Gene Summary

Gene:RHEB; Ras homolog, mTORC1 binding
Aliases: RHEB2
Summary:This gene is a member of the small GTPase superfamily and encodes a lipid-anchored, cell membrane protein with five repeats of the RAS-related GTP-binding region. This protein is vital in regulation of growth and cell cycle progression due to its role in the insulin/TOR/S6K signaling pathway. The protein has GTPase activity and shuttles between a GDP-bound form and a GTP-bound form, and farnesylation of the protein is required for this activity. Three pseudogenes have been mapped, two on chromosome 10 and one on chromosome 22. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:GTP-binding protein Rheb
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (13)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Sirolimus
  • Monomeric GTP-Binding Proteins
  • Bladder Cancer
  • mechanistic target of rapamycin complex 1
  • Chromosome 7
  • Tuberous Sclerosis Complex 1 Protein
  • Kidney Cancer
  • Ras Homolog Enriched in Brain Protein
  • Transcription Factors
  • Tumor Suppressor Proteins
  • Disease Models, Animal
  • Messenger RNA
  • p300-CBP Transcription Factors
  • Repressor Proteins
  • Mutation
  • Western Blotting
  • Urothelium
  • TOR Serine-Threonine Kinases
  • Protein-Serine-Threonine Kinases
  • Protein Kinases
  • Tuberous Sclerosis
  • Phosphorylation
  • alpha-Macroglobulins
  • Up-Regulation
  • Cell Proliferation
  • Ribosomal Protein S6 Kinases
  • Protein Binding
  • Lymphangioleiomyomatosis
  • Signal Transduction
  • p53 Protein
  • Wortmannin
  • ral GTP-Binding Proteins
  • Proteins
  • Apoptosis
  • DNA Mutational Analysis
  • Cancer Gene Expression Regulation
  • Multiprotein Complexes
  • Neuropeptides
  • tuberous sclerosis complex 2 protein
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RHEB (cancer-related)

Wang L, Yu Z, Ren S, et al.
Metabolic reprogramming in colon cancer reversed by DHTS through regulating PTEN/AKT/HIF1α mediated signal pathway.
Biochim Biophys Acta Gen Subj. 2018; 1862(10):2281-2292 [PubMed] Related Publications
BACKGROUND: Metabolic reprogramming and hypoxia contribute to the resistance of conventional chemotherapeutic drugs in kinds of cancers. In this study, we investigated the effect of dihydrotanshinone I (DHTS) on reversing dysregulated metabolism of glucose and fatty acid in colon cancer and elucidated its mechanism of action.
METHODS: Cell viability was determined by MTT assay. Oxidative phosphorylation, glycolysis, and mitochondrial fuel oxidation were assessed by Mito stress test, glycolysis stress test, and mito fuel flex test, respectively. Anti-cancer activity of DHTS in vivo was evaluated in Colon cancer xenograft. Hexokinase activity and free fatty acid (FFA) content were assessed using respective Commercial kits. Gene expression patterns were determined by performing DNA microarray analysis and real-time PCR. Protein expression was assessed using immunoblotting and immunohistochemistry.
RESULTS: DHTS showed similar cytotoxicity against colon cancer cells under hypoxia and normoxia. DHTS decreased the efficiency of glucose and FA as mitochondrial fuels in HCT116 cells, which efficiently reversed by VO-OHpic trihydrate. DHTS reduced hexokinase activity and free fatty acid (FFA) content in tumor tissue of xenograft model of colon cancer. Gene expression patterns in metabolic pathways were dramatically differential between model and treatment group. Increases in PTEN and a substantial decrease in the expression of SIRT3, HIF1α, p-AKT, HKII, p-MTOR, RHEB, and p-ACC were detected.
CONCLUSIONS: DHTS reversed metabolic reprogramming in colon cancer through PTEN/AKT/HIF1α-mediated signal pathway.
GENERAL SIGNIFICANCE: The study is the first to report the reverse of metabolic reprogramming by DHTS in colon cancer. Meantime, SIRT3/PTEN/AKT/HIF1α mediated signal pathway plays a critical role during this process.

Heard JJ, Phung I, Potes MI, Tamanoi F
An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.
BMC Cancer. 2018; 18(1):69 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB.
METHODS: To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays.
RESULTS: We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines.
CONCLUSIONS: RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling.

