of miRNA-181b to Timp3.
RESULTS: miRNA-181b was significantly upregulated in response to TGF-β treatment in gastric cancer cell lines. Overexpression of miR-181b mimic induced an in vitro EMT-like change to a phenotype similar to that following TGF-β treatment alone and was reversed by miRNA-181b inhibitor. Inhibition of TGF-β-Smad2/3 signaling with SD-208 significantly attenuated the upregulation of miRNA-181b. Knockdown of Smad4 in gastric cancer cells strongly attenuated the upregulation of miRNA-181b. Moreover, miR-181b was found to directly target the 3' untranslated region (3'UTR) of Timp3 mRNA affecting TGF-β-induced EMT.
CONCLUSIONS: Our results elucidate a novel mechanism through which the TGF-β pathway regulates the EMT of gastric cancer cells by increasing the levels of miRNA-181b to target Timp3 via the Smad2/3/4-dependent pathway. These findings provide insights into the cellular and environmental factors regulating EMT, which may guide future studies on therapeutic strategies targeting these cells.

Qu Z, Li D, Xu H, et al.
 CUL4B, NEDD4, and UGT1As involve in the TGF-β signalling in hepatocellular carcinoma.
Ann Hepatol. 2016 Jul-Aug; 15(4):568-76 [PubMed] Related Publications
UNLABELLED:  Introduction and Aim. TGF-β signalling is involved in pathogenesis and progress of hepatocellular carcinoma (HCC). This bioinformatics study consequently aims to determine the underlying molecular mechanism of TGF- β activation in HCC cells.
MATERIAL AND METHODS: Dataset GSE10393 was downloaded from Gene Expression Omnibus, including 2 Huh-7 (HCC cell line) samples treated by TGF- β (100 pmol/L, 48 h) and 2 untreated samples. Differentially expressed genes (DEGs) were screened using Limma package (false discovery rate < 0.05 and |log2 fold change| > 1.5), and then enrichment analyses of function, pathway, and disease were performed. In addition, protein-protein interaction (PPI) network was constructed based on the PPI data from multiple databases including INACT, MINT, BioGRID, UniProt, BIND, BindingDB, and SPIKE databases. Transcription factor (TF)-DEG pairs (Bonferroni adjusted p-value < 0.01) from ChEA database and DEG-DEG pairs were used to construct TF-DEG regulatory network. Furthermore, TF-pathway-DEG complex network was constructed by integrating DEG-DEG pairs, TF-DEG pairs, and DEG-pathway pairs.
RESULTS: Totally, 209 DEGs and 30 TFs were identified. The DEGs were significantly enriched in adhesion-related functions. PPI network indicted hub genes such as CUL4B and NEDD4. According to the TF-DEG regulatory network, the two hub genes were targeted by SMAD2, SMAD3, and HNF4A. Besides, the 11 pathways in TF-pathway-DEG network were mainly enriched by UGT1A family and CYP3A7, which were predicted to be regulated by SMAD2, SMAD3, SOX2, TP63, and HNF4A.
CONCLUSIONS: TGF- β might influence biological processes of HCC cells via SMAD2/SMAD3-NEDD4, HNF4A-CUL4B/NEDD4, SOX2/TP63/HNF4A-CYP3A7, and SMAD2/SMAD3/SOX2/TP63/HNF4A-UGT1As regulatory pathways.

Hui L, Wu H, Yang N, et al.
Identification of prognostic microRNA candidates for head and neck squamous cell carcinoma.
Oncol Rep. 2016; 35(6):3321-30 [PubMed] Related Publications
The aim of the present study was to uncover potential prognostic microRNA (miRNA) markers in head and neck squamous cell carcinoma (HNSCC). miRNA expression profile and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Survival analysis was conducted by Kaplan-Meier method. Then, candidate prognostic miRNAs were screened via Cox proportional hazards regression analysis. Furthermore, target genes of miRNAs were predicted, and their interactions and functions were then analyzed. A total of 15 miRNAs were discovered to be significantly related to overall survival. Among them, miR-1251, miR-618 and miR-328 with p<0.05 were potentially significant prognostic factors of HNSCC. In the protein-protein interaction (PPI) network, the target gene of miR-328, MAX, interacted with multiple genes. The target gene of miR-618, E2F1, interacted with genes such as MAX, SMAD3 and IGF1. Furthermore, the target genes of miR-618 (e.g. E2F1 and SMAD3), and the target genes of miR-328 (e.g. MAX) were significantly enriched in the functions of transcriptional regulation. The target gene of miR-1251, IGF1, was associated with functions such as signal transduction. The above miRNAs (miR-1251, miR-618 and miR-328) may be potential prognostic markers in HNSCC.

