Gene Summary

Gene:RBP1; retinol binding protein 1, cellular
Summary:This gene encodes the carrier protein involved in the transport of retinol (vitamin A alcohol) from the liver storage site to peripheral tissue. Vitamin A is a fat-soluble vitamin necessary for growth, reproduction, differentiation of epithelial tissues, and vision. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:retinol-binding protein 1
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (11)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Retinol-Binding Proteins, Plasma
  • Breast Cancer
  • HeLa Cells
  • Cervical Cancer
  • RBP1
  • Epithelial Cells
  • Neoplasm Proteins
  • Neoplastic Cell Transformation
  • Brain Tumours
  • Transfection
  • Receptors, Retinoic Acid
  • Brain Tumours
  • Vitamin A
  • Tumor Suppressor Gene
  • Retinol-Binding Proteins
  • DNA-Binding Proteins
  • Transcription
  • Squamous Cell Carcinoma
  • Polymerase Chain Reaction
  • Epigenetics
  • Promoter Regions
  • Breast
  • Cancer Gene Expression Regulation
  • Uterine Cancer
  • Gene Expression
  • Gene Silencing
  • Retinol-Binding Proteins, Cellular
  • Gene Expression Profiling
  • Signal Transduction
  • Oligonucleotide Array Sequence Analysis
  • DNA Methylation
  • Membrane Proteins
  • Tumor Markers
  • Adenocarcinoma
  • Transforming Growth Factor beta
  • Messenger RNA
  • CpG Islands
  • Immunohistochemistry
  • Retinoids
  • Chromosome 3
  • Retinoic Acid
Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RBP1 (cancer-related)

Doldo E, Costanza G, Ferlosio A, et al.
CRBP-1 expression in ovarian cancer: a potential therapeutic target.
Anticancer Res. 2014; 34(7):3303-12 [PubMed] Related Publications
BACKGROUND/AIM: Cellular retinol binding protein-1 regulates retinol bioavailability and contributes to cell differentiation maintenance, but its role in ovarian carcinogenesis remains uncertain. We investigated CRBP-1 expression in ovarian tumors and CRBP-1 signaling-regulated pathways.
MATERIALS AND METHODS: We performed immunohistochemistry, methylation-specific PCR, gene copy number analysis in ovarian tumors and proliferation/apoptosis evaluation, gene array, blot and real-time PCR in CRBP-1-transfected A2780 ovarian cancer cells.
RESULTS: CRBP-1 expression was reduced or absent in G2 and G3 ovarian carcinomas. CRBP-1 silencing in 60% of G2 and 66.7% of G3 carcinomas was due to CRBP-1 promoter methylation. A2780 CRBP-1-transfected cells showed increased retinol-induced apoptosis, retinoid-induced reduced clonogenicity and down-regulation of proliferation and transcription genes, including AKT1, AKT3, EGFR, FOS, JUN, STAT1 and STAT5A.
CONCLUSION: CRBP-1 loss in G2/G3 ovarian carcinomas and increased apoptotic susceptibility to retinoids in CRBP-1-transfected-A2780 cells suggest CRBP-1 screening as a target to ensure efficacy of an adjuvant retinoid therapy.

McCready J, Arendt LM, Glover E, et al.
Pregnancy-associated breast cancers are driven by differences in adipose stromal cells present during lactation.
Breast Cancer Res. 2014; 16(1):R2 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The prognosis of breast cancer is strongly influenced by the developmental stage of the breast when the tumor is diagnosed. Pregnancy-associated breast cancers (PABCs), cancers diagnosed during pregnancy, lactation, or in the first postpartum year, are typically found at an advanced stage, are more aggressive and have a poorer prognosis. Although the systemic and microenvironmental changes that occur during post-partum involution have been best recognized for their role in the pathogenesis of PABCs, epidemiological data indicate that PABCs diagnosed during lactation have an overall poorer prognosis than those diagnosed during involution. Thus, the physiologic and/or biological events during lactation may have a significant and unrecognized role in the pathobiology of PABCs.
METHODS: Syngeneic in vivo mouse models of PABC were used to examine the effects of system and stromal factors during pregnancy, lactation and involution on mammary tumorigenesis. Mammary adipose stromal cell (ASC) populations were isolated from mammary glands and examined by using a combination of in vitro and in vivo functional assays, gene expression analysis, and molecular and cellular assays. Specific findings were further investigated by immunohistochemistry in mammary glands of mice as well as in functional studies using ASCs from lactating mammary glands. Additional findings were further investigated using human clinical samples, human stromal cells and using in vivo xenograft assays.
RESULTS: ASCs present during lactation (ASC-Ls), but not during other mammary developmental stages, promote the growth of carcinoma cells and angiogenesis. ASCs-Ls are distinguished by their elevated expression of cellular retinoic acid binding protein-1 (crabp1), which regulates their ability to retain lipid. Human breast carcinoma-associated fibroblasts (CAFs) exhibit traits of ASC-Ls and express crabp1. Inhibition of crabp1in CAFs or in ASC-Ls abolished their tumor-promoting activity and also restored their ability to accumulate lipid.
CONCLUSIONS: These findings imply that (1) PABC is a complex disease, which likely has different etiologies when diagnosed during different stages of pregnancy; (2) both systemic and local factors are important for the pathobiology of PABCs; and (3) the stromal changes during lactation play a distinct and important role in the etiology and pathogenesis of PABCs that differ from those during post-lactational involution.

Jiao TT, Zhang YM, Yao L, et al.
Importance of spondin 1 and cellular retinoic acid binding protein 1 in the clinical diagnosis of ovarian cancer.
Int J Clin Exp Pathol. 2013; 6(12):3036-41 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Diagnosis of ovarian cancer is often delayed because of subtle symptoms and a lack of a specific, sensitive test useful for the general population. The majority of cases are diagnosed at late stages, after the tumor has metastasized and implanted on many other abdominal organs and cavity surfaces. A paucity of prognostic markers makes it difficult to define which tumors will act aggressively and shorten survival. Hence, it is imperative to have new screening tests for diagnosis of ovarian cancer at earlier stages, prior to metastatic progression. Diagnosis at these early stages will dramatically increase the overall survival of women with ovarian cancer.
MATERIAL AND METHODS: Based on previously published literature on proposed molecular cell markers in ovarian carcinoma, we sought to validate the overexpression of two genes (cellular retinoic acid Binding Protein, CRABP-1, and spondin 1) through immunohistochemistry.
RESULTS: We verified the overexpression of spondin 1 in ovarian cancer. Expression of cellular retinoic acid Binding Protein, CRABP-1 in whole ovarian cancer tissue sections was higher than in the TMA tissue cores.
CONCLUSION: Our results thus demonstrate that spondin 1 is a useful marker for ovarian cancer; additionally, the high percentages of tumors that are positive for spondin 1 make it an ideal target for therapy. CRABP-1 was not expressed at high levels in any subtype of ovarian cancer, making it a poor marker.