Cho JH, Patel B, Bonala S, et al.
Notch transactivates Rheb to maintain the multipotency of TSC-null cells.
Nat Commun. 2017; 8(1):1848 [PubMed] Free Access to Full Article Related Publications
Differentiation abnormalities are a hallmark of tuberous sclerosis complex (TSC) manifestations; however, the genesis of these abnormalities remains unclear. Here we report on mechanisms controlling the multi-lineage, early neuronal progenitor and neural stem-like cell characteristics of lymphangioleiomyomatosis (LAM) and angiomyolipoma cells. These mechanisms include the activation of a previously unreported Rheb-Notch-Rheb regulatory loop, in which the cyclic binding of Notch1 to the Notch-responsive elements (NREs) on the Rheb promoter is a key event. This binding induces the transactivation of Rheb. The identified NRE2 and NRE3 on the Rheb promoter are important to Notch-dependent promoter activity. Notch cooperates with Rheb to block cell differentiation via similar mechanisms in mouse models of TSC. Cell-specific loss of Tsc1 within nestin-expressing cells in adult mice leads to the formation of kidney cysts, renal intraepithelial neoplasia, and invasive papillary renal carcinoma.

Zhou L, Liu S, Han M, et al.
MicroRNA-185 induces potent autophagy via AKT signaling in hepatocellular carcinoma.
Tumour Biol. 2017; 39(2):1010428317694313 [PubMed] Related Publications
Studies have demonstrated that microRNA 185 may be a promising therapeutic target in liver cancer. However, its role in hepatocellular carcinoma is largely unknown. In this study, the proliferation of human HepG2 cells was inhibited by transfection of microRNA 185 mimics. Cell-cycle analysis revealed arrest at the G0/G1 phase. Transfection of HepG2 cells with microRNA 185 mimics significantly induced apoptosis. These data confirmed microRNA 185 as a potent cancer suppressor. We demonstrated that microRNA 185 was a compelling inducer of autophagy, for the first time. When cell autophagy was inhibited by chloroquine or 3-methyladenine, microRNA 185 induced more cell apoptosis. MicroRNA 185 acted as a cancer suppressor by regulating AKT1 expression and phosphorylation. Dual-luciferase reporter assays indicated that microRNA 185 suppressed the expression of target genes including RHEB, RICTOR, and AKT1 by directly interacting with their 3'-untranslated regions. Binding site mutations eliminated microRNA 185 responsiveness. Our findings demonstrate a new role of microRNA 185 as a key regulator of hepatocellular carcinoma via autophagy by dysregulation of AKT1 pathway.

Xu G, Zhang M, Zhu H, Xu J
A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM.
Gene. 2017; 604:33-40 [PubMed] Related Publications
OBJECTIVE: To screen the gene signature for distinguishing patients with high risks from those with low-risks for colon cancer recurrence and predicting their prognosis.
METHODS: Five microarray datasets of colon cancer samples were collected from Gene Expression Omnibus database and one was obtained from The Cancer Genome Atlas (TCGA). After preprocessing, data in GSE17537 were analyzed using the Linear Models for Microarray data (LIMMA) method to identify the differentially expressed genes (DEGs). The DEGs further underwent PPI network-based neighborhood scoring and support vector machine (SVM) analyses to screen the feature genes associated with recurrence and prognosis, which were then validated by four datasets GSE38832, GSE17538, GSE28814 and TCGA using SVM and Cox regression analyses.
RESULTS: A total of 1207 genes were identified as DEGs between recurrence and no-recurrence samples, including 726 downregulated and 481 upregulated genes. Using SVM analysis and five gene expression profile data confirmation, a 15-gene signature (HES5, ZNF417, GLRA2, OR8D2, HOXA7, FABP6, MUSK, HTR6, GRIP2, KLRK1, VEGFA, AKAP12, RHEB, NCRNA00152 and PMEPA1) were identified as a predictor of recurrence risk and prognosis for colon cancer patients.
CONCLUSION: Our identified 15-gene signature may be useful to classify colon cancer patients with different prognosis and some genes in this signature may represent new therapeutic targets.

