Gene Summary

Gene:RAD51C; RAD51 paralog C
Aliases: FANCO, R51H3, BROVCA3, RAD51L2
Summary:This gene is a member of the RAD51 family. RAD51 family members are highly similar to bacterial RecA and Saccharomyces cerevisiae Rad51 and are known to be involved in the homologous recombination and repair of DNA. This protein can interact with other RAD51 paralogs and is reported to be important for Holliday junction resolution. Mutations in this gene are associated with Fanconi anemia-like syndrome. This gene is one of four localized to a region of chromosome 17q23 where amplification occurs frequently in breast tumors. Overexpression of the four genes during amplification has been observed and suggests a possible role in tumor progression. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DNA repair protein RAD51 homolog 3
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (19)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA Repair
  • Exons
  • Mutation
  • DNA Damage
  • Western Blotting
  • HeLa Cells
  • Rad51 Recombinase
  • Registries
  • Fanconi Anaemia
  • T-Box Domain Proteins
  • Ovarian Cancer
  • Base Sequence
  • Cancer Gene Expression Regulation
  • DNA Mutational Analysis
  • DNA-Binding Proteins
  • Drug Resistance
  • Gene Expression Profiling
  • BRCA1 Protein
  • High-Throughput Nucleotide Sequencing
  • Alleles
  • Genetic Testing
  • Case-Control Studies
  • Nuclear Proteins
  • Germ-Line Mutation
  • Sequence Homology
  • Missense Mutation
  • Platinum Compounds
  • BRCA2 Protein
  • BRCA1
  • Hereditary Breast and Ovarian Cancer Syndrome
  • Tumor Suppressor Proteins
  • Childhood Cancer
  • BRCA2
  • Subcellular Fractions
  • Genetic Predisposition
  • Breast Cancer
  • Genetic Association Studies
  • Heterozygote
  • Chromosome 17
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAD51C (cancer-related)

Tung N, Lin NU, Kidd J, et al.
Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer.
J Clin Oncol. 2016; 34(13):1460-8 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PURPOSE: Testing for germline mutations in BRCA1/2 is standard for select patients with breast cancer to guide clinical management. Next-generation sequencing (NGS) allows testing for mutations in additional breast cancer predisposition genes. The frequency of germline mutations detected by using NGS has been reported in patients with breast cancer who were referred for BRCA1/2 testing or with triple-negative breast cancer. We assessed the frequency and predictors of mutations in 25 cancer predisposition genes, including BRCA1/2, in a sequential series of patients with breast cancer at an academic institution to examine the utility of genetic testing in this population.
METHODS: Patients with stages I to III breast cancer who were seen at a single cancer center between 2010 and 2012, and who agreed to participate in research DNA banking, were included (N = 488). Personal and family cancer histories were collected and germline DNA was sequenced with NGS to identify mutations.
RESULTS: Deleterious mutations were identified in 10.7% of women, including 6.1% in BRCA1/2 (5.1% in non-Ashkenazi Jewish patients) and 4.6% in other breast/ovarian cancer predisposition genes including CHEK2 (n = 10), ATM (n = 4), BRIP1 (n = 4), and one each in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2. Whereas young age (P < .01), Ashkenazi Jewish ancestry (P < .01), triple-negative breast cancer (P = .01), and family history of breast/ovarian cancer (P = .01) predicted for BRCA1/2 mutations, no factors predicted for mutations in other breast cancer predisposition genes.
CONCLUSION: Among sequential patients with breast cancer, 10.7% were found to have a germline mutation in a gene that predisposes women to breast or ovarian cancer, using a panel of 25 predisposition genes. Factors that predict for BRCA1/2 mutations do not predict for mutations in other breast/ovarian cancer susceptibility genes when these genes are analyzed as a single group. Additional cohorts will be helpful to define individuals at higher risk of carrying mutations in genes other than BRCA1/2.

Lin PH, Kuo WH, Huang AC, et al.
Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer.
Oncotarget. 2016; 7(7):8310-20 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Since BRCA mutations are only responsible for 10-20% of cases of breast cancer in patients with early-onset or a family history and since next-generation sequencing technology allows the simultaneous sequencing of a large number of target genes, testing for multiple cancer-predisposing genes is now being considered, but its significance in clinical practice remains unclear. We then developed a sequencing panel containing 68 genes that had cancer risk association for patients with early-onset or familial breast cancer. A total of 133 patients were enrolled and 30 (22.6%) were found to carry germline deleterious mutations, 9 in BRCA1, 11 in BRCA2, 2 in RAD50, 2 in TP53 and one each in ATM, BRIP1, FANCI, MSH2, MUTYH, and RAD51C. Triple-negative breast cancer (TNBC) was associated with the highest mutation rate (45.5%, p = 0.025). Seven of the 9 BRCA1 mutations and the single FANCI mutation were in the TNBC group; 9 of the 11 BRCA2, 1 of the 2 RAD50 as well as BRIP1, MSH2, MUTYH, and RAD51C mutations were in the hormone receptor (HR)(+)Her2(-) group, and the other RAD50, ATM, and TP53 mutations were in the HR(+)Her2(+) group. Mutation carriers were considered as high-risk to develop malignancy and advised to receive cancer screening. Screening protocols of non-BRCA genes were based on their biologic functions; for example, patients carrying RAD51C mutation received a screening protocol similar to that for BRCA, since BRCA and RAD51C are both involved in homologous recombination. In conclusion, we consider that multiple gene sequencing in cancer risk assessment is clinically valuable.