Honecker F, Rohlfing T, Harder S, et al.
Proteome analysis of the effects of all-trans retinoic acid on human germ cell tumor cell lines.
J Proteomics. 2014; 96:300-13 [PubMed] Related Publications
UNLABELLED: We analysed the effects of all-trans retinoic acid (ATRA) on proliferation and changes in the global proteome of the nullipotent human embryonal carcinoma cell line 2102Ep and the pluripotent cell line NTERA2 cl.D1 (NT2). Differentially expressed proteins were assessed by 2D-PAGE and mass spectrometry, followed by verification and analysis of protein modifications of proteins of the retinoid pathway. We established a proteome map of the germ cell tumor (GCT) cell line NT2 showing neuronal differentiation under ATRA treatment for 7days. Using bioinformatic analyses, we identified functional groups of altered proteins and potentially involved pathways, of which changes to the organization of the cytoskeleton and anti-apoptotic effects were the most prominent. Changes observed in the expression of factors involved in the retinoid pathway under ATRA, namely an upregulation of CRBP and CRABP2, were also reflected in GCT tissues of different histologies, providing further insight into factors involved in the differentiation of these pluripotent tumors.
BIOLOGICAL SIGNIFICANCE: Treatment of NT2 germ cell tumor cells with all-trans retinoic acid (ATRA) is a model to investigate differentiation. We analysed differentially expressed proteins by 2D-PAGE and mass spectrometry and provide a proteome map of NT2 cells under 7days of ATRA. By bioinformatic analyses, functional groups of proteins and involved pathways like changes to the cytoskeleton and anti-apoptotic effects were identified. Factors involved in the retinoid pathway, in particular upregulation of CRBP, CRABP1 and CRABP2, also showed differential expression in tumors with different histological subtypes, which provides insight into gene regulation under induced and spontaneous differentiation in germ cell tumors.

Mendoza-Rodriguez M, Arreola H, Valdivia A, et al.
Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer.
Int J Clin Exp Pathol. 2013; 6(9):1817-25 [PubMed] Free Access to Full Article Related Publications
AIMS: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC.
METHODS: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region.
RESULTS: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status.
CONCLUSIONS: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC.

Kim SJ, Sohn I, Do IG, et al.
Gene expression profiles for the prediction of progression-free survival in diffuse large B cell lymphoma: results of a DASL assay.
Ann Hematol. 2014; 93(3):437-47 [PubMed] Related Publications
We performed the whole genome cDNA-mediated annealing, selection and ligation assay with 164 formalin-fixed paraffin-embedded (FFPE) tumor samples to develop robust prognostic gene expression profiles in patients with diffuse large B cell lymphoma. The prognostic gene expression profiles were developed and validated by a gradient lasso and leave-one-out cross-validation process. We identified a set of genes whose expression provided prognostic indicators from whole data set (PRKCDBP, CASP10, FAM3C, KCNK12, MAN1A2, PRND, RAB1A, TMEM39B, SLC6A6, MMP12, FEM1B, C3orh37, RBP1, HK1, LOC400464, KIAA0746, and SLC25A23). This gene expression profile-based risk model could classify patients into two cross-validated risk groups with a significant difference in 5-year progression-free survival rates (71.1 vs. 45.5 %) and with a hazard ratio for recurrence of 2.45 (95 % CI, 1.44-4.16, P = 0.001). This model provided prognostic information independent of the International Prognostic Index (IPI), and discriminated high-risk group from patients belong to high/high-intermediate risk of IPI and activated B cell-like type. Thus, gene expression profiling from FFPE could provide additional prognostic information for diffuse large B cell lymphoma and our data underscore the need for development of risk-adapted treatment strategies based on gene expression profiles.

Sintupisut N, Liu PL, Yeang CH
An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.
Nucleic Acids Res. 2013; 41(19):8803-21 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between 'effector' molecular aberrations and 'target' gene expressions in GBMs. A rich collection of prior studies attempted to combine copy number variation (CNV) and mRNA expression data. However, systematic methods to integrate multiple types of cancer genomic data-gene mutations, single nucleotide polymorphisms, CNVs, DNA methylations, mRNA and microRNA expressions and clinical information-are relatively scarce. We proposed an algorithm to build 'association modules' linking effector molecular aberrations and target gene expressions and applied the module-finding algorithm to the integrated TCGA GBM data sets. The inferred association modules were validated by six tests using external information and datasets of central nervous system tumors: (i) indication of prognostic effects among patients; (ii) coherence of target gene expressions; (iii) retention of effector-target associations in external data sets; (iv) recurrence of effector molecular aberrations in GBM; (v) functional enrichment of target genes; and (vi) co-citations between effectors and targets. Modules associated with well-known molecular aberrations of GBM-such as chromosome 7 amplifications, chromosome 10 deletions, EGFR and NF1 mutations-passed the majority of the validation tests. Furthermore, several modules associated with less well-reported molecular aberrations-such as chromosome 11 CNVs, CD40, PLXNB1 and GSTM1 methylations, and mir-21 expressions-were also validated by external information. In particular, modules constituting trans-acting effects with chromosome 11 CNVs and cis-acting effects with chromosome 10 CNVs manifested strong negative and positive associations with survival times in brain tumors. By aligning the information of association modules with the established GBM subclasses based on transcription or methylation levels, we found each subclass possessed multiple concurrent molecular aberrations. Furthermore, the joint molecular characteristics derived from 16 association modules had prognostic power not explained away by the strong biomarker of CpG island methylator phenotypes. Functional and survival analyses indicated that immune/inflammatory responses and epithelial-mesenchymal transitions were among the most important determining processes of prognosis. Finally, we demonstrated that certain molecular aberrations uniquely recurred in GBM but were relatively rare in non-GBM glioma cells. These results justify the utility of an integrative analysis on cancer genomes and provide testable characterizations of driver aberration events in GBM.