Zech R, Kiontke S, Mueller U, et al.
Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis.
J Biol Chem. 2016; 291(38):20008-20 [PubMed] Free Access to Full Article Related Publications
Tuberous sclerosis complex (TSC) is caused by mutations in the TSC1 and TSC2 tumor suppressor genes. The gene products hamartin and tuberin form the TSC complex that acts as GTPase-activating protein for Rheb and negatively regulates the mammalian target of rapamycin complex 1 (mTORC1). Tuberin contains a RapGAP homology domain responsible for inactivation of Rheb, but functions of other protein domains remain elusive. Here we show that the TSC2 N terminus interacts with the TSC1 C terminus to mediate complex formation. The structure of the TSC2 N-terminal domain from Chaetomium thermophilum and a homology model of the human tuberin N terminus are presented. We characterize the molecular requirements for TSC1-TSC2 interactions and analyze pathological point mutations in tuberin. Many mutations are structural and produce improperly folded protein, explaining their effect in pathology, but we identify one point mutant that abrogates complex formation without affecting protein structure. We provide the first structural information on TSC2/tuberin with novel insight into the molecular function.

Gao Y, Gao J, Li M, et al.
Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
J Hematol Oncol. 2016; 9:36 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment.
METHODS: The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model.
RESULTS: We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells.
CONCLUSIONS: Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.

Nelson N, Clark GJ
Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling.
Oncotarget. 2016; 7(23):33821-31 [PubMed] Free Access to Full Article Related Publications
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.

Qin X, Wang X, Liu F, et al.
Gankyrin activates mTORC1 signaling by accelerating TSC2 degradation in colorectal cancer.
Cancer Lett. 2016; 376(1):83-94 [PubMed] Related Publications
Gankyrin is overexpressed in some malignancies. However its roles in colorectal carcinogenesis and underlying mechanisms remain largely unexplored. Here we report that gankyrin promotes the initiation and development of colorectal carcinogenesis by activating mTORC1 signaling through TSC/Rheb dependent mechanism. We further show that Gankyrin overexpression accelerated TSC2 degradation, while knockdown in a panel of colorectal cancer (CRC) cell lines, cell line derived xenografts and CRC patient derived xenograft (PDX) tumors delayed TSC2 degradation, restored the TSC2 protein level, and inhibited mTORC1 signaling and CRC growth. Our findings reveal a unique mechanism by which gankyrin promotes colorectal carcinogenesis and show that gankyrin is a potential therapeutic target to improve the clinical management of CRC.

Melloni GE, de Pretis S, Riva L, et al.
LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.
BMC Bioinformatics. 2016; 17:80 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The increasing availability of resequencing data has led to a better understanding of the most important genes in cancer development. Nevertheless, the mutational landscape of many tumor types is heterogeneous and encompasses a long tail of potential driver genes that are systematically excluded by currently available methods due to the low frequency of their mutations. We developed LowMACA (Low frequency Mutations Analysis via Consensus Alignment), a method that combines the mutations of various proteins sharing the same functional domains to identify conserved residues that harbor clustered mutations in multiple sequence alignments. LowMACA is designed to visualize and statistically assess potential driver genes through the identification of their mutational hotspots.
RESULTS: We analyzed the Ras superfamily exploiting the known driver mutations of the trio K-N-HRAS, identifying new putative driver mutations and genes belonging to less known members of the Rho, Rab and Rheb subfamilies. Furthermore, we applied the same concept to a list of known and candidate driver genes, and observed that low confidence genes show similar patterns of mutation compared to high confidence genes of the same protein family.
CONCLUSIONS: LowMACA is a software for the identification of gain-of-function mutations in putative oncogenic families, increasing the amount of information on functional domains and their possible role in cancer. In this context LowMACA emphasizes the role of genes mutated at low frequency otherwise undetectable by classical single gene analysis. LowMACA is an R package available at http://www.bioconductor.org/packages/release/bioc/html/LowMACA.html. It is also available as a GUI standalone downloadable at: https://cgsb.genomics.iit.it/wiki/projects/LowMACA.

Besse A, Sana J, Lakomy R, et al.
MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response.
Tumour Biol. 2016; 37(6):7719-27 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with an extremely low median survival rate of 12-15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to the treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain-specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and miR-338-5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased cell proliferation, increased cell cycle arrest, and apoptosis in comparison to irradiation-only cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, and ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation, and cell cycle regulation. To our knowledge, this is the first study to describe the role of miR-338-5p in GBM and its potential to improve the sensitivity of GBM to radiation.