Jønson L, Ahlborn LB, Steffensen AY, et al.
Identification of six pathogenic RAD51C mutations via mutational screening of 1228 Danish individuals with increased risk of hereditary breast and/or ovarian cancer.
Breast Cancer Res Treat. 2016; 155(2):215-22 [PubMed] Related Publications
Germ-line mutations in the RAD51C gene have recently been identified in families with breast and ovarian cancer and have been associated with an increased risk of ovarian cancer. In this study, we describe the frequency of pathogenic RAD51C mutations identified in Danish breast and/or ovarian cancer families. We screened the RAD51C gene in 1228 Danish hereditary breast and/or ovarian cancer families by next-generation sequencing analysis. The frequency of the identified variants was examined in the exome sequencing project database and in data from 2000 Danish exomes and the presumed significance of missense and intronic variants was predicted by in silico analysis. We identified six families with a pathogenic mutation in RAD51C, including three frameshift mutations, one nonsense mutation, and 2 missense mutations. Overall, pathogenic RAD51C mutations were identified in 0.5 % of Danish families with increased risk of hereditary breast and/or ovarian cancer. Moreover, we identified 24 additional RAD51C variants of which 14 have not been previously reported in the literature. In this study, we determine the prevalence of RAD51C mutations in Danish breast and/or ovarian cancer families. We identified six pathogenic RAD51C mutations as well as 23 variants of uncertain clinical significance and one benign variant. Together, the study extends our knowledge of the RAD51C mutation spectrum and supports that RAD51C should be included in gene panel testing of individuals with high risk of breast and ovarian cancer.

Norquist BM, Harrell MI, Brady MF, et al.
Inherited Mutations in Women With Ovarian Carcinoma.
JAMA Oncol. 2016; 2(4):482-90 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
IMPORTANCE: Germline mutations in BRCA1 and BRCA2 are relatively common in women with ovarian, fallopian tube, and peritoneal carcinoma (OC) causing a greatly increased lifetime risk of these cancers, but the frequency and relevance of inherited mutations in other genes is less well characterized.
OBJECTIVE: To determine the frequency and importance of germline mutations in cancer-associated genes in OC.
DESIGN, SETTING, AND PARTICIPANTS: A study population of 1915 woman with OC and available germline DNA were identified from the University of Washington (UW) gynecologic tissue bank (n = 570) and from Gynecologic Oncology Group (GOG) phase III clinical trials 218 (n = 788) and 262 (n = 557). Patients were enrolled at diagnosis and were not selected for age or family history. Germline DNA was sequenced from women with OC using a targeted capture and multiplex sequencing assay.
MAIN OUTCOMES AND MEASURES: Mutation frequencies in OC were compared with the National Heart, Lung, and Blood Institute GO Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC). Clinical characteristics and survival were assessed by mutation status.
RESULTS: Overall, the median (range) age at diagnosis was 60 (28-91) years in patients recruited from UW and 61 (23-87) years in patients recruited from the GOG trials. A higher number of black women were recruited from the GOG trials (4.3% vs 1.4%; P = .009); but in patients recruited from UW, there was a higher proportion of fallopian tube carcinomas (13.3% vs 5.7%; P < .001); stage I and II disease (14.6% vs 0% [GOG trials were restricted to advanced-stage cancer]); and nonserous carcinomas (29.9% vs 13.1%, P < .001). Of 1915 patients, 280 (15%) had mutations in BRCA1 (n = 182), or BRCA2 (n = 98), and 8 (0.4%) had mutations in DNA mismatch repair genes. Mutations in BRIP1 (n = 26), RAD51C (n = 11), RAD51D (n = 11), PALB2 (n = 12), and BARD1 (n = 4) were significantly more common in patients with OC than in the ESP or ExAC, present in 3.3%. Race, histologic subtype, and disease site were not predictive of mutation frequency. Patients with a BRCA2 mutation from the GOG trials had longer progression-free survival (hazard ratio [HR], 0.60; 95% CI, 0.45-0.79; P < .001) and overall survival (HR, 0.39; 95% CI, 0.25-0.60; P < .001) compared with those without mutations.
CONCLUSIONS AND RELEVANCE: Of 1915 patients with OC, 347 (18%) carried pathogenic germline mutations in genes associated with OC risk. PALB2 and BARD1 are suspected OC genes and together with established OC genes (BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH2, MLH1, PMS2, and MSH6) bring the total number of genes suspected to cause hereditary OC to 11.

Bernards SS, Norquist BM, Harrell MI, et al.
Genetic characterization of early onset ovarian carcinoma.
Gynecol Oncol. 2016; 140(2):221-5 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
OBJECTIVE: Ovarian carcinoma (OC) is rare in young women and the fraction of early onset OC attributable to inherited mutations in known OC genes is uncertain. We sought to characterize the fraction of OC that is heritable in women diagnosed with ovarian, fallopian tube, or peritoneal carcinoma at forty years of age or younger.
METHODS: We sequenced germline DNA from forty-seven women diagnosed with OC at age 40 or younger ascertained through a gynecologic oncology tissue bank or referred from outside providers using BROCA, a targeted capture and massively parallel sequencing platform that can detect all mutation classes. We evaluated 11 genes associated with ovarian carcinoma (BARD1, BRCA1, BRCA2, BRIP1, MLH1, MSH2, MSH6, PALB2, PMS2, RAD51D, and RAD51C) and additional candidate genes in DNA repair (ATM, BAP1, CHEK2, MRE11A, NBN, PTEN, TP53). We counted only clearly damaging mutations.
RESULTS: Damaging mutations in OC genes were identified in 13 of 47 (28%) subjects, of which 10 (77%) occurred in BRCA1 and one each occurred in BRCA2, MSH2, and RAD51D. Women with a strong family history were no more likely to have an OC gene mutation (8/17, 47%) than those without a strong family history (9/30, 30%, P=0.35). Additionally, damaging mutations in non-OC genes were identified, one in NBN and one in CHEK2.
CONCLUSIONS: A high proportion of young women with invasive OC have mutations in BRCA1, and a smaller fraction have mutations in other known OC genes. Family history was not associated with mutation status in these early onset cases.