Kaiser MF, Johnson DC, Wu P, et al.
Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma.
Blood. 2013; 122(2):219-26 [PubMed] Free Access to Full Article Related Publications
Outcome in multiple myeloma is highly variable and a better understanding of the factors that influence disease biology is essential to understand and predict behavior in individual patients. In the present study, we analyzed combined genomewide DNA methylation and gene expression data of patients treated in the Medical Research Council Myeloma IX trial. We used these data to identify epigenetically repressed tumor suppressor genes with prognostic relevance in myeloma. We identified 195 genes with changes in methylation status that were significantly associated with prognosis. Combining DNA methylation and gene expression data led to the identification of the epigenetically regulated tumor modulating genes GPX3, RBP1, SPARC, and TGFBI. Hypermethylation of these genes was associated with significantly shorter overall survival, independent of age, International Staging System score, and adverse cytogenetics. The 4 differentially methylated and expressed genes are known to mediate important tumor suppressive functions including response to chemotherapy (TGFBI), interaction with the microenvironment (SPARC), retinoic acid signaling (RBP1), and the response to oxidative stress (GPX3), which could explain the prognostic impact of their differential methylation. Assessment of the DNA methylation status of the identified genes could contribute to the molecular characterization of myeloma, which is prerequisite for an individualized treatment approach.

Qu Y, Dang S, Hou P
Gene methylation in gastric cancer.
Clin Chim Acta. 2013; 424:53-65 [PubMed] Related Publications
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.

Gauchotte G, Lacomme S, Brochin L, et al.
Retinoid acid receptor expression is helpful to distinguish between adenoma and well-differentiated carcinoma in the thyroid.
Virchows Arch. 2013; 462(6):619-32 [PubMed] Related Publications
Retinoid receptors (RRs) play a key role in cell proliferation and differentiation. We characterized the expression of RA receptors and retinoid X receptors (RARs and RXRs) in a series of 111 thyroid tumors and investigated the mechanisms responsible for their deregulation: hypermethylation of the RARB2 promoter, loss of heterozygosity (LOH) in the regions of RARB and RXRA, and altered expression of CRBP1 and enzymes involved in RA biosynthesis (RDH10 and RALDH2). Expression of RALDH2 and RDH10 was conserved in 100 % of adenomas and in 90 and 98 %, respectively, of carcinomas, whereas staining for CRBP1 was decreased in 9 % of FAs and 28 % of carcinomas, mainly anaplastic carcinomas (55 %). We found an abnormal expression of RARA, RARB, RXRA, and RXRB in 67, 69, 66, and 73 %, respectively, of thyroid carcinomas (n = 78) and in 9, 9, 9, and 33 % of follicular adenomas (n = 33) (p < 0.001). An abnormal staining pattern of at least two of these markers had 90 % sensitivity and 91 % specificity for a diagnosis of malignancy. Promoter hypermethylation of RARB2 was observed in some anaplastic carcinomas (14 %). LOH was found to be common at the RARB locus (3p24-3p25) and the RXRA locus (9q34), respectively, in 44 and 55 % of carcinomas and in 27 and 43 % of adenomas. In conclusion, immunohistochemical staining for RARs and RXRs may help in the differential diagnosis between well-differentiated carcinoma and follicular adenoma. Further investigation should be carried out to determine whether the characterization of RR expression might identify patients who could benefit from therapy with RA derivatives.

Honda M, Yamashita T, Yamashita T, et al.
Peretinoin, an acyclic retinoid, improves the hepatic gene signature of chronic hepatitis C following curative therapy of hepatocellular carcinoma.
BMC Cancer. 2013; 13:191 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The acyclic retinoid, peretinoin, has been shown to be effective for suppressing hepatocellular carcinoma (HCC) recurrence after definitive treatment in a small-scale randomized clinical trial. However, little has been documented about the mechanism by which peretinoin exerts its inhibitory effects against recurrent HCC in humans in vivo.
METHODS: Twelve hepatitis C virus-positive patients whose HCC had been eradicated through curative resection or ablation underwent liver biopsy at baseline and week 8 of treatment with either a daily dose of 300 or 600 mg peretinoin. RNA isolated from biopsy samples was subjected to gene expression profile analysis.
RESULTS: Peretinoin treatment elevated the expression levels of IGFBP6, RBP1, PRB4, CEBPA, G0S2, TGM2, GPRC5A, CYP26B1, and many other retinoid target genes. Elevated expression was also observed for interferon-, Wnt-, and tumor suppressor-related genes. By contrast, decreased expression levels were found for mTOR- and tumor progression-related genes. Interestingly, gene expression profiles for week 8 of peretinoin treatment could be classified into two groups of recurrence and non-recurrence with a prediction accuracy rate of 79.6% (P<0.05). In the liver of patients with non-recurrence, expression of PDGFC and other angiogenesis genes, cancer stem cell marker genes, and genes related to tumor progression was down-regulated, while expression of genes related to hepatocyte differentiation, tumor suppression genes, and other genes related to apoptosis induction was up-regulated.
CONCLUSIONS: Gene expression profiling at week 8 of peretinoin treatment could successfully predict HCC recurrence within 2 years. This study is the first to show the effect of peretinoin in suppressing HCC recurrence in vivo based on gene expression profiles and provides a molecular basis for understanding the efficacy of peretinoin.