Patel B, Patel J, Cho JH, et al.
Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex.
Oncogene. 2016; 35(23):3027-36 [PubMed] Related Publications
Functions of extracellular vesicles including exosomes in the pathogenesis of tuberous sclerosis complex (TSC) have not yet been studied. We report that the extracellular vesicles such as exosomes derived from tuberous sclerosis 1 (Tsc1)-null cells transform phenotypes of neighboring wild-type cells in vivo in such manner that they become functionally similar to Tsc1-null cells. The loss of Tsc1 in the mouse neural tube increases the number of the wild-type neuronal progenitors, which is followed by the precocious and transient acceleration of neuronal differentiation of these cells. The mechanisms regulating these changes involve the exosomal delivery of exosomal shuttle Notch1 and Rheb esRNA and component of γ-secretase complex presenilin 1 from Tsc1-null cells to wild-type cells leading to the activation of Notch and Rheb signaling in the recipient cells. The exosome-mediated mechanisms may also operate in the cells of angiomyolipoma (AML), which develops as a result of mutations in TSC1/TSC2 genes in TSC patients, because we observed the reactivation of mammalian target of rapamycin and Notch pathways, driven by the delivery of Rheb and Notch1 esRNA, in AML cells depleted of Rheb that were treated with the exosomes purified from AML cells with the constitutively high Rheb levels.

Alves MM, Fuhler GM, Queiroz KC, et al.
PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
Sci Rep. 2015; 5:14534 [PubMed] Free Access to Full Article Related Publications
Tuberous sclerosis complex (TSC) is caused by inactivating mutations in either TSC1 or TSC2 and is characterized by uncontrolled mTORC1 activation. Drugs that reduce mTOR activity are only partially successful in the treatment of TSC, suggesting that mTOR-independent pathways play a role in disease development. Here, kinome profiles of wild-type and Tsc2(-/-) mouse embryonic fibroblasts (MEFs) were generated, revealing a prominent role for PAK2 in signal transduction downstream of TSC1/2. Further investigation showed that the effect of the TSC1/2 complex on PAK2 is mediated through RHEB, but is independent of mTOR and p21RAC. We also demonstrated that PAK2 over-activation is likely responsible for the migratory and cell cycle abnormalities observed in Tsc2(-/-) MEFs. Finally, we detected high levels of PAK2 activation in giant cells in the brains of TSC patients. These results show that PAK2 is a direct effector of TSC1-TSC2-RHEB signaling and a new target for rational drug therapy in TSC.

Planelles M, Macías L, Peiró G, et al.
Rheb/mTOR/p70s6k Cascade and TFE3 Expression in Conventional and Sclerosing PEComas of the Urinary Tract.
Appl Immunohistochem Mol Morphol. 2016; 24(7):514-20 [PubMed] Related Publications
Perivascular epithelioid cell tumors (PEComas) are rarely found in the urinary tract. The clinicopathologic characteristics of 10 cases, retrospectively collected from 5 medical institutions in 3 different European countries, are presented in this study. Male/female ratio was 3:7 and the average age at diagnosis was 62.7 years. Nine cases were sporadic and 1 showed germline mutation of the TSC2 gene. Eight cases were located in the kidney, 1 in the left adrenal and 1 in the right ureter. All of the patients were alive and free of disease at the time of last contact (mean follow-up, 14.1 mo). Four cases displayed a conventional morphology and 6 showed a prominent sclerotic stroma. By immunohistochemistry, melanocytic markers were consistently expressed, especially HMB-45 (10 cases), MiTF (9 cases), and Melan-A (6 cases). Desmin was expressed in 6 cases; 2 cases were positive for CD117; a single case showed TFE3 expression. pMAPK, mTOR, and pAKT demonstrated variable immunostaining with focal positivity in 7, 4, and 2 cases, respectively. Cytokeratins were repeatedly negative in all cases. PEComas in the urinary tract, especially in the renal region, may show a relatively high frequency of the sclerosing histologic subtype. Knowledge of the distinct histology and immunohistochemical profile is vital to correctly diagnose this rare entity.

Mi YJ, Geng GJ, Zou ZZ, et al.
Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells.
PLoS One. 2015; 10(3):e0120426 [PubMed] Free Access to Full Article Related Publications
Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.