Lambrechts S, Smeets D, Moisse M, et al.
Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer.
Eur J Cancer. 2016; 53:51-64 [PubMed] Related Publications
BACKGROUND: Most high-grade serous ovarian carcinoma (HGSOC) patients benefit from first-line platinum-based chemotherapy, but progressively develop resistance during subsequent lines. Re-activating BRCA1 or MDR1 mutations can underlie platinum resistance in end-stage patients. However, little is known about resistance mechanisms occurring after a single line of platinum, when patients still qualify for other treatments.
METHODS: In 31 patients with primary platinum-sensitive HGSOC, we profiled tumours collected during debulking surgery before and after first-line chemotherapy using whole-exome sequencing and single nucleotide polymorphism profiling.
RESULTS: Besides germline BRCA1/2 mutations, we observed frequent loss-of-heterozygosity in homologous recombination (HR) genes and mutation spectra characteristic of HR-deficiency in all tumours. At relapse, tumours differed considerably from their primary counterparts. There was, however, no evidence of events reactivating the HR pathway, also not in tumours resistant to second-line platinum. Instead, a platinum score of 13 copy number regions, among other genes including MECOM, CCNE1 and ERBB2, correlated with platinum-free interval (PFI) after first-line therapy, whereas an increase of this score in recurrent tumours predicted the change in PFI during subsequent therapy.
CONCLUSIONS: Already after a single line of platinum, there is huge variability between primary and recurrent tumours, advocating that in HGSOC biopsies need to be collected at relapse to tailor treatment options to the underlying genetic profile. Nevertheless, all primary platinum-sensitive HGSOCs remained HR-deficient, irrespective of whether they became resistant to second-line platinum, further suggesting these tumours qualify for second-line Poly APD ribose polymerase (PARP) inhibitor treatment. Finally, chromosomal instability contributes to acquired resistance after a single line of platinum therapy.

Lu C, Xie M, Wendl MC, et al.
Patterns and functional implications of rare germline variants across 12 cancer types.
Nat Commun. 2015; 6:10086 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.

Yablonski-Peretz T, Paluch-Shimon S, Gutman LS, et al.
Screening for germline mutations in breast/ovarian cancer susceptibility genes in high-risk families in Israel.
Breast Cancer Res Treat. 2016; 155(1):133-8 [PubMed] Related Publications
We evaluated the clinical utility of screening for mutations in 34 breast/ovarian cancer susceptibility genes in high-risk families in Israel. Participants were recruited from 12, 2012 to 6, 2015 from 8 medical centers. All participants had high breast/ovarian cancer risk based on personal and family history. Genotyping was performed with the InVitae™ platform. The study was approved by the ethics committees of the participating centers; all participants gave a written informed consent before entering the study. Overall, 282 individuals participated in the study: 149 (53 %) of Ashkenazi descent, 80 (28 %) Jewish non-Ashkenazi descent, 22 (8 %) of mixed Ashkenazi/non-Ashkenazi origin, 21 (7 %) were non-Jewish Caucasians, and the remaining patients (n = 10-3.5 %) were of Christian Arabs/Druze/unknown ethnicity. For breast cancer patients (n = 165), the median (range) age at diagnosis was 46 (22-90) years and for ovarian cancer (n = 15) 54 (38-69) years. Overall, 30 cases (10.6 %) were found to carry a pathogenic actionable mutation in the tested genes: 10 BRCA1 (3 non-founder mutations), 9 BRCA2 (8 non-founder mutations), and one each in the RAD51C and CHEK2 genes. Furthermore, actionable mutations were detected in 9 more cases in 4 additional genes (MSH2, RET, MSH6, and APC). No pathogenic mutations were detected in the other genotyped genes. In this high-risk population, 10.6 % harbored an actionable pathogenic mutation, including non-founder mutations in BRCA1/2 and in additional cancer susceptibility genes, suggesting that high-risk families should be genotyped and be assigned a genotype-based cancer risk.

Somyajit K, Banik B, Saxena S, et al.
Trans-dichlorooxovandium (IV) complex as a novel photoinducible DNA interstrand crosslinker for cancer therapy.
Carcinogenesis. 2016; 37(2):145-56 [PubMed] Related Publications
Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.