Chou AP, Chowdhury R, Li S, et al.
Identification of retinol binding protein 1 promoter hypermethylation in isocitrate dehydrogenase 1 and 2 mutant gliomas.
J Natl Cancer Inst. 2012; 104(19):1458-69 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mutations in isocitrate dehydrogenase 1 (IDH1) and associated CpG island hypermethylation represent early events in the development of low-grade gliomas and secondary glioblastomas. To identify candidate tumor suppressor genes whose promoter methylation may contribute to gliomagenesis, we compared methylation profiles of IDH1 mutant (MUT) and IDH1 wild-type (WT) tumors using massively parallel reduced representation bisulfite sequencing.
METHODS: Reduced representation bisulfite sequencing was performed on ten pathologically matched WT and MUT glioma samples and compared with data from a methylation-sensitive restriction enzyme technique and data from The Cancer Genome Atlas (TCGA). Methylation in the gene retinol-binding protein 1 (RBP1) was identified in IDH1 mutant tumors and further analyzed with primer-based bisulfite sequencing. Correlation between IDH1/IDH2 mutation status and RBP1 methylation was evaluated with Spearman correlation. Survival data were collected retrospectively and analyzed with Kaplan-Meier and Cox proportional hazards analysis. All statistical tests were two-sided.
RESULTS: Methylome analysis identified coordinated CpG island hypermethylation in IDH1 MUT gliomas, consistent with previous reports. RBP1, important in retinoic acid metabolism, was found to be hypermethylated in 76 of 79 IDH1 MUT, 3 of 3 IDH2 MUT, and 0 of 116 IDH1/IDH2 WT tumors. IDH1/IDH2 mutation was highly correlated with RBP1 hypermethylation (n = 198; Spearman R = 0.94, 95% confidence interval = 0.92 to 0.95, P < .001). The Cancer Genome Atlas showed IDH1 MUT tumors (n = 23) to be RBP1-hypermethylated with decreased RBP1 expression compared with WT tumors (n = 124). Among patients with primary glioblastoma, patients with RBP1-unmethylated tumors (n = 102) had decreased median overall survival compared with patients with RBP1-methylated tumors (n = 22) (20.3 months vs 36.8 months, respectively; hazard ratio of death = 2.48, 95% confidence interval = 1.30 to 4.75, P = .006).
CONCLUSION: RBP1 promoter hypermethylation is found in nearly all IDH1 and IDH2 mutant gliomas and is associated with improved patient survival. Because RBP1 is involved in retinoic acid synthesis, our results suggest that dysregulation of retinoic acid metabolism may contribute to glioma formation along the IDH1/IDH2-mutant pathway.

Manzo SG, Zhou ZL, Wang YQ, et al.
Natural product triptolide mediates cancer cell death by triggering CDK7-dependent degradation of RNA polymerase II.
Cancer Res. 2012; 72(20):5363-73 [PubMed] Related Publications
Triptolide is a bioactive ingredient in traditional Chinese medicine that exhibits diverse biologic properties, including anticancer properties. Among its many putative targets, this compound has been reported to bind to XPB, the largest subunit of general transcription factor TFIIH, and to cause degradation of the largest subunit Rpb1 of RNA polymerase II (RNAPII). In this study, we clarify multiple important questions concerning the significance and basis for triptolide action at this core target. Triptolide decreased Rpb1 levels in cancer cells in a manner that was correlated tightly with its cytotoxic activity. Compound exposure blocked RNAPII at promoters and decreased chromatin-bound RNAPII, both upstream and within all genes that were examined, also leading to Ser-5 hyperphosphorylation and increased ubiqutination within the Rbp1 carboxy-terminal domain. Notably, cotreatment with inhibitors of the proteasome or the cyclin-dependent kinase CDK7 inhibitors abolished the ability of triptolide to ablate Rpb1. Together, our results show that triptolide triggers a CDK7-mediated degradation of RNAPII that may offer an explanation to many of its therapeutic properties, including its robust and promising anticancer properties.

Bosch A, Bertran SP, Lu Y, et al.
Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis.
Breast Cancer Res. 2012; 14(4):R121 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently, the nuclear retinoic acid receptor (RAR) isotypes α, β and γ were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance, RARγ appears to be involved in stem cell compartment expansion, while RARα and RARβ are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer, disrupts the balance between RARγ and RARα/β in favor of RARγ.
METHODS: The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium, mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well as human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RARα-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the MMTV-Myc mouse model of mammary tumorigenesis.
RESULTS: Modulation of the RARα/β to RARγ expression in mammary glands of normal mice, oncomice, and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation, survival and tumor growth. Treatment of MMTV-Myc mice with the RARα-selective agonist Am580 led to significant inhibition of mammary tumor growth (~90%, P<0.001), lung metastasis (P<0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice, RARα responsive genes such as Cyp26A1, E-cadherin, cellular retinol-binding protein 1 (CRBP1) and p27, were up-regulated. In contrast, the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RARγ. In vitro experiments indicated that the rise in RARγ was functionally linked to promotion of tumor growth and inhibition of differentiation. Thus, activation of the RARα pathway is linked to tumor growth inhibition, differentiation and cell death.
CONCLUSIONS: The functional consequence of the interplay between c-Myc oncogene expression and the RARγ to RARα/β balance suggests that prevalence of RARγ over-RARα/β expression levels in breast cancer accompanied by c-Myc amplification or over-expression in breast cancer should be predictive of response to treatment with RARα-isotype-specific agonists and warrant monitoring during clinical trials.

Zhang X, Li HM, Liu Z, et al.
Loss of heterozygosity and methylation of multiple tumor suppressor genes on chromosome 3 in hepatocellular carcinoma.
J Gastroenterol. 2013; 48(1):132-43 [PubMed] Related Publications
BACKGROUND: Genetic and epigenetic alterations are the two key mechanisms in the development of hepatocellular carcinoma (HCC). However, how they contribute to hepatocarcinogenesis and the correlation between them has not been fully elucidated.
METHODS: A total of 48 paired HCCs and noncancerous tissues were used to detect loss of heterozygosity (LOH) and the methylation profiles of five tumor suppressor genes (RASSF1A, BLU, FHIT, CRBP1, and HLTF) on chromosome 3 by using polymerase chain reaction (PCR) and methylation-specific PCR. Gene expression was analyzed by immunohistochemistry and reverse transcription (RT)-PCR.
RESULTS: Sixteen of 48 (33.3 %) HCCs had LOH on at least one locus on chromosome 3, and two smallest common deleted regions (3p22.3-24.3 and 3p12.3-14.2) were identified. RASSF1A, BLU, and FHIT showed very high frequencies of methylation in HCCs (100, 81.3, and 64.6 %, respectively) and noncancerous tissues, but not in liver tissues from control patients. Well-differentiated HCCs showed high methylation frequencies of these genes but very low frequencies of LOH. Furthermore, BLU methylation was associated with an increased level of alpha-fetoprotein, and FHIT methylation was inversely correlated with HCC recurrence. In comparison, CRBP1 showed moderate frequencies of methylation, while HLTF showed low frequencies of methylation, and CRBP1 methylation occurred mainly in elderly patients. Treatment with 5-aza-2'-deoxycytidine demethylated at least one of these genes and restored their expression in a DNA methylation-dependent or -independent manner.
CONCLUSIONS: Hypermethylation of RASSF1A, BLU, and FHIT is a common and very early event in hepatocarcinogenesis; CRBP1 methylation may also be involved in the later stage. Although LOH was not too frequent on chromosome 3, it may play a role as another mechanism in hepatocarcinogenesis.