Kurimoto R, Iwasawa S, Ebata T, et al.
Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation.
Int J Oncol. 2016; 48(5):1825-36 [PubMed] Free Access to Full Article Related Publications
Epithelial-to-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by augmented invasion and metastasis, chemoresistance, and escape from host-immunity. This study sought to identify efficient methods for inducing EMT reversion, to evaluate alterations in chemosensitivity and immune-protectiveness, and to elucidate the underlying mechanisms. In this study, the human lung adenocarcinoma cell lines PC-9 and HCC-827, harboring an EGFR mutation, were treated with TGF-β and FGF-2 to induce EMT. The phenotypic alterations were evaluated by RT-PCR, fluorescent immunohistochemistry, cell-mobility, and flow cytometry. Chemosensitivity to gefitinib and cisplatin was evaluated using an MTT assay and apoptosis. Immune-protectiveness was evaluated by PD-L1 expression. A combination of TGF-β and FGF-2 efficiently induced EMT in both cell lines: through Smad3 pathway in PC-9, and through Smad3, MEK/Erk, and mTOR pathways in HCC-827. The mTOR inhibitor PP242, metformin, and DMSO reverted EMT to different extent and through different pathways, depending on the cell lines. EMT induction reduced the sensitivity to gefitinib in both cell lines and to cisplatin in HCC-827, and it increased PD-L1 expression in both cell lines. EMT reversion using each of the 3 agents partly restored chemosensitivity and suppressed PD-L1 expression. Thus, chemoresistance and increased PD-L1 expression caused by EMT can be successfully reverted by EMT-reverting agents.

Zhang W, Li Y
miR-148a downregulates the expression of transforming growth factor-β2 and SMAD2 in gastric cancer.
Int J Oncol. 2016; 48(5):1877-85 [PubMed] Free Access to Full Article Related Publications
The effects of miR-148a in regulating the expression of TGFβ2 and SMAD2 in MNNG-initiated gastric cancer rats and the mechanism of action in GC cells were determined. Effects of miR-148a on the proliferation, migration, and invasion of GC cell lines were demonstrated. We used Wistar rats, Balb/c nude mice, and GC cell lines. Rats were treated with MNNG to establish a GC rat model. Levels of miR-148a, TGFα, TGFβ2, SMAD2, SMAD3, and SMAD4 were tested in gastric tissues from different groups. In GC cell lines, we constructed and transfected a primary miR-148a plasmid to determine the expression patterns of TGFβ2, SMAD2, and SMAD4. A luciferase activity assay was used to monitor the effects of miR-148a on the TGFβ2- and SMAD2-3'UTRs. We identified nude mouse models bearing BGC-823-miR-148a or BGC-823-vector cells. Tumor volumes were detected, and TGFβ2, SMAD2 expression levels were determined in tumor tissues. The in vivo study demonstrated an increase in the mRNA and protein levels of TGFβ2, SMAD2, and SMAD4 in the MNNG-treated group compared with the control group. However, there were no differences in the mRNA and protein levels in either TGFα or SMAD3. The in vitro study demonstrated that overexpression of miR-148a reduced TGFβ2 and SMAD2 significantly in GC cells. The results of the luciferase activity assay showed that miR-148a could bind to the 3'UTRs of TGFβ2 and SMAD2 and inhibited their activity. Overexpression of miR-148a inhibited proliferation, migration, and invasion significantly in GC cell lines. In vivo, tumor volume of BGC-823-miR-148a was smaller than that of BGC-823-vector. Overall, miR-148a inhibited the proliferation, migration, invasion, and expression of TGFβ2 and SMAD2 in GC cells. It was concluded that miR-148a might play an important role in gastric cancer, and is a potential candidate for GC treatment.

Oh E, Kim JY, Cho Y, et al.
Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis.
Biochim Biophys Acta. 2016; 1863(6 Pt A):1071-81 [PubMed] Related Publications
The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications.

Chang H, Liu Y, Xue M, et al.
Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition.
Nucleic Acids Res. 2016; 44(6):2514-27 [PubMed] Free Access to Full Article Related Publications
Epithelial-to-mesenchymal transition (EMT) is a complex multistep process in which phenotype switches are mediated by a network of transcription factors (TFs). Systematic characterization of all dynamic TFs controlling EMT state transitions, especially for the intermediate partial-EMT state, represents a highly relevant yet largely unexplored task. Here, we performed a computational analysis that integrated time-course EMT transcriptomic data with public cistromic data and identified three synergistic master TFs (ETS2, HNF4A and JUNB) that regulate the transition through the partial-EMT state. Overexpression of these regulators predicted a poor clinical outcome, and their elimination readily abolished TGF-β-induced EMT. Importantly, these factors utilized a clique motif, physically interact and their cumulative binding generally characterized EMT-associated genes. Furthermore, analyses of H3K27ac ChIP-seq data revealed that ETS2, HNF4A and JUNB are associated with super-enhancers and the administration of BRD4 inhibitor readily abolished TGF-β-induced EMT. These findings have implications for systematic discovery of master EMT regulators and super-enhancers as novel targets for controlling metastasis.

Wahdan-Alaswad R, Harrell JC, Fan Z, et al.
Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer.
Cell Cycle. 2016; 15(8):1046-59 [PubMed] Free Access to Full Article Related Publications
Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis.