Makovski V, Jacob-Hirsch J, Gefen-Dor C, et al.
Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway.
Cell Death Dis. 2014; 5:e1557 [PubMed] Free Access to Full Article Related Publications
Mutations in tuberous sclerosis (TSC) genes cause the genetic disorder TSC, as well as other neoplasms, including lymphangioleiomyomatosis (LAM) and angiomyolipomas (AMLs). AMLs are benign renal tumors occur both in sporadic LAM and in TSC. As they carry the same mutations, AML cell lines serve as a model for TSC and LAM. Rheb/mammalian target of rapamycin complex 1 (mTORC1) pathway is chronically activated in TSC-deficient cells, and this activation can be diminished using the appropriate inhibitors. Rapamycin (sirolimus) is a known specific inhibitor of mTORC1, whereas S-trans,trans-farnesylthiosalicylic acid (FTS; salirasib) has been shown to inhibit Rheb. To examine the effect of the Rheb/mTOR inhibition pathway, we used human TSC2-deficient AML cells, derived from a LAM patient. FTS indeed inhibited Rheb in these cells and attenuated their proliferation. After comparative treatments with FTS or rapamycin or by re-expression of TSC2, we carried out a gene array analysis. This yielded a substantial number of commonly altered genes, many of which we identified as downstream targets of the interferon (IFN) regulatory factor 7 (IRF7) transcription factor, a central activator of the IFN type 1 immune response. Furthermore, nuclear localization of IRF7 was impaired by each of the three treatments. Interestingly, the phenomena seen on FTS or rapamycin treatment were selective for TSC2-deficient cells. Moreover, knockdown of IRF7 by siRNA mimicked the decrease in number of the abovementioned genes and also inhibited AML cell proliferation. Altogether, these findings support FTS as a potential treatment for TSC and its related pathologies and IRF7 as a novel target for treatment.

Thomas JD, Zhang YJ, Wei YH, et al.
Rab1A is an mTORC1 activator and a colorectal oncogene.
Cancer Cell. 2014; 26(5):754-69 [PubMed] Free Access to Full Article Related Publications
Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy.

Ávalos Y, Canales J, Bravo-Sagua R, et al.
Tumor suppression and promotion by autophagy.
Biomed Res Int. 2014; 2014:603980 [PubMed] Free Access to Full Article Related Publications
Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

Yalniz Z, Tigli H, Tigli H, et al.
Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma.
Tumour Biol. 2014; 35(12):12361-8 [PubMed] Related Publications
The tumor suppressor LKB1 gene is a master kinase and inhibits mammalian target of rapamycin (mTOR) by activating AMP-activated protein kinase (AMPK) and AMPK-related kinases. LKB1 is a critical intermediate in the mTOR signaling pathway, and mutations of the LKB1 gene have been implicated in the development of different tumor types. Recent evidence indicates that LKB1 alterations contribute to cancer progression and metastasis by modulating vascular endothelial growth factor (VEGF) production. The Ras homolog enriched in brain (RHEB) protein is a component of the mTOR pathway and functions as a positive regulator of mTOR. However, the mechanisms and effectors of RHEB in mTOR signaling are not well known. In this study, we analyzed the expression of RHEB and HIF1α genes in correlation with LKB1 gene mutations. All coding exons and exon/intron boundaries of the LKB1 gene were analyzed by direct sequencing in 77 renal cell carcinoma (RCC) tumors and 62 matched noncancerous tissue samples. In 51.6 % of the patients, ten different mutations including four novel mutations in the coding sequences and six single nucleotide substitutions in the introns were observed. Rheb and HIF1α expression levels were not statistically different between the tumor and corresponding noncancerous tissue samples. However, expression of the Rheb gene was upregulated in the tumor samples carrying the intron 2 (+24 G→T) alteration. Association between the gene expression and tissue protein levels was also analyzed for HIF1α in a subgroup of patients, and a high correlation was confirmed. Our results indicate that the LKB1 gene is frequently altered in RCC and may play a role in RCC progression.