Sun W, Guo C, Meng X, et al.
Differential expression of PAI-RBP1, C1orf142, and COTL1 in non-small cell lung cancer cell lines with different tumor metastatic potential.
J Investig Med. 2012; 60(4):689-94 [PubMed] Related Publications
Human non-small cell lung cancer (NSCLC) is one of the most common malignancies in the modern world. Its recurrence is mainly due to its ability to invade and metastasize. However, the precise mechanism for tumor development and metastasis is still not fully understood. To shed light on the development of lung cancer, the human giant cell lung carcinoma cell lines 95D with high metastatic potential and 95C with low metastatic potential were selected in this study. The 2 cell lines originated from the same parental cell and share a similar genetic background. In the current study, we identified 3 differentially expressed proteins in 95C and 95D cell lines, namely, PAI-RBP1, C1orf142, and COTL1, by using 2-dimensional electrophoresis proteomics analysis. We found that PAI-RBP1 and C1orf142 expression levels were higher in 95D than in 95C cells, whereas COTL1 expression level was lower in 95D when compared to 95C cells. We also confirmed these results by reverse transcription-polymerase chain reaction and immunoblotting analyses. The messenger RNA and protein levels of PAI-RBP1 and C1orf142 were much higher in 95D than in 95C cells, and COTL1 expression level was lower in 95D than in 95C cells. The PAI-RBP1 expression was assessed by immunohistochemistry in 70 NSCLC and 7 normal lung tissue samples from patients. PAI-RBP1 expression level was higher in tumor tissues (positive staining in 87.1% of cases [61/70]) than in normal tissues (positive staining in 14.3% of cases [1/7]). In conclusion, by studying protein expression in NSCLC cell lines with high and low metastasis as well as in human lung cancer tissues, we have identified 3 proteins, namely, PAI-RBP1, C1orf142, and COTL1, which were differentially expressed in NSCLC cell lines with different metastatic potential. In addition, we also found that PAI-RBP1 might contribute to NSCLC development.

Colvin EK, Susanto JM, Kench JG, et al.
Retinoid signaling in pancreatic cancer, injury and regeneration.
PLoS One. 2011; 6(12):e29075 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC.
METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies.
CONCLUSIONS/SIGNIFICANCE: In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1.

Fu YS, Wang Q, Ma JX, et al.
CRABP-II methylation: a critical determinant of retinoic acid resistance of medulloblastoma cells.
Mol Oncol. 2012; 6(1):48-61 [PubMed] Related Publications
Medulloblastoma cells exhibit varied responses to therapy by all-trans retinoic acid (RA). The underlying mechanism for such diverse effects however remains largely unclear. In this study, we attempted to elucidate the molecular basis of RA resistance through the study of RA signaling components in both RA-sensitive (Med-3) and RA-resistant (UW228-2 and UW228-3) medulloblastoma cells. The results revealed that RARα/β/γ and RXRα/β/γ were found in the three cell lines. Expression of CRABP-I and CRABP-II was seen in Med-3 cells, up-regulated when treated with RA, but was absent in UW228-2 and UW228-3 cells regardless of RA treatment. Bisulfite sequencing revealed 8 methylated CG sites at the promoter region of CRABP-II in UW228-2 and UW228-3 but not in Med-3 cells. Demethylation by 5-aza-2'-deoxycytidine recovered CRABP-II expression. Upon restoration of CRABP-II expression, both UW228-2 and UW228-3 cells responded to RA treatment by forming neuronal-like differentiation, synaptophysin expression, β-III tubulin upregulation, and apoptosis. Furthermore, CRABP-II specific siRNA reduced RA sensitivity in Med-3 cells. Tissue microarray-based immunohistochemical staining showed variable CRABP-II expression patterns among 104 medulloblastoma cases, ranging from negative (42.3%), partly positive (14.4%) to positive (43.3%). CRABP-II expression was positively correlated with synaptophysin (rs = 0.317; p = 0.001) but not with CRABP-I expression (p > 0.05). In conclusion, aberrant methylation in CRABP-II reduces the expression of CRABP-II that in turn confers RA resistance in medulloblastoma cells. Determination of CRABP-II expression or methylation status may enable a personalized RA therapy in patients with medulloblastomas and other types of cancers.

Castillo SD, Matheu A, Mariani N, et al.
Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer.
Cancer Res. 2012; 72(1):176-86 [PubMed] Related Publications
The HMG box transcription factor SOX4 involved in neuronal development is amplified and overexpressed in a subset of lung cancers, suggesting that it may be a driver oncogene. In this study, we sought to develop this hypothesis including by defining targets of SOX4 that may mediate its involvement in lung cancer. Ablating SOX4 expression in SOX4-amplified lung cancer cells revealed a gene expression signature that included genes involved in neuronal development such as PCDHB, MYB, RBP1, and TEAD2. Direct recruitment of SOX4 to gene promoters was associated with their upregulation upon ectopic overexpression of SOX4. We confirmed upregulation of the SOX4 expression signature in a panel of primary lung tumors, validating their specific response by a comparison using embryonic fibroblasts from Sox4-deficient mice. Interestingly, we found that small cell lung cancer (SCLC), a subtype of lung cancer with neuroendocrine characteristics, was generally characterized by high levels of SOX2, SOX4, and SOX11 along with the SOX4-specific gene expression signature identified. Taken together, our findings identify a functional role for SOX genes in SCLC, particularly for SOX4 and several novel targets defined in this study.