Li J, Meeks H, Feng BJ, et al.
Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families.
J Med Genet. 2016; 53(1):34-42 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
INTRODUCTION: Gene panel testing for breast cancer susceptibility has become relatively cheap and accessible. However, the breast cancer risks associated with mutations in many genes included in these panels are unknown.
METHODS: We performed custom-designed targeted sequencing covering the coding exons of 17 known and putative breast cancer susceptibility genes in 660 non-BRCA1/2 women with familial breast cancer. Putative deleterious mutations were genotyped in relevant family members to assess co-segregation of each variant with disease. We used maximum likelihood models to estimate the breast cancer risks associated with mutations in each of the genes.
RESULTS: We found 31 putative deleterious mutations in 7 known breast cancer susceptibility genes (TP53, PALB2, ATM, CHEK2, CDH1, PTEN and STK11) in 45 cases, and 22 potential deleterious mutations in 31 cases in 8 other genes (BARD1, BRIP1, MRE11, NBN, RAD50, RAD51C, RAD51D and CDK4). The relevant variants were then genotyped in 558 family members. Assuming a constant relative risk of breast cancer across age groups, only variants in CDH1, CHEK2, PALB2 and TP53 showed evidence of a significantly increased risk of breast cancer, with some supportive evidence that mutations in ATM confer moderate risk.
CONCLUSIONS: Panel testing for these breast cancer families provided additional relevant clinical information for <2% of families. We demonstrated that segregation analysis has some potential to help estimate the breast cancer risks associated with mutations in breast cancer susceptibility genes, but very large case-control sequencing studies and/or larger family-based studies will be needed to define the risks more accurately.

Krivokuca A, Yanowski K, Rakobradovic J, et al.
RAD51C mutation screening in high-risk patients from Serbian hereditary breast/ovarian cancer families.
Cancer Biomark. 2015; 15(6):775-81 [PubMed] Related Publications
BACKGROUND: In 2010 an important finding was published showing that heterozygous mutations in RAD51C were highly penetrant and were able to confer an increased risk for breast and ovarian cancers. The role of possible third high penetrance breast cancer susceptibility gene was assigned to RAD51C.
OBJECTIVE: Because of its rising importance in breast cancer development and the lack of information about RAD51C in Slavic populations, our goal was to identify potential population specific mutations in this gene in order to determine more detailed genetic screening strategy and breast cancer risk assessment.
METHODS: The study included 55 females from Serbian hereditary breast/ovarian cancer families negative for sequence alterations and large genomic rearrangements in BRCA1/2 genes. Whole coding region and exon-intron boundaries of RAD51C were analyzed by dHPLC. All mutations were confirmed by Sanger sequencing. SIFT and Polyphen were used to predict possible impact of non-synonymous variants.
RESULTS: We found 5 variants in RAD51C including two missense, one intronic, one in the 5'UTR and one variant in the promoter region of the gene. Three detected variants are common - c.1-118G>A (rs16943176, MAF = 0,203); c.1-26C>T (rs12946397, MAF = 0,207) and c.904+34T>C (rs28363318, MAF = 0,186). We detected two missense variants, c.790G>A (p.Gly264Ser) in exon 5 and c.859A>G (p.Thr287Ala) in exon 6. Both of them were previously shown to exhibit reduced protein function but their contribution to cancer risk is still unknown.
CONCLUSIONS: Although the initial reports implied that RAD51C might be promising candidate for next high penetrance breast cancer susceptibility gene, lack of confirmation suggested that RAD51C mutations are not as common as expected. Our study did not reveal truncating mutations in RAD51C suggesting that other breast cancer susceptibility genes may account for the increased susceptibility in our cohort of high-risk BRCA1/2 negative families.

Pelttari LM, Kinnunen L, Kiiski JI, et al.
Screening of HELQ in breast and ovarian cancer families.
Fam Cancer. 2016; 15(1):19-23 [PubMed] Related Publications
Several high and moderate risk alleles have been identified for breast and ovarian cancer predisposition and most of them encode proteins that function in DNA repair. A prospective candidate for breast and ovarian cancer susceptibility is the HELQ helicase that has a role in the resolution of DNA interstrand cross-links. HELQ interacts with the RAD51 paralog complex BCDX2. Two components of the complex, RAD51C and RAD51D, increase the risk of ovarian cancer especially, and the other two, RAD51B and XRCC2 have been associated with breast cancer risk. To investigate the role of HELQ in cancer predisposition, we screened the gene for germline variation in 185 Finnish breast or ovarian cancer families and performed haplotype analyses for 1517 breast cancer cases, 308 ovarian cancer cases, and 1234 population controls using five common polymorphisms at the HELQ gene locus. No truncating mutations were identified among the families. One putatively pathogenic missense mutation c.1309A>G was identified but no additional carriers were observed in the subsequent genotyping of 332 familial breast or ovarian cancer patients. Furthermore, the haplotype distribution did not differ between breast or ovarian cancer cases and population controls. Our results indicate that HELQ is not a major breast and ovarian cancer susceptibility gene in the Finnish population. However, we cannot rule out rare risk-variants in the Finnish or other populations and larger datasets are needed to further assess the role of HELQ especially in ovarian cancer predisposition.