Genrich G, Kruppa M, Lenk L, et al.
The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1.
BMC Cancer. 2016; 16:155 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Nuclear factor E2 related factor-2 (Nrf2) is an oxidative stress inducible transcription factor being essential in regulating cell homeostasis. Thus, acute induction of Nrf2 in epithelial cells exposed to inflammation confers protection from oxidative cell damage and mutagenesis supporting an anti-tumorigenic role for Nrf2. However, pancreatic ductal adenocarcinoma (PDAC) is characterized by persistent Nrf2 activity conferring therapy resistance which points to a pro-tumorigenic role of Nrf2. A similar dichotomous role in tumorigenesis is described for the Transforming Growth Factor-beta 1 (TGF-β1). The present study therefore aimed at elucidating whether the switch of Nrf2 function towards a tumor promoting one relates to the modulation of TGF-β1 induced cell responses and whether this might occur early in PDAC development.
METHODS: In situ analysis comprised immunohistochemical stainings of activated (phosphorylated) Nrf2 and Ki67 in pancreatic tissues containing normal ducts and pancreatic intraepithelial neoplasia (PanINs). In vitro, Nrf2 levels in benign (H6c7-pBp), premalignant (H6c7-kras) and malignant (Colo357) pancreatic ductal epithelial cells were modulated by Nrf2 specific siRNA or Nrf2 overexpression. Then, the effect of Nrf2 alone and in combination with TGF-β1 on cell growth and survival was investigated by cell counting, Ki67 staining and apoptosis assays. The underlying cell signaling was investigated by western blotting. Statistical analysis was performed by Shapiro-Wilk test for normal distribution. Parametric data were analyzed by one-way ANOVA, while non-parametric data were analyzed by Kruskal-Wallis one-way ANOVA on ranks.
RESULTS: Significantly elevated expression of activated Nrf2 and Ki67 could be detected in PanINs but not in normal pancreatic ductal epithelium. While the effect of Nrf2 on basal cell growth of H6c7-pBp, H6c7-kras and Colo357 cells was minor, it clearly attenuated the growth inhibiting effects of TGF-β1 in all cell lines. This enhanced Nrf2-mediated cell survival was predominantly based on an enhanced proliferative activity. Accordingly, expression of p21 expression along with expression of phospho-p38 and phospho-Smad3 was diminished whereas Erk-phosphorylation was enhanced under these conditions.
CONCLUSIONS: Overall, our data demonstrate that Nrf2 being elevated in early precursor lesions counteracts the growth inhibiting function of TGF-β1 already in benign and premalignant pancreatic ductal epithelial cells. This could represent one fundamental mechanism underlying the functional switch of both- TGF-β1 and Nrf2 - which may manifest already in early stages of PDAC development.

Liu L, Liu X, Ren X, et al.
Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification.
Sci Rep. 2016; 6:21602 [PubMed] Free Access to Full Article Related Publications
The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.

Zhang Q, Chen X, Zhang X, et al.
Knockdown of TMEM14A expression by RNAi inhibits the proliferation and invasion of human ovarian cancer cells.
Biosci Rep. 2016; 36(1):e00298 [PubMed] Free Access to Full Article Related Publications
Transmembrane protein 14A (TMEM14A) is a member of TMEMs. Alterations in TMEMs expression have been identified in several types of cancer, but the expression and function of TMEM14A in ovarian cancer is still unclear. Here, analysis on the expression data of the Cancer Genome Atlas (TCGA) ovarian serous cystadenocarcinoma (OV) dataset demonstrated the overexpression of TMEM14A in ovarian cancer tissues compared with normal tissues, which was consistent with our real-time PCR analysis on ovarian cancer and normal tissues collected from 30 patients. In addition, TMEM14A knockdown in two ovarian cancer cell lines, A2780 and HO-8910, reduced cell proliferation, causes cell cycle arrest and suppressed cell invasion. Moreover, silencing of TMEM14A notably repressed G1/S cell cycle transition and cell invasion via down-regulating the expression of cell cycle related proteins (Cyclin D1, Cyclin E and PCNA) and metastasis-related proteins (MMP-2 and MMP-9), respectively. TMEM14A knockdown significantly reduced the phosphorylation status of Smad2 and Smad3, downstream effectors of TGF-β signalling. In summary, these results indicate that TMEM14A has a pro-tumorigenic effect in ovarian cancer cells, suggesting an important role of this protein in ovarian cancer oncogenesis and metastasis.