Chen NN, Li Y, Wu ML, et al.
CRABP-II- and FABP5-independent all-trans retinoic acid resistance in COLO 16 human cutaneous squamous cancer cells.
Exp Dermatol. 2012; 21(1):13-8 [PubMed] Related Publications
The effect of all-trans retinoic acid (ATRA) on cutaneous squamous cell carcinomas (c-SCC) has been poorly described. Because the imbalance of CRABP-II-mediated anticancer signalling and FABP5-mediated growth-promoting signalling was supposed to be related with ATRA sensitivities of cancer cells, COLO16 human c-SCC cell line was selected to check underlying mechanism leading to ATRA resistance by multiple experimental approaches. The results revealed that COLO 16 cells were resistant to 15 μm ATRA treatment. FABP5 as well as the elements related with CRABP-II signalling (CYP26A1, CYP26B1, CRABP-I, RARα/β/γ and RXRα/β/γ) and with FABP5 signalling (PPARβ/δ) were expressed, but CRABP-II was undetectable in COLO 16 cells. 5-Aza treatment enhanced CRABP-II expression but further bisulfite sequencing PCR-DNA sequencing revealed no methylation in CRABP-II promoter region. Transfection of CRABP-II-expressing plasmids or FABP5 siRNA or both successfully manipulated the level(s) of target gene expression but failed to overcome ATRA resistance in the transfectants. In conclusion, CRABP-II and FABP5 expression were imbalanced in ATRA-resistant COLO 16 cells. 5-Aza-enhanced CRABP-II expression and unmethylation in CRABP-II promoter region suggest the methylation of certain CRABP-II regulatory gene(s) in COLO 16 cells. As neither restoration of CRABP-II expression nor the increased CRABP-II versus FABP5 ratio can overcome ATRA resistance of COLO 16 cells, additional ATRA-resistant mechanism(s) may present in human c-SCCs and COLO 16 cells would be of value in addressing this issue.

Peralta R, Valdivia A, Alvarado-Cabrero I, et al.
Correlation between expression of cellular retinol-binding protein 1 and its methylation status in larynx cancer.
J Clin Pathol. 2012; 65(1):46-50 [PubMed] Related Publications
AIMS: The authors have previously reported that cellular retinol-binding protein 1 (CRBP1) gene gain and its expression correlated significantly with survival in laryngeal carcinoma patients. The authors hypothesised that inactivation of the CRBP1 gene through CpG methylation is associated with patient status and gene expression. In this work, the authors determine the expression and methylation status of the CRBP1 gene and its correlation with clinical variables of laryngeal carcinoma patients.
METHODS: The CRBP1 gene methylation promoter was assessed by methylation specific PCR analysis in tissue samples from larynx cancer specimens and its expression was assessed by immunohistochemistry on paraffin embedded tissue using tissue microarray. The results were then compared with the clinical pathological variables and outcome measures. The study included 46 samples from patients with non-metastatic squamous cell carcinoma of the larynx without any previous oncological treatments.
RESULTS: Lack of CRBP1 expression was seen in 17 of the 46 laryngeal carcinoma samples, while the remaining 29 samples showed increased expression. Significant associations were found between CRBP1 expression and methylation and patient status. There was a tendency for association in all clinical stages of the disease. CRBP1 gene expression and its unmethylated promoter correlated significantly with survival (p<0.05).
CONCLUSIONS: An early event of larynx cancer could be CRBP1 expression related to unmethylation of the promoter region. These features could also be associated with good response and survival. The authors hypothesised that increased expression and unmethylated promoter of the CRBP1 gene could be considered as markers for larynx cancer.

Mougeot JL, Bahrani-Mougeot FK, Lockhart PB, Brennan MT
Microarray analyses of oral punch biopsies from acute myeloid leukemia (AML) patients treated with chemotherapy.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 112(4):446-52 [PubMed] Related Publications
OBJECTIVE: Understanding the pathogenesis of chemotherapy-induced oral mucositis (CIOM) is vital to develop therapies for this common, dose-limiting side effect of cancer treatment. We investigated molecular events in CIOM from buccal mucosa tissue collected before and 2 days after chemotherapy from patients with acute myeloid leukemia (AML) and healthy controls by microarray analysis.
METHODS: Microarray analysis was performed using Human Genome U133 Plus 2.0 Array on buccal mucosa punch biopsies from patients with AML before (n = 4) or after chemotherapy (n = 4), and from healthy controls (n = 3). Following Robust Multichip Average (RMA) normalization, we applied Linear Models for Microarray data (LIMMA) and Significance Analysis of Microarrays (SAM) for data analysis using the TM4/TMeV v4.5.1 program.
RESULTS: LIMMA and SAM identified genes potentially affected by the presence of AML, including homeodomain-interacting protein kinase 1 (HIPK1), mex-3 homolog D (MEX3D), and genes potentially affected by chemotherapy, including argininosuccinate synthase 1 (ASS1), notch homolog 1 (NOTCH1), zinc transporter ZIP6 (SLC39A6), and TP53-regulated inhibitor of apoptosis 1 (TRIAP1). The expression of 2 genes with potential biological significance in oral mucositis, ASS1 and SLC39A6 (alias LIV-1), was confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR).
CONCLUSIONS: Our results suggest that AML-specific deregulated immune responses and inflammatory tissue damage to the oral mucosa caused by chemotherapy may not be overcome by the natural cellular repair processes and therefore contribute to CIOM.