Manié E, Popova T, Battistella A, et al.
Genomic hallmarks of homologous recombination deficiency in invasive breast carcinomas.
Int J Cancer. 2016; 138(4):891-900 [PubMed] Related Publications
Therapeutic strategies targeting Homologous Recombination Deficiency (HRD) in breast cancer requires patient stratification. The LST (Large-scale State Transitions) genomic signature previously validated for triple-negative breast carcinomas (TNBC) was evaluated as biomarker of HRD in luminal (hormone receptor positive) and HER2-overexpressing (HER2+) tumors. The LST genomic signature related to the number of large-scale chromosomal breakpoints in SNP-array tumor profile was applied to identify HRD in in-house and TCGA sets of breast tumors, in which the status of BRCA1/2 and other genes was also investigated. In the in-house dataset, HRD was predicted in 5% (20/385) of sporadic tumors luminal or HER2+ by the LST genomic signature and the inactivation of BRCA1, BRCA2 or RAD51C confirmed this prediction in 75% (12/16) of the tested cases. In 14% (6/43) of tumors occurring in BRCA1/2 mutant carriers, the corresponding wild-type allele was retained emphasizing the importance of determining the tumor status. In the TCGA luminal and HER2+ subtypes HRD incidence was estimated at 5% (18/329, 95%CI: 5-8%) and 2% (1/59, 95%CI: 2-9%), respectively. In TNBC cisplatin-based neo-adjuvant clinical trials, HRD is shown to be a necessary condition for cisplatin sensitivity. This analysis demonstrates the high performance of the LST genomic signature for HRD detection in breast cancers, which suggests its potential as a biomarker for genetic testing and patient stratification for clinical trials evaluating platinum salts and PARP inhibitors.

Song H, Dicks E, Ramus SJ, et al.
Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population.
J Clin Oncol. 2015; 33(26):2901-7 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PURPOSE: The aim of this study was to estimate the contribution of deleterious mutations in the RAD51B, RAD51C, and RAD51D genes to invasive epithelial ovarian cancer (EOC) in the population and in a screening trial of individuals at high risk of ovarian cancer.
PATIENTS AND METHODS: The coding sequence and splice site boundaries of the three RAD51 genes were sequenced and analyzed in germline DNA from a case-control study of 3,429 patients with invasive EOC and 2,772 controls as well as in 2,000 unaffected women who were BRCA1/BRCA2 negative from the United Kingdom Familial Ovarian Cancer Screening Study (UK_FOCSS) after quality-control analysis.
RESULTS: In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P < .001). Mutations in EOC cases were more frequent in RAD51C (14 occurrences, 0.41%) and RAD51D (12 occurrences, 0.35%) than in RAD51B (two occurrences, 0.06%). RAD51C mutations were associated with an odds ratio of 5.2 (95% CI, 1.1 to 24; P = .035), and RAD51D mutations conferred an odds ratio of 12 (95% CI, 1.5 to 90; P = .019). We identified 13 RAD51 mutations (0.65%) in unaffected UK_FOCSS participants (RAD51C, n = 7; RAD51D, n = 5; and RAD51B, n = 1), which was a significantly greater rate than in controls (P < .001); furthermore, RAD51 mutation carriers were more likely than noncarriers to have a family history of ovarian cancer (P < .001).
CONCLUSION: These results confirm that RAD51C and RAD51D are moderate ovarian cancer susceptibility genes and suggest that they confer levels of risk of EOC that may warrant their use alongside BRCA1 and BRCA2 in routine clinical genetic testing.

Janatova M, Soukupova J, Stribrna J, et al.
Mutation Analysis of the RAD51C and RAD51D Genes in High-Risk Ovarian Cancer Patients and Families from the Czech Republic.
PLoS One. 2015; 10(6):e0127711 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Recent studies have conferred that the RAD51C and RAD51D genes, which code for the essential proteins involved in homologous recombination, are ovarian cancer (OC) susceptibility genes that may explain genetic risks in high-risk patients. We performed a mutation analysis in 171 high-risk BRCA1 and BRCA2 negative OC patients, to evaluate the frequency of hereditary RAD51C and RAD51D variants in Czech population. The analysis involved direct sequencing, high resolution melting and multiple ligation-dependent probe analysis. We identified two (1.2%) and three (1.8%) inactivating germline mutations in both respective genes, two of which (c.379_380insG, p.P127Rfs*28 in RAD51C and c.879delG, p.C294Vfs*16 in RAD51D) were novel. Interestingly, an indicative family cancer history was not present in four carriers. Moreover, the ages at the OC diagnoses in identified mutation carriers were substantially lower than those reported in previous studies (four carriers were younger than 45 years). Further, we also described rare missense variants, two in RAD51C and one in RAD51D whose clinical significance needs to be verified. Truncating mutations and rare missense variants ascertained in OC patients were not detected in 1226 control samples. Although the cumulative frequency of RAD51C and RAD51D truncating mutations in our patients was lower than that of the BRCA1 and BRCA2 genes, it may explain OC susceptibility in approximately 3% of high-risk OC patients. Therefore, an RAD51C and RAD51D analysis should be implemented into the comprehensive multi-gene testing for high-risk OC patients, including early-onset OC patients without a family cancer history.

Nakashima S, Kobayashi S, Nagano H, et al.
BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer.
Cancer Sci. 2015; 106(5):584-91 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The BRCA/Fanconi anemia (FA) pathway plays a key role in the repair of DNA double strand breaks. We focused on this pathway to clarify chemoresistance mechanisms in biliary tract cancer (BTC). We also investigated changes in the CD24(+)/44(+) population that may be involved in chemoresistance, as this population likely includes cancer stem cells. We used three BTC cell lines to establish gemcitabine (GEM)-resistant (GR) cells and evaluated the expression of BRCA/FA pathway components, chemoresistance, and the effect of BRCA/FA pathway inhibition on the CD24(+)/44(+) population. FANCD2 and CD24 expression were evaluated in 108 resected BTC specimens. GR cells highly expressed the BRCA/FA components. The BRCA/FA pathway was upregulated by GEM and cisplatin (CDDP) exposure. Inhibition using siRNA and RAD51 inhibitor sensitized GR cells to GEM or CDDP. The CD24(+)/44(+) population was increased in GR and parent BTC cells treated with GEM or CDDP and highly expressed BRCA/FA genes. FANCD2 was related to CD24 expression in resected BTC specimens. Inhibition of the BRCA/FA pathway under GEM reduced the CD24(+)/44(+) population in MzChA1-GR cells. Thus, high expression of the BRCA/FA pathway is one mechanism of chemoresistance against GEM and/or CDDP and is related to the CD24(+)/44(+) population in BTC.