Kim BR, Yoon K, Byun HJ, et al.
The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1α and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways.
Oncotarget. 2014; 5(15):6540-51 [PubMed] Free Access to Full Article Related Publications
Recently, we found that sMEK1 effectively regulates pro-apoptotic activity when combined with a traditional chemotherapeutic drug. Therefore, combinational therapeutic strategies targeting critical molecular and cellular mechanisms are urgently required. In this present work, we evaluated whether sMEK1 enhanced the pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. Combined with a chemotherapeutic drug, sMEK1 showed an additive effect on the suppression of ovarian cancer cell growth by inducing cell cycle arrest and apoptosis and regulating related gene expression levels or protein activities. In addition, the phosphoinositide-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was strongly inhibited by the combined treatment, showing de-repression of the tuberous sclerosis complex (TSC) and suppression of ras homolog enriched in the brain (Rheb) and mTOR and raptor in aggressive ovarian carcinoma cells and mouse xenograft models. Treatment with sMEK1 and paclitaxel reduced phosphorylation of ribosomal S6 kinase (S6K) and 4E-binding protein (4E-BP), two critical downstream targets of the mTOR-signaling pathway. Furthermore, both sMEK1 and paclitaxel significantly inhibited the expression of signaling components downstream of S6K/4E-BP, such as hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), both in vitro and in vivo. Therefore, our data suggest that the combination of sMEK1 and paclitaxel is a promising and effective targeted therapy for chemotherapy-resistant or recurrent ovarian cancers.

Yang Y, Ahn YH, Chen Y, et al.
ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism.
J Clin Invest. 2014; 124(6):2696-708 [PubMed] Free Access to Full Article Related Publications
Epithelial tumor cells that have undergone epithelial-to-mesenchymal transition (EMT) are typically prone to metastasis and drug resistance and contribute to a poor clinical outcome. The transcription factor ZEB1 is a known driver of EMT, and mediators of ZEB1 represent potential therapeutic targets for metastasis suppression. Here, we have shown that phosphatidylinositol 3-kinase-targeted (PI3K-targeted) therapy suppresses metastasis in a mouse model of Kras/Tp53-mutant lung adenocarcinoma that develops metastatic disease due to high expression of ZEB1. In lung adenocarcinoma cells from Kras/Tp53-mutant animals and human lung cancer cell lines, ZEB1 activated PI3K by derepressing miR-200 targets, including amphiregulin (AREG), betacellulin (BTC), and the transcription factor GATA6, which stimulated an EGFR/ERBB2 autocrine loop. Additionally, ZEB1-dependent derepression of the miR-200 and miR-183 target friend of GATA 2 (FOG2) enhanced GATA3-induced expression of the p110α catalytic subunit of PI3K. Knockdown of FOG2, p110α, and RHEB ameliorated invasive and metastatic propensities of tumor cells. Surprisingly, FOG2 was not required for mesenchymal differentiation, suggesting that mesenchymal differentiation and invasion are distinct and separable processes. Together, these results indicate that ZEB1 sensitizes lung adenocarcinoma cells to metastasis suppression by PI3K-targeted therapy and suggest that treatments to selectively modify the metastatic behavior of mesenchymal tumor cells are feasible and may be of clinical value.

Lopez-Rivera E, Jayaraman P, Parikh F, et al.
Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2.
Cancer Res. 2014; 74(4):1067-78 [PubMed] Free Access to Full Article Related Publications
Melanoma is one of the cancers of fastest-rising incidence in the world. Inducible nitric oxide synthase (iNOS) is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K-AKT-mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p70 ribosomal S6 kinase (p-P70S6K), p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of tuberous sclerosis complex (TSC) 2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Ras homolog enriched in brain (Rheb), a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of the mTOR pathway members. Exogenously supplied NO was also sufficient to reverse the mTOR pathway inhibition by the B-Raf inhibitor vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers.

Nishitani S, Horie M, Ishizaki S, Yano H
Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin.
PLoS One. 2013; 8(11):e82346 [PubMed] Free Access to Full Article Related Publications
Differentiation of cancer stem cells (CSCs) into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR) leads to CSC survival, the effect of branched chain amino acids (BCAAs), an mTOR complex 1 (mTORC1) activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC) cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU) on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb). mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2) or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy.

Ding H, McDonald JS, Yun S, et al.
Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells.
Haematologica. 2014; 99(1):60-9 [PubMed] Free Access to Full Article Related Publications
Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771).