Chile T, Corrêa-Giannella ML, Fortes MA, et al.
Expression of CRABP1, GRP, and RERG mRNA in clinically non-functioning and functioning pituitary adenomas.
J Endocrinol Invest. 2011; 34(8):e214-8 [PubMed] Related Publications
BACKGROUND: Pituitary tumors account for approximately 10-15% of intracranial neoplasms.
AIM: Using the cDNA microarray method, we have previously compared expression under two distinct conditions: a pool of 4 clinically non-functioning pituitary adenomas (NFPA) and a spinal cord metastasis of a non-functioning pituitary carcinoma, in order to gain biological insights into genomic changes of pituitary neoplasias. In the present study, we further investigated the mRNA expression of 3 selected genes previously described as being involved in other neoplasias based on a series of 60 pituitary adenomas: CRABP1 (cellular retinoic acid binding protein 1), GRP (gastrin-releasing peptide), and RERG (Ras-related, estrogen- regulated, growth inhibitor).
MATERIAL AND METHODS: The expression of CRABP1, GRP, and RERG was determined by quantitative RT-PCR.
RESULTS: A significantly higher content of CRABP1 mRNA was observed in NFPA compared to functioning adenomas, and PRL-secreting adenomas showed a lower expression of this gene compared to normal pituitary. A lower expression of GRP mRNA was detected in NFPA compared to normal pituitary and also to functioning adenomas. RERG mRNA was overexpressed in NFPA in comparison to functioning adenomas and to normal pituitary. Among the functioning adenomas, only the ACTH-secreting adenomas presented a higher expression of RERG mRNA compared to normal pituitary.
CONCLUSIONS: The findings of differential expression of CRABP1 in prolactinomas and of RERG in NFPA compared to normal pituitary suggests that retinoic acid and estrogen receptor, respectively, could be involved in the tumorigenesis of these adenomas subtypes. Additional studies are required to further confirm this hypothesis.

Yamana D, Shimizu T, Fan Y, et al.
Decrease of hepatic stellate cells in rats with enhanced sensitivity to clofibrate-induced hepatocarcinogenesis.
Cancer Sci. 2011; 102(4):735-41 [PubMed] Related Publications
To examine the possible involvement of nonparenchymal cells in the development of preneoplastic hepatic lesions induced by clofibrate (CF), alterations of these cells were investigated immunohistochemically in glutathione S-transferase M1 gene polymorphic rats (KS and NC types) with different cancer susceptibilities. After CF administration for 8 weeks, α-smooth muscle actin (α-SMA)-positive hepatic stellate cells (HSC) were markedly decreased in sensitive KS-type rats, but not in the NC-type rats. Kupffer cells were decreased with similar extents between them. The sinusoidal endothelial cells were not changed in either type. The other markers for HSC, vimentin and CRBP1, also confirmed the decrease of HSC in the KS type. The decrease of HSC was not observed at 4 weeks of CF administration. Preneoplastic peroxisomal bifunctional enzyme-negative foci were detected in the KS-type rats at 8 weeks of CF administration, but not at 4 weeks. Human HSC were cultured in the presence of clofibric acid and expression of most HSC marker genes, such as vimentin and α-SMA (ACTA2), evaluated by a microarray, was not altered by the treatment, suggesting that HSC loss in the KS-type rats was not due to the direct toxic effect of CF. The expression levels of most HSC marker genes were low in both control and CF-treated rat livers. A possible link between HSC loss and the development of preneoplastic hepatic foci is discussed.

Toki K, Enokida H, Kawakami K, et al.
CpG hypermethylation of cellular retinol-binding protein 1 contributes to cell proliferation and migration in bladder cancer.
Int J Oncol. 2010; 37(6):1379-88 [PubMed] Related Publications
We have previously reported a simple technique that combines microarray data from clinical bladder cancer (BC) specimens with those from a BC cell line (BOY) treated with a pharmacological demethylating agent [5-aza-2'-deoxycytidine (5-aza-dC)] to find candidate genes that have tumor suppressive functions. We focused on the cellular retinol-binding protein 1 (CRBP1) gene that was selected by using the microarray data. As CRBP1 regulates intracellular retinoic acid (vitamin A) homeostasis, which is involved in morphogenesis, and cellular proliferation and differentiation, the loss of CRBP1 could cause tumorigenesis in BC. We hypothesized that the inactivation of the CRBP1 gene through CpG methylation contributes to cell viability, including the migration and invasion activity of human BC cells. After the 5-aza-dC treatment, the mRNA and protein expression levels of CRBP1 markedly increased in all BOY and T24 BC cell lines. Combined bisulfite-restriction analysis and bisulfite DNA sequencing revealed that promoter CpG hypermethylation existed in 28 out of the 65 BCs (43%) and in none of the 16 normal bladder epithelia (NBEs). Conversely, CRBP1 mRNA expression in the BCs was significantly lower than that in the NBEs (0.63 ± 0.11 vs. 4.92 ± 0.80, p<0.0001). We found significant inhibition of cell growth (p<0.0001) and migration (p<0.0001) in the CRBP1 stable transfectants compared to the control cell line, in a cell proliferation and wound-healing assay, respectively. In conclusion, the aberrant CpG hypermethylation of the CRBP1 gene promoter could be involved in the development of BC. We demonstrate here for the first time that the CRBP1 gene could have a tumor suppressive function in BC.

Wong CM, Anderton DL, Smith-Schneider S, et al.
Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women.
Epigenetics. 2010; 5(7):645-55 [PubMed] Free Access to Full Article Related Publications
Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle, and reproductive history questionnaires were collected from 111 women. Pyrosequencing analysis was conducted on DNA isolated from the exfoliated epithelial cells immunomagnetically separated from the total cell population in the breast milk of 102 women. A total of 65 CpG sites were examined in six tumor suppressor genes: PYCARD (also known as ASC or TMS1), CDH1, GSTP1, RBP1 (also known as CRBP1), SFRP1, and RASSF1. A sufficient quantity of DNA was obtained for meaningful analysis of promoter methylation; women donated an average of 86 ml of milk with a mean yield of 32,700 epithelial cells per ml. Methylation scores were in general low as expected of benign tissue, but analysis of outlier methylation scores revealed a significant relationship between breast cancer risk, as indicated by previous biopsy, and methylation score for several CpG sites in CDH1, GSTP1, SFRP1, and RBP1. Methylation of RASSF1 was positively correlated with women's age irrespective of her reproductive history. Promoter methylation patterns in DNA from breast milk epithelial cells can likely be used to assess breast cancer risk. Additional studies of women at high breast cancer risk are warranted.