Wang X, Chen E, Tang M, et al.
The SMAD2/3 pathway is involved in hepaCAM-induced apoptosis by inhibiting the nuclear translocation of SMAD2/3 in bladder cancer cells.
Tumour Biol. 2016; 37(8):10731-43 [PubMed] Related Publications
The aim of this study was to explore the correlation between hepatocyte cell adhesion molecule (hepaCAM) and SMAD family member 2/3 (SMAD2/3) in bladder carcinoma, and the involvement of the SMAD2/3 pathway in hepaCAM-induced tumor apoptosis. Immunohistochemistry was used to measure hepaCAM and p-SMAD2/3 protein levels in bladder cancer tissues. Flow cytometry and Hoechst staining were used to study the effect of hepaCAM on cellular apoptosis. Western blot was employed to determine the expression of hepaCAM and SMAD2/3/caspase pathway molecules using a hepaCAM overexpression adenovirus, a caspase inhibitor (Z-VAD-FMK), and a SMAD2/3 activator (transforming growth factor (TGF)-β1), respectively. Translocation of p-SMAD2/3 was measured by immunofluorescence and western blot. HepaCAM proteins were significantly decreased (P < 0.05), while p-SMAD2/3 proteins were remarkably increased (P < 0.05) in bladder carcinoma compared to adjacent tissues. However, the low hepaCAM and high p-SMAD2/3 were not statistically associated with clinicopathological characteristics of the patients. A negative linear correlation between hepaCAM and p-SMAD2/3 was observed according to Pearson analysis (r = -0.712/-0.724, P = 0.008/0.011). Overexpression of hepaCAM activated caspase 3/8/9 and downregulated poly-ADP ribose polymerase (PARP) and p-SMAD2/3. Treatment of bladder cancer cells with Z-VAD-FMK + hepaCAM significantly downregulated procaspase 3/8/9 and PARP and induced cellular apoptosis, compared with that using Z-VAD-FMK alone. Similarly, combined treatment of TGF-β1 + hepaCAM significantly downregulated p-SMAD2/3, procaspase 3/8/9, and PARP and induced apoptosis of bladder cancer cells, compared with TGF-β1 alone. Overexpression of hepaCAM prevented the p-SMAD2/3 translocation from the cytoplasm to the nucleus in bladder cancer cells BIU-87 and T24. Our findings uncover that the p-SMAD2/3 pathway is critical for hepaCAM-induced cancer cell apoptosis and provide valuable insights for current and future Ad-hepaCAM and p-SMAD2/3 clinical trials.

Maeng YS, Lee R, Lee B, et al.
Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells.
Sci Rep. 2016; 6:20739 [PubMed] Free Access to Full Article Related Publications
Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors.

Choi YJ, Baek GY, Park HR, et al.
Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.
PLoS One. 2016; 11(1):e0147343 [PubMed] Free Access to Full Article Related Publications
The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines.

Wang H, Qiu T, Shi J, et al.
Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer.
Mol Med Rep. 2016; 13(3):2110-6 [PubMed] Free Access to Full Article Related Publications
The present study aimed to investigate the molecular mechanisms underlying non‑syndromic cleft lip, with or without cleft palate (NSCL/P), and the association between this disease and cancer. The GSE42589 data set was downloaded from the Gene Expression Omnibus database, and contained seven dental pulp stem cell samples from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and construction of a pathway interaction network. Subsequently, cancer genes were obtained from six cancer databases, and the cancer‑associated protein‑protein interaction network for the DEGs was visualized using Cytoscape. In total, 452 upregulated and 1,288 downregulated DEGs were screened. The upregulated DEGs were significantly enriched in the arachidonic acid metabolism pathway, including PTGDS, CYP4F2 and PLA2G16; and transforming growth factor (TGF)‑β signaling pathway, including SMAD3 and TGFB2. The downregulated DEGs were distinctly involved in the pathways of DNA replication, including MCM2 and POLA1; cell cycle, including CDK1 and STAG1; and viral carcinogenesis, including PIK3CA and HIST1H2BF. Furthermore, the pathways of cell cycle and viral carcinogenesis, with higher degrees of interaction were found to interact with other pathways, including DNA replication, transcriptional misregulation in cancer, and the TGF‑β signaling pathway. Additionally, TP53, CDK1, SMAD3, PIK3R1 and CASP3, with higher degrees, interacted with the cancer genes. In conclusion, the DEGs for NSCL/P were implicated predominantly in the TGF‑β signaling pathway, the cell cycle and in viral carcinogenesis. The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were found to be associated, not only with NSCL/P, but also with cancer. These results may contribute to a better understanding of the molecular mechanisms of NSCL/P.

Chen J, Yao ZX, Chen JS, et al.
TGF-β/β2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome.
J Clin Invest. 2016; 126(2):527-42 [PubMed] Free Access to Full Article Related Publications
Beckwith-Wiedemann syndrome (BWS) is a human stem cell disorder, and individuals with this disease have a substantially increased risk (~800-fold) of developing tumors. Epigenetic silencing of β2-spectrin (β2SP, encoded by SPTBN1), a SMAD adaptor for TGF-β signaling, is causally associated with BWS; however, a role of TGF-β deficiency in BWS-associated neoplastic transformation is unexplored. Here, we have reported that double-heterozygous Sptbn1+/- Smad3+/- mice, which have defective TGF-β signaling, develop multiple tumors that are phenotypically similar to those of BWS patients. Moreover, tumorigenesis-associated genes IGF2 and telomerase reverse transcriptase (TERT) were overexpressed in fibroblasts from BWS patients and TGF-β-defective mice. We further determined that chromatin insulator CCCTC-binding factor (CTCF) is TGF-β inducible and facilitates TGF-β-mediated repression of TERT transcription via interactions with β2SP and SMAD3. This regulation was abrogated in TGF-β-defective mice and BWS, resulting in TERT overexpression. Imprinting of the IGF2/H19 locus and the CDKN1C/KCNQ1 locus on chromosome 11p15.5 is mediated by CTCF, and this regulation is lost in BWS, leading to aberrant overexpression of growth-promoting genes. Therefore, we propose that loss of CTCF-dependent imprinting of tumor-promoting genes, such as IGF2 and TERT, results from a defective TGF-β pathway and is responsible at least in part for BWS-associated tumorigenesis as well as sporadic human cancers that are frequently associated with SPTBN1 and SMAD3 mutations.