Lin A, Yao J, Zhuang L, et al.
The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress.
Oncogene. 2014; 33(24):3183-94 [PubMed] Free Access to Full Article Related Publications
Normal cells possess adaptive mechanisms to couple energy availability with cell growth (cell size increase) and survival, and imbalances are associated with major diseases such as cancer. Inactivation of critical regulators involved in energy stress response, including adenosine monophosphate-activated protein kinase (AMPK), liver kinase B1 (LKB1), tuberous sclerosis complex 1 (TSC1) and tuberous sclerosis complex 2 (TSC2), leads to uncontrolled cell growth yet increased apoptosis under energy stress. These energy stress regulators are also important in tumor suppression and metabolism. Here, we show that forkhead box O (FoxO) transcription factor, a central regulator of tumor suppression and metabolism, plays a unique role in energy stress response. FoxOs inhibit the mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cell growth, under energy stress, and inactivation of FoxOs alleviates energy stress-mediated mTORC1 repression. Surprisingly, unlike AMPK-, Lkb1- or Tsc1/2-deficient cells, FoxO-deficient cells exhibit decreased apoptosis under energy stress. FoxOs operate to inhibit mTORC1 signaling and cell survival independent of AMPK and TSC. Integrated transcriptomic and functional analyses identified BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-a negative regulator of both Rheb and Bcl2 prosurvival family members-as a key downstream target of FoxOs to inhibit mTORC1 function and promote apoptosis in response to energy stress. We show that p38β, but not AMPK, is likely to function upstream of FoxO-BNIP3 to mediate energy stress response. Finally, we reveal that low expression of FoxO or BNIP3 correlates with poor clinical outcomes in renal cancer patients. Together, our study uncovers a novel signaling circuit functioning to mediate cellular energy responses to control cell growth and survival. These findings also have important implications to human cancers.

Feliciano DM, Lin TV, Hartman NW, et al.
A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits.
Int J Dev Neurosci. 2013; 31(7):667-78 [PubMed] Free Access to Full Article Related Publications
Tuberous sclerosis complex (TSC) is an autosomal dominant monogenetic disorder that is characterized by the formation of benign tumors in several organs as well as brain malformations and neuronal defects. TSC is caused by inactivating mutations in one of two genes, TSC1 and TSC2, resulting in increased activity of the mammalian Target of Rapamycin (mTOR). Here, we explore the cytoarchitectural and functional CNS aberrations that may account for the neurological presentations of TSC, notably seizures, hydrocephalus, and cognitive and psychological impairments. In particular, recent mouse models of brain lesions are presented with an emphasis on using electroporation to allow the generation of discrete lesions resulting from loss of heterozygosity during perinatal development. Cortical lesions are thought to contribute to epileptogenesis and worsening of cognitive defects. However, it has recently been suggested that being born with a mutant allele without loss of heterozygosity and associated cortical lesions is sufficient to generate cognitive and neuropsychiatric problems. We will thus discuss the function of mTOR hyperactivity on neuronal circuit formation and the potential consequences of being born heterozygous on neuronal function and the biochemistry of synaptic plasticity, the cellular substrate of learning and memory. Ultimately, a major goal of TSC research is to identify the cellular and molecular mechanisms downstream of mTOR underlying the neurological manifestations observed in TSC patients and identify novel therapeutic targets to prevent the formation of brain lesions and restore neuronal function.

Misra UK, Pizzo SV
Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells.
PLoS One. 2012; 7(12):e51735 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Tetrameric α(2)-macroglobulin (α(2)M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α(2)M (α(2)M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α(2)M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells.
METHODS: Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies.
RESULTS: Stimulation of cells with α(2)M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, Akt(T308), and Akt(S473) in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α(2)M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α(2)M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α(2)M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of Akt(S473) phosphorylation and levels of p-Akt(S473) in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α(2)M*-induced phosphorylation of Akt(S473) phosphorylation in Rictor immunoprecipitates.
CONCLUSION: Binding of α(2)M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein synthesis in the prostate cancer cells.

Kaul A, Chen YH, Emnett RJ, et al.
Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner.
Genes Dev. 2012; 26(23):2561-6 [PubMed] Free Access to Full Article Related Publications
Tandem duplications involving the BRAF kinase gene have recently been identified as the most frequent genetic alteration in sporadic pediatric glioma, creating a novel fusion protein (f-BRAF) with increased BRAF activity. To define the role of f-BRAF in gliomagenesis, we demonstrate that f-BRAF regulates neural stem cell