Davidson B, Stavnes HT, Holth A, et al.
Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions.
J Cell Mol Med. 2011; 15(3):535-44 [PubMed] Free Access to Full Article Related Publications
Ovarian/primary peritoneal carcinoma and breast carcinoma are the gynaecological cancers that most frequently involve the serosal cavities.With the objective of improving on the limited diagnostic panel currently available for the differential diagnosis of these two malignancies,as well as to define tumour-specific biological targets, we compared their global gene expression patterns. Gene expression profiles of 10 serous ovarian/peritoneal and eight ductal breast carcinoma effusions were analysed using the HumanRef-8 BeadChip from Illumina.Differentially expressed candidate genes were validated using quantitative real-time PCR and immunohistochemistry. Unsupervised hierarchical clustering using all 54,675 genes in the array separated ovarian from breast carcinoma samples. We identified 288 unique probes that were significantly differentially expressed in the two cancers by greater than 3.5-fold, of which 81 and 207 were overexpressed in breast and ovarian/peritoneal carcinoma, respectively. SAM analysis identified 1078 differentially expressed probes with false discovery rate less than 0.05. Genes overexpressed in breast carcinoma included TFF1, TFF3, FOXA1, CA12, GATA3, SDC1, PITX1, TH, EHFD1, EFEMP1, TOB1 and KLF2. Genes overexpressed in ovarian/peritoneal carcinoma included SPON1, RBP1, MFGE8, TM4SF12, MMP7, KLK5/6/7, FOLR1/3,PAX8, APOL2 and NRCAM. The differential expression of 14 genes was validated by quantitative real-time PCR, and differences in 5 gene products were confirmed by immunohistochemistry. Expression profiling distinguishes ovarian/peritoneal carcinoma from breast carcinoma and identifies genes that are differentially expressed in these two tumour types. The molecular signatures unique to these cancers may facilitate their differential diagnosis and may provide a molecular basis for therapeutic target discovery.

Peralta R, Baudis M, Vazquez G, et al.
Increased expression of cellular retinol-binding protein 1 in laryngeal squamous cell carcinoma.
J Cancer Res Clin Oncol. 2010; 136(6):931-8 [PubMed] Related Publications
PURPOSE: To investigate the genomic alterations in larynx carcinomas (LaCa) tissues and its prognostics values in predicting survival.
METHODS: To analyse the aberrations in the genome of LaCa patients, we used array comparative genomic hybridization in 19 human laryngeal tumour samples. DNA samples were also subjected to detect human papillomavirus (HPV) sequences by polymerase chain reaction (PCR). Copy number gain was confirmed by real-time PCR. The cellular retinol-binding protein 1 (CRBP-1) gene expression was also confirmed by immunohistochemistry assay on LaCa tissues. To identify prognostic feature, CRBP-1 gene gain was correlated to patient survival.
RESULTS: The most common gains were detected for CRBP-1 and EGFR genes, while DNA lost in RAF-1 gene. Immunohistochemistry assay was revealed strong expression of CRBP1 protein in those cases with CRBP-1 gene gain. The CRBP-1 gene gain and its expression correlated significantly with survival (P = 0.003). Cox regression analysis indicated that CRBP-1 expression level was a factor of survival (P = 0.008). HPV sequences were detected in 42% of the samples, and did not show any relationship with specific gene alterations.
CONCLUSION: Our data shows that CRBP-1 gene gain can be determined by immunohistochemistry on routinely processed tissue specimens, and could support as a potential novel marker for long-term survival in laryngeal squamous cell carcinoma.

Tsunoda S, Smith E, De Young NJ, et al.
Methylation of CLDN6, FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in esophageal squamous cell carcinoma.
Oncol Rep. 2009; 21(4):1067-73 [PubMed] Related Publications
In the development and progression of cancer, tumor suppressor genes may be silenced by mechanisms such as methylation. Thus the discovery of new genes silenced by methylation may uncover new tumor suppressor genes, and improve our understanding of cancer biology. In this study we investigated the methylation of 19 genes in esophageal squamous cell carcinoma. Methylation was measured in 10 of these genes in esophageal squamous cell carcinoma cell lines: CDH13, CLDN6, C16orf62, FBN2, FNBP1, ID4, RBP1, RBP4, TFPI2 and TMEFF2. To determine if there was a correlation between DNA methylation and gene silencing, each cell line was cultured with or without the demethylating drug 5-aza-2'-deoxycytidine (aza-dC). For 6 genes (CLDN6, FBN2, RBP1, RBP4, TFPI2 and TMEFF2) there was an association between reduction of methylation and increase in mRNA expression in the demethylated cell lines. The frequency of the methylation of these 6 genes in esophageal squamous cell carcinoma resection specimens was also investigated. All 6 genes showed more frequent methylation in the tumor than the matched proximal resection margin of uninvolved esophagus. There was a significant difference in the frequency of methylation and in the extent of the methylation between the cancer and the margin tissues for CLDN6, FBN2, TFPI2 and TMEFF2 (P=0.0007, P=0.0048 P=0.0002 and P<0.0001, respectively). This is the first report of gene silencing by methylation of CLDN6, FBN2, RBP4, TFPI2 and TMEFF2 in esophageal squamous cell carcinoma.

Vasilatos SN, Broadwater G, Barry WT, et al.
CpG island tumor suppressor promoter methylation in non-BRCA-associated early mammary carcinogenesis.
Cancer Epidemiol Biomarkers Prev. 2009; 18(3):901-14 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Only 5% of all breast cancers are the result of BRCA1/2 mutations. Methylation silencing of tumor suppressor genes is well described in sporadic breast cancer; however, its role in familial breast cancer is not known.
METHODS: CpG island promoter methylation was tested in the initial random periareolar fine-needle aspiration sample from 109 asymptomatic women at high risk for breast cancer. Promoter methylation targets included RARB (M3 and M4), ESR1, INK4a/ARF, BRCA1, PRA, PRB, RASSF1A, HIN-1, and CRBP1.
RESULTS: Although the overall frequency of CpG island promoter methylation events increased with age (P<0.0001), no specific methylation event was associated with age. In contrast, CpG island methylation of RARB M4 (P=0.051), INK4a/ARF (P=0.042), HIN-1 (P=0.044), and PRA (P=0.032), as well as the overall frequency of methylation events (P=0.004), was associated with abnormal Masood cytology. The association between promoter methylation and familial breast cancer was tested in 40 unaffected premenopausal women in our cohort who underwent BRCA1/2 mutation testing. Women with BRCA1/2 mutations had a low frequency of CpG island promoter methylation (15 of 15 women had CONCLUSIONS: This is the first evidence of CpG island methylation of tumor suppressor gene promoters in non-BRCA1/2 familial breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RBP1, Cancer Genetics Web: http://www.cancer-genetics.org/RBP1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999