Ma J, Malladi S, Beck AH
Systematic Analysis of Sex-Linked Molecular Alterations and Therapies in Cancer.
Sci Rep. 2016; 6:19119 [PubMed] Free Access to Full Article Related Publications
Though patient sex influences response to cancer treatments, little is known of the molecular causes, and cancer therapies are generally given irrespective of patient sex. We assessed transcriptomic differences in tumors from men and women spanning 17 cancer types, and we assessed differential expression between tumor and normal samples stratified by sex across 7 cancers. We used the LincsCloud platform to perform Connectivity Map analyses to link transcriptomic signatures identified in male and female tumors with chemical and genetic perturbagens, and we performed permutation testing to identify perturbagens that showed significantly differential connectivity with male and female tumors. Our analyses predicted that females are sensitive and males are resistant to tamoxifen treatment of lung adenocarcinoma, a finding which is consistent with known male-female differences in lung cancer. We made several novel predictions, including that CDK1 and PTPN1 knockdown would be more effective in males with hepatocellular carcinoma, and SMAD3 and HSPA4 knockdown would be more effective in females with head and neck squamous cell carcinoma. Our results provide a new resource for researchers studying male-female biological and treatment response differences in human cancer. The complete results of our analyses are provided at the website accompanying this manuscript (http://becklab.github.io/SexLinked).

Kibel AS, Ahn J, Isikbay M, et al.
Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma.
Prostate. 2016; 76(5):479-90 [PubMed] Related Publications
BACKGROUND: Because a significant number of patients with prostate cancer (PCa) are diagnosed with disease unlikely to cause harm, genetic markers associated with clinically aggressive PCa have potential clinical utility. Since cell cycle checkpoint dysregulation is crucial for the development and progression of cancer, we tested the hypothesis that common germ-line variants within cell cycle genes were associated with aggressive PCa.
METHODS: Via a two-stage design, 364 common sequence variants in 88 genes were tested. The initial stage consisted of 258 aggressive PCa patients and 442 controls, and the second stage added 384 aggressive PCa Patients and 463 controls. European-American and African-American samples were analyzed separately. In the first stage, SNPs were typed by Illumina Goldengate assay while in the second stage SNPs were typed by Pyrosequencing assays. Genotype frequencies between cases and controls were compared using logistical regression analysis with additive, dominant and recessive models.
RESULTS: Eleven variants within 10 genes (CCNC, CCND3, CCNG1, CCNT2, CDK6, MDM2, SKP2, WEE1, YWHAB, YWHAH) in the European-American population and nine variants in 7 genes (CCNG1, CDK2, CDK5, MDM2, RB1, SMAD3, TERF2) in the African-American population were found to be associated with aggressive PCa using at least one model. Of particular interest, CCNC (rs3380812) was associated with risk in European-American cohorts from both institutions. CDK2 (rs1045435) and CDK5 (rs2069459) were associated with risk in the African-American cohorts from both institutions. Lastly, variants within MDM2 and CCNG1 were protective for aggressive PCa in both ethnic groups.
CONCLUSIONS: This study confirms that polymorphisms within cell cycle genes are associated with clinically aggressive PCa. Validation of these markers in additional populations is necessary, but these markers may help identify patients at risk for potentially lethal carcinoma.

Mauri G, Jachetti E, Comuzzi B, et al.
Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers.
Oncotarget. 2016; 7(4):3905-20 [PubMed] Free Access to Full Article Related Publications
Osteopontin (OPN) is a secreted glycoprotein, that belongs to the non-structural extracellular matrix (ECM), and its over expression in human prostate cancer has been associated with disease progression, androgen independence and metastatic ability. Nevertheless, the pathophysiology of OPN in prostate tumorigenesis has never been studied. We crossed TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice with OPN deficient (OPN-/-) mice and followed tumor onset and progression in these double mutants. Ultrasound examination detected the early onset of a rapidly growing, homogeneous and spherical tumor in about 60% of OPN-/- TRAMP mice. Such neoplasms seldom occurred in parental TRAMP mice otherwise prone to adenocarcinomas and were characterized for being androgen receptor negative, highly proliferative and endowed with neuroendocrine (NE) features. Gene expression profiling showed up-regulation of genes involved in tumor progression, cell cycle and neuronal differentiation in OPN-deficient versus wild type TRAMP tumors. Down-regulated genes included key genes of TGFa pathway, including SMAD3 and Filamin, which were confirmed at the protein level. Furthermore, NE genes and particularly those characterizing early prostatic lesions of OPN-deficient mice were found to correlate with those of human prostate NE tumours. These data underscore a novel role of OPN in the early stages of prostate cancer growth, protecting against the development of aggressive NE tumors.