Kalvala A, Gao L, Aguila B, et al.
Overexpression of Rad51C splice variants in colorectal tumors.
Oncotarget. 2015; 6(11):8777-87 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Functional alterations in Rad51C are the cause of the Fanconi anemia complementation group O (FANCO) gene disorder. We have identified novel splice variants of Rad51C mRNA in colorectal tumors and cells. The alternatively spliced transcript variants are formed either without exon-7 (variant 1), without exon 6 and 7 (variant 2) or without exon 7 and 8 (variant 3). Real time PCR analysis of nine pair-matched colorectal tumors and non-tumors showed that variant 1 was overexpressed in tumors compared to matched non-tumors. Among 38 colorectal tumor RNA samples analyzed, 18 contained variant 1, 12 contained variant 2, 14 contained variant 3, and eight expressed full length Rad51C exclusively. Bisulfite DNA sequencing showed promoter methylation of Rad51C in tumor cells. 5-azacytidine treatment of LS-174T cells caused a 14 fold increase in variant 1, a 4.8 fold increase for variant 3 and 3.4 fold for variant 2 compared to 2.5 fold increase in WT. Expression of Rad51C variants is associated with FANCD2 foci positive colorectal tumors and is associated with microsatellite stability in those tumors. Further investigation is needed to elucidate differential function of the Rad51C variants to evaluate potential effects in drug resistance and DNA repair.

Sokolenko AP, Preobrazhenskaya EV, Aleksakhina SN, et al.
Candidate gene analysis of BRCA1/2 mutation-negative high-risk Russian breast cancer patients.
Cancer Lett. 2015; 359(2):259-61 [PubMed] Related Publications
Twenty one DNA repair genes were analyzed in a group of 95 BC patients, who displayed clinical features of hereditary disease predisposition but turned out to be negative for mutations in BRCA1 and BRCA2 entire coding region as well as for founder disease-predisposing alleles in CHEK2, NBN/NBS1 and ATM genes. Full-length sequencing of CHEK2 and NBN/NBS1 failed to identify non-founder mutations. The analysis of TP53 revealed a woman carrying the R282W allele; further testing of additional 108 BC patients characterized by a very young age at onset (35 years or earlier) detected one more carrier of the TP53 germ-line defect. In addition, this study confirmed non-random occurrence of PALB2 truncating mutations in Russian hereditary BC patients. None of the studied cases carried germ-line defects in recently discovered hereditary BC genes, BRIP1, FANCC, MRE11A and RAD51C. The analysis of genes with yet unproven BC-predisposing significance (BARD1, BRD7, CHEK1, DDB2, ERCC1, EXO1, FANCG, PARP1, PARP2, RAD51, RNF8, WRN) identified single women carrying a protein-truncating allele, WRN R1406X. DNA sequencing of another set of 95 hereditary BC cases failed to reveal additional WRN heterozygous genotypes. Since WRN is functionally similar to the known BC-predisposing gene, BLM, it deserves to be analyzed in future hereditary BC studies. Furthermore, this investigation revealed a number of rare missense germ-line variants, which are classified as probably protein-damaging by online in silico tools and therefore may require further consideration.

Sopik V, Akbari MR, Narod SA
Genetic testing for RAD51C mutations: in the clinic and community.
Clin Genet. 2015; 88(4):303-12 [PubMed] Related Publications
Much of the observed familial clustering of breast and ovarian cancer cannot be explained by mutations in BRCA1 and BRCA2. Several other cancer susceptibility genes have been identified, but their value in routine clinical genetic testing is still unclear. Germline mutations in RAD51C have been identified in about 1% of hereditary breast and ovarian cancer families. RAD51C mutations are predominantly found in families with a history of ovarian cancer and are rare in families with a history of breast cancer alone. RAD51C is primarily an ovarian cancer susceptibility gene. A mutation is present in approximately 1% of unselected ovarian cancers. Among mutation carriers, the lifetime risk of ovarian cancer is approximately 9%. The average age at onset is approximately 60 years; this suggests that preventive oophorectomy can be delayed until after natural menopause. Under current guidelines, genetic testing for RAD51C is expected to have a limited impact on ovarian cancer incidence at a population level. This is because the penetrance is 9% to age 80; the great majority of families with mutations would be represented by a single case of ovarian cancer, these are potentially preventable through population screening but not through screening of established ovarian cancer families.

Couch FJ, Hart SN, Sharma P, et al.
Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer.
J Clin Oncol. 2015; 33(4):304-11 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PURPOSE: Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC.
PATIENTS AND METHODS: Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations.
RESULTS: Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations.
CONCLUSION: Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives.