Luo LL, Zhao L, Wang YX, et al.
Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma.
Sci Rep. 2015; 5:17336 [PubMed] Free Access to Full Article Related Publications
Insulin-like growth factor binding protein-3 (IGFBP-3) plays an essential role in radiosensitivity of esophageal squamous cell carcinoma (ESCC). However, the underlying mechanism is not completely understood. Here, we observed that IGFBP-3 had favorable impact on the tumorigenicity of ESCC cells in nude mice by using an in vivo imaging system (IVIS) to monitor tumor growth treated with ionizing radiation (IR). Downregulation of IGFBP-3 expression enhanced tumor growth, inhibited anti-proliferative and apoptotic activity and result in IR resistance in vivo. Cell cycle antibody array suggested that silencing IGFBP-3 promoted transition from G0/G1 to S phase, perhaps though influencing Smad3 dephosphorylation and retinoblastoma protein (Rb) phosphorylation. Downregulation of P21 and P27, and upregulation of p-P27 (phospho-Thr187), cyclin-dependent kinase 2 (CDK2), and cyclin E1 might contribute to the G0/G1 to S phase transition promoted by IGFBP-3. Our results suggest that Smad3-P27/P21-cyclin E1/CDK2-phosphorylated retinoblastoma protein pathways might be involved in this IGFBP-3 mediated radiosensitivity transition in ESCC.

Fu QH, Zhang Q, Zhang JY, et al.
LB-100 sensitizes hepatocellular carcinoma cells to the effects of sorafenib during hypoxia by activation of Smad3 phosphorylation.
Tumour Biol. 2016; 37(6):7277-86 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. The multikinase inhibitor sorafenib is the only clinically proved systematic treatment for HCC. However, few patients respond to sorafenib. Hypoxic microenvironments contribute to sorafenib resistance. LB-100, a serine/threonine protein phosphatase 2A (PP2A) inhibitor was previously found to be a chemosensitizer in HCC. Here, we tested whether LB-100 could sensitize HCC to the effects of sorafenib. Intriguingly, LB-100 enhanced the effects of sorafenib in HCC cells only during hypoxic environments. LB-100 dramatically increased intracellular p-Smad3 level, which was responsible for the effect of LB-100 as a sensitizer. LB-100 downregulated Bcl-2 expression and enhanced sorafenib-induced apoptosis in HCC cells. We further proved that PP2A mediated LB-100-induced p-Smad3 overexpression. In addition, p38 mitogen-activated protein kinase pathway was activated in hypoxic conditions, and enhanced p-Smad3-dependent Bcl-2 inhibition and consequent apoptosis. In conclusion, LB-100 sensitized HCC cells to sorafenib in hypoxic environments. This effect was mediated by inactivation of PP2A, resulting in enhanced level of p-Smad3. Increased p-Smad3 downregulated Bcl-2, causing increased apoptosis of HCC cells.

Wu YH, Ai X, Liu FY, et al.
c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma.
Mol Med Rep. 2016; 13(2):1345-52 [PubMed] Free Access to Full Article Related Publications
Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC.

Kim S, Lee J, Jeon M, et al.
Zerumbone suppresses the motility and tumorigenecity of triple negative breast cancer cells via the inhibition of TGF-β1 signaling pathway.
Oncotarget. 2016; 7(2):1544-58 [PubMed] Free Access to Full Article Related Publications
Aberrant transforming growth factor-β (TGF-β) plays an important role in the development of cancer such as tumor metastasis and invasion. TGF-β-responsive gene signature is highly activated in chemotherapy-treated triple negative breast cancer (TNBC). Here, we investigated the effect of zerumbone (ZER) on TGF-β1 signaling pathway and tumorigenecity of TNBC cells. Our results showed that the level of TGF-β1 mRNA expression and cell invasiveness were higher in TNBC cells than in non-TNBC cells. On the other hand, the cell motility of TNBC cells was completely suppressed by LY2109761, a novel selective TGF-β receptor type I/II (TβRI/II) dual inhibitor. In addition, FN and MMP-2 expression, which play an important role on cell motility in various cancer cells, were dose-dependently decreased by LY2109761. TGF-β1 increased FN, MMP-2 and MMP-9 expression in HCC1806 TNBC cells. TGF-β1-induced MMP-9 expression was decreased by both a MEK inhibitor, UO126, and a smad3 inhibitor, SIS3. Induction of FN and MMP-2 by TGF-β1 was just decreased by SIS3. Overexpression of smad3 significantly increased FN, MMP-2, and MMP-9 expression. Interestingly, ZER significantly suppressed TGF-β1-induced FN, MMP-2, and MMP-9 expression in HCC1806 cells. In addition, ZER completely decreased TGF-β1-induced the phosphorylation of smad3. Finally, we observed that ZER suppressed the tumorigenecity such as tumor volume, weight, Ki67 expression, and metastasis in TNBC cells xenograft models. Taken together, we demonstrated that ZER suppresses TGF-β1-induced FN, MMP-2, and MMP-9 expression through the inactivation of smad3 and inhibits the tumorigenecity of TNBC cells. Therefore, we suggest that ZER may act as a promising drug for treatment of TNBC.