Chevrier S, Boidot R
gDNA enrichment by a transposase-based technology for NGS analysis of the whole sequence of BRCA1, BRCA2, and 9 genes involved in DNA damage repair.
J Vis Exp. 2014; (92):e51902 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.

Gresner P, Gromadzinska J, Jablonska E, et al.
Single nucleotide polymorphisms in noncoding regions of Rad51C do not change the risk of unselected breast cancer but they modulate the level of oxidative stress and the DNA damage characteristics: a case-control study.
PLoS One. 2014; 9(10):e110696 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development.

Somyajit K, Mishra A, Jameei A, Nagaraju G
Enhanced non-homologous end joining contributes toward synthetic lethality of pathological RAD51C mutants with poly (ADP-ribose) polymerase.
Carcinogenesis. 2015; 36(1):13-24 [PubMed] Related Publications
Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors are actively under clinical trials for the treatment of breast and ovarian cancers that arise due to mutations in BRCA1 and BRCA2. The RAD51 paralog RAD51C has been identified as a breast and ovarian cancer susceptibility gene. The pathological RAD51C mutants that were identified in cancer patients are hypomorphic with partial repair function. However, targeting cancer cells that express hypomorphic mutants of RAD51C is highly challenging. Here, we report that RAD51C-deficient cells can be targeted by a 'synthetic lethal' approach using PARP inhibitor and this sensitivity was attributed to accumulation of cells in the G2/M and chromosomal aberrations. In addition, spontaneous hyperactivation of PARP1 was evident in RAD51C-deficient cells. Interestingly, RAD51C-negative cells exhibited enhanced recruitment of non-homologous end joining (NHEJ) proteins onto chromatin and this accumulation correlated with increased activity of error-prone NHEJ as well as genome instability leading to cell death. Notably, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV rescued this phenotype. Strikingly, stimulation of NHEJ by low dose of ionizing radiation (IR) in the PARP inhibitor-treated RAD51C-deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity 'synergistically'. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a 'synergistic approach' and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other homologous recombination pathway genes.

Ahlborn LB, Steffensen AY, Jønson L, et al.
Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations.
Fam Cancer. 2015; 14(1):129-33 [PubMed] Related Publications
Next-generation sequencing has entered routine genetic testing of hereditary breast cancer. It has provided the opportunity to screen multiple genes simultaneously, and consequently has identified new complex genotypes. Here we report the first identification of a woman double heterozygote for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been described before and mini-gene splicing experiments revealed that the mutation results in skipping of exon 26 containing a part of the DNA-binding domain. We conclude that the woman has two potential disease-causing mutations and that predictive testing of family members should include both the RAD51C and BRCA2 mutation. This study illustrates the advantage of sequencing gene panels using next-generation sequencing in terms of genetic testing.

Blanco A, Gutiérrez-Enríquez S, Santamariña M, et al.
RAD51C germline mutations found in Spanish site-specific breast cancer and breast-ovarian cancer families.
Breast Cancer Res Treat. 2014; 147(1):133-43 [PubMed] Related Publications
BRCA1 and BRCA2 are the most well-known breast and ovarian cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. Recently, RAD51C, a new Fanconi Anemia gene, essential for homologous recombination repair, has been reported to be a rare hereditary breast and ovarian cancer susceptibility gene. Indeed, several pathogenic mutations have been identified in BRCA1/BRCA2-negative hereditary breast and ovarian cancer families. Here, we present the results of the screening of RAD51C mutations in a large series of 516 BRCA1/BRCA2-negative Spanish patients from breast and/or ovarian cancer families, and the evaluation of these results in the context of all RAD51C carriers. RAD51C mutation screening was performed by DNA analysis for all index cases. All the genetic variants identified were analyzed in silico for splicing and protein predictions. cDNA analysis was performed for three selected variants. All previous RAD51C mutation studies on breast and/or ovarian cancer were reviewed. We identified three inactivating RAD51C mutations. Two mutations were found in breast and ovarian cancer families and one mutation in a site-specific breast cancer family. Based on the mean age of ovarian cancer diagnosis in RAD51C carriers, we would recommend prophylactic bilateral salpingo-ophorectomy in premenopausal RAD51C mutation carriers. Our results support that RAD51C is a rare breast and ovarian cancer susceptibility gene and may contribute to a small fraction of families including breast and ovarian cancer cases and families with only breast cancer. Thus, RAD51C testing should be offered to hereditary breast and/or ovarian cancer families without selecting for specific cancer origin.

Park JY, Zhang F, Andreassen PR
PALB2: the hub of a network of tumor suppressors involved in DNA damage responses.
Biochim Biophys Acta. 2014; 1846(1):263-75 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol η, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.

Mantere T, Haanpää M, Hanenberg H, et al.
Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer.
Clin Genet. 2015; 88(1):68-73 [PubMed] Related Publications
Mutations in downstream Fanconi anemia (FA) pathway genes, BRCA2, PALB2, BRIP1 and RAD51C, explain part of the hereditary breast cancer susceptibility, but the contribution of other FA genes has remained questionable. Due to FA's rarity, the finding of recurrent deleterious FA mutations among breast cancer families is challenging. The use of founder populations, such as the Finns, could provide some advantage in this. Here, we have resolved complementation groups and causative mutations of five FA patients, representing the first mutation confirmed FA cases in Finland. These patients belonged to complementation groups FA-A (n = 3), FA-G (n = 1) and FA-I (n = 1). The prevalence of the six FA causing mutations was then studied in breast (n = 1840) and prostate (n = 565) cancer cohorts, and in matched controls (n = 1176 females, n = 469 males). All mutations were recurrent, but no significant association with cancer susceptibility was observed for any: the prevalence of FANCI c.2957_2969del and c.3041G>A mutations was even highest in healthy males (1.7%). This strengthens the exclusive role of downstream genes in cancer predisposition. From a clinical point of view, current results provide fundamental information of the mutations to be tested first in all suspected FA cases in Finland.

Rashid MU, Muhammad N, Faisal S, et al.
Deleterious RAD51C germline mutations rarely predispose to breast and ovarian cancer in Pakistan.
Breast Cancer Res Treat. 2014; 145(3):775-84 [PubMed] Related Publications
RAD51C plays a key role in homologous recombination-mediated DNA repair and maintenance of genomic stability. Biallelic RAD51C mutations cause Fanconi anemia, and monoallelic mutations predispose women to breast and ovarian cancer. Genetic variability of RAD51C and its impact in Asian populations have been poorly studied. Here, we report the results of comprehensive mutational screening of the RAD51C gene in 348 BRCA1/2-negative breast and/or ovarian cancer patients from Pakistan. Mutation analysis of the complete RAD51C-coding region was performed using denaturing high-performance liquid chromatography analysis, followed by DNA sequencing of variant fragments. Three novel protein-truncating mutations, c.204T>A, c.225T>G, and c.701C>G, were identified. c.204T>A was found in one out of 22 (4.5 %) early-onset (≤45 years of age) ovarian cancer patients and c.225T>G in one out of 119 (0.8 %) patients from breast cancer only families. c.701C>G was found in a 60-year-old control with no family history of breast/ovarian cancer. Furthermore, three novel in silico-predicted potentially functional mutations, a missense mutation, c.873T>G, a variant in 5'UTR, c.1-34T>G, and a recurrent intronic variant, c.965+21A>G, were identified. The missense mutation was observed in a patient with bilateral breast cancer from a breast and ovarian cancer family (HBOC), the 5'UTR variant was noted in an early-onset breast cancer patient, and the intronic variant in one early-onset breast cancer patient and one ovarian cancer patient from a HBOC family. Five of the six mutations described were not detected in 400 healthy controls. These findings suggest that RAD51C plays a marginal role in breast and ovarian cancer predisposition in Pakistan. Reliable estimation of the clinical implications of carrying a deleterious RAD51C mutation will require identification of additional mutation-positive patients/families.

Gresner P, Gromadzinska J, Twardowska E, et al.
Rad51C: a novel suppressor gene modulates the risk of head and neck cancer.
Mutat Res. 2014; 762:47-54 [PubMed] Related Publications
We conducted a case-control study to investigate the possible association between the head and neck cancer (HNC) and genetic variability of Rad51C tumor suppressor gene. Eight polymorphic sites spanning over non-coding regions of Rad51C promoter, exon 1 and intron 1 were genotyped in 81 HNC cases and 156 healthy controls using the real-time PCR technique. One investigated site turned out to be not polymorphic, while among the remaining seven sites a significant HNC risk-increasing effect was found for rs16943176 (c.-118G>A), rs12946397 (c.-26C>T) and rs17222691 (c.145+947C>T) on both allelic (OR=1.8; p<0.05) and genotypic (OR=2.0; p<0.05) level. Furthermore, our data seem to provide marginal evidence, that this effect might possibly be confined to women only (OR=2.8; p=0.05 for allelic and OR=3.7; p=0.05 for genotypic comparisons). These SNPs were found to co-segregate together forming two distinct, HNC risk-modulating haplotypes. The genetic variability of Rad51C might thus be of relevance with respect to HNC risk.

Watanabe Y, Maeda I, Oikawa R, et al.
Aberrant DNA methylation status of DNA repair genes in breast cancer treated with neoadjuvant chemotherapy.
Genes Cells. 2013; 18(12):1120-30 [PubMed] Related Publications
Dysregulation of homologous recombination (HR) DNA repair has been implicated in breast carcinogenesis and chemosensitivity. Here, we investigated the methylation status of sixteen HR genes and analyzed their association with tumor subtypes and responses to neoadjuvant chemotherapy. Core specimens were obtained before neoadjuvant chemotherapy from sixty cases of primary breast cancer of the following four subgroups: luminal breast cancer (LBC) with pathological complete response (pCR), LBC with stable disease, triple-negative breast cancer (TNBC) with pCR and TNBC with poor response. The aberrant DNA methylation status of the following HR related-genes was analyzed using bisulfite-pyrosequencing: BRCA1, BRCA2, BARD1, MDC1, RNF8, RNF168, UBC13, ABRA1, PALB2, RAD50, RAD51, RAD51C, MRE11, NBS1, CtIP and ATM. Among the genes analyzed, only the incidence of BRCA1 and RNF8 methylation was significantly higher in TNBC than that in LBC. Whereas the incidence of BRCA1 methylation was tended to be higher in pCR cases than in poor-response cases in TNBC, that of RNF8 was significantly lower in pCR cases than in poor-response cases. Our results indicate that the methylation status of HR genes was not generally associated with TNBC subtype or chemosensitivity although hypermethylation of BRCA1 is associated with TNBC subtype and may impact chemosensitivity.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAD51C, Cancer Genetics Web: http://www.cancer-genetics.org/RAD51C.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999