Lee JI, Wright JH, Johnson MM, et al.
Role of Smad3 in platelet-derived growth factor-C-induced liver fibrosis.
Am J Physiol Cell Physiol. 2016; 310(6):C436-45 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
Chronic liver injury leads to fibrosis and cirrhosis. Cirrhosis, the end stage of chronic liver disease, is a leading cause of death worldwide and increases the risk of developing hepatocellular carcinoma. Currently, there is a lack of effective antifibrotic therapies to treat fibrosis and cirrhosis. Development of antifibrotic therapies requires an in-depth understanding of the cellular and molecular mechanisms involved in inflammation and fibrosis after hepatic injury. Two growth factor signaling pathways that regulate liver fibrosis are transforming growth factor-β (TGFβ) and platelet-derived growth factor (PDGF). However, their specific contributions to fibrogenesis are not well understood. Using a genetic model of liver fibrosis, we investigated whether the canonical TGFβ signaling pathway was necessary for fibrogenesis. PDGF-C transgenic (PDGF-C Tg) mice were intercrossed with mice that lack Smad3, and molecular and histological fibrosis was analyzed. PDGF-C Tg mice that also lacked Smad3 had less fibrosis and improved liver lobule architecture. Loss of Smad3 also reduced expression of collagen genes, which were induced by PDGF-C, but not the expression of genes frequently associated with hepatic stellate cell (HSC) activation. In vitro HSCs isolated from Smad3-null mice proliferated more slowly than cells from wild-type mice. Taken together, these findings indicate that PDGF-C activates TGFβ/Smad3 signaling pathways to regulate HSC proliferation, collagen production and ultimately fibrosis. In summary, these results suggest that inhibition of both PDGF and TGFβ signaling pathways may be required to effectively attenuate fibrogenesis in patients with chronic liver disease.

Wang W, Song XW, Bu XM, et al.
PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors.
Cell Oncol (Dordr). 2016; 39(2):129-37 [PubMed] Related Publications
PURPOSE: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported.
METHODS: The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays.
RESULTS: We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3.
CONCLUSIONS: Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.

Bartscht T, Rosien B, Rades D, et al.
Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action.
Mol Cancer. 2015; 14:199 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
BACKGROUND: We have previously shown in pancreatic ductal adenocarcinoma (PDAC) cells that the SRC inhibitors PP2 and PP1 effectively inhibited TGF-β1-mediated cellular responses by blocking the kinase function of the TGF-β type I receptor ALK5 rather than SRC. Here, we investigated the ability of the clinically utilised SRC/ABL inhibitor dasatinib to mimic the PP2/PP1 effect.
METHODS: The effect of dasatinib on TGF-β1-dependent Smad2/3 phosphorylation, general transcriptional activity, gene expression, cell motility, and the generation of tumour stem cells was measured in Panc-1 and Colo-357 cells using immunoblotting, reporter gene assays, RT-PCR, impedance-based real-time measurement of cell migration, and colony formation assays, respectively.
RESULTS: In both PDAC cell lines, dasatinib effectively blocked TGF-β1-induced Smad phosphorylation, activity of 3TPlux and pCAGA(12)-luc reporter genes, cell migration, and expression of individual TGF-β1 target genes associated with epithelial-mesenchymal transition and invasion. Moreover, dasatinib strongly interfered with the TGF-β1-induced generation of tumour stem cells as demonstrated by gene expression analysis and single cell colony formation. Dasatinib also inhibited the high constitutive migratory activity conferred on Panc-1 cells by ectopic expression of kinase-active ALK5.
CONCLUSIONS: Our data suggest that the clinical efficiency of dasatinib may in part be due to cross-inhibition of tumour-promoting TGF-β signalling. Dasatinib may be useful as a dual TGF-β/SRC inhibitor in experimental and clinical therapeutics to prevent metastatic spread in late-stage PDAC and other tumours.

Li P, Hu Y, Yi J, et al.
Identification of potential biomarkers to differentially diagnose solid pseudopapillary tumors and pancreatic malignancies via a gene regulatory network.
J Transl Med. 2015; 13:361 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
BACKGROUND: Solid pseudopapillary neoplasms (SPN) are pancreatic tumors with low malignant potential and good prognosis. However, differential diagnosis between SPN and pancreatic malignancies including pancreatic neuroendocrine tumor (PanNET) and ductal adenocarcinoma (PDAC) is difficult. This study tried to identify candidate biomarkers for the distinction between SPN and the two malignant pancreatic tumors by examining the gene regulatory network of SPN.
METHODS: The gene regulatory network for SPN was constructed by a co-expression model. Genes that have been reported to be correlated with SPN were used as the clues to hunt more SPN-related genes in the network according to a shortest path approach. By means of the K-nearest neighbor algorithm (KNN) classifier evaluated by the jackknife test, sets of genes to distinguish SPN and malignant pancreatic tumors were determined.
RESULTS: We took a new strategy to identify candidate biomarkers for differentiating SPN from the two malignant pancreatic tumors PanNET and PDAC by analyzing shortest paths among SPN-related genes in the gene regulatory network. 43 new SPN-relevant genes were discovered, among which, we found hsa-miR-194 and hsa-miR-7 along with 7 transcription factors (TFs) such as SOX11, SMAD3 and SOX4 etc. could correctly differentiate SPN from PanNET, while hsa-miR-204 and 4 TFs such as SOX9, TCF7 and PPARD etc. were demonstrated as the potential markers for SPN versus PDAC. 14 genes were demonstrated to serve as the candidate biomarkers for distinguishing SPN from PanNET and PDAC when considering them as malignant pancreatic tumors together.
CONCLUSION: This study provides new candidate genes related to SPN and the potential biomarkers to differentiate SPN from PanNET and PDAC, which may help to diagnose patients with SPN in clinical setting. Furthermore, candidate biomarkers such as SOX11 and hsa-miR-204 which could cause cell proliferation but inhibit invasion or metastasis may be of importance in understanding the molecular mechanism of pancreatic oncogenesis and could be possible therapeutic targets for malignant pancreatic tumors.

Takeda T, Banno K, Okawa R, et al.
ARID1A gene mutation in ovarian and endometrial cancers (Review).
Oncol Rep. 2016; 35(2):607-13 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
The AT-rich interacting domain‑containing protein 1A gene (ARID1A) encodes ARID1A, a member of the SWI/SNF chromatin remodeling complex. Mutation of ARID1A induces changes in expression of multiple genes (CDKN1A, SMAD3, MLH1 and PIK3IP1) via chromatin remodeling dysfunction, contributes to carcinogenesis, and has been shown to cause transformation of cells in association with the PI3K/AKT pathway. Information on ARID1A has emerged from comprehensive genome‑wide analyses with next‑generation sequencers. ARID1A mutations have been found in various types of cancer and occur at high frequency in endometriosis‑associated ovarian cancer, including clear cell adenocarcinoma and endometrioid adenocarcinoma, and also occur at endometrial cancer especially in endometrioid adenocarcinoma. It has also been suggested that ARID1A mutation occurs at the early stage of canceration from endometriosis to endometriosis‑associated carcinoma in ovarian cancer and also from atypical endometrial hyperplasia to endometrioid adenocarcinoma in endometrial cancer. Therefore, development of a screening method that can detect mutations of ARID1A and activation of the PI3K/AKT pathway might enable early diagnosis of endometriosis‑associated ovarian cancers and endometrial cancers. Important results may also emerge from a current clinical trial examining a multidrug regimen of temsirolimus, a small molecule inhibitor of the PI3K/AKT pathway, for treatment of advanced ovarian clear cell adenocarcinoma with ARID1A mutation and PI3K/AKT pathway activation. Also administration of sorafenib, a multikinase inhibitor, can inhibit cancer proliferation with PIK3CA mutation and resistance to mTOR inhibitors and GSK126, a molecular‑targeted drug can inhibit proliferation of ARID1A‑mutated ovarian clear cell adenocarcinoma cells by targeting and inhibiting EZH2. Further studies are needed to determine the mechanism of chromatin remodeling dysregulation initiated by ARID1A mutation, to develop methods for early diagnosis, to investigate new cancer therapy targeting ARID1A, and to examine the involvement of ARID1A mutations in development, survival and progression of cancer cells.

Chanda S, Nandi S, Chawla-Sarkar M
Rotavirus-induced miR-142-5p elicits proviral milieu by targeting non-canonical transforming growth factor beta signalling and apoptosis in cells.
Cell Microbiol. 2016; 18(5):733-47 [PubMed] Related Publications
MicroRNA (miRNA) expression is significantly influenced by viral infection, because of either host antiviral defences or proviral factors resulting in the modulation of viral propagation. This study was undertaken to identify and analyse the significance of cellular miRNAs during rotavirus (SA11 or KU) infection. Sixteen differentially regulated miRNAs were identified during rotavirus infection of which hsa-miR-142-5p was up-regulated and validated by quantitative polymerase chain reaction. Exogenous expression of miR-142-5p inhibitor resulted in a significant reduction of viral titer indicating proviral role of miR-142-5p. Functional studies of hsa-miR-142-5p identified its role in transforming growth factor beta (TGFβ) signalling as TGFβ receptor 2 and SMAD3 were degraded during both hsa-miR-142-5p overexpression and rotavirus infection. TGFβ is induced during rotavirus infection, which may promote apoptosis by activation of non-canonical pathways in HT29 cells. However, up-regulated miR-142-5p resulted in the inhibition of TGFβ-induced apoptosis suggesting its anti-apoptotic function. Rotavirus NSP5 was identified as a regulator of miR-142-5p expression. Concurrently, NSP5-HT29 cells showed inhibition of TGFβ-induced apoptosis and epithelial to mesenchymal transition by blocking non-canonical pathways. Overall, the study identified proviral function of hsa-miR-142-5p during rotavirus infection. In addition, modulation of TGFβ-induced non-canonical signalling in microsatellite stable colon cancer cells can be exploited for cancer therapeutics.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SMAD3, Cancer Genetics Web: http://www.cancer-genetics.org/SMAD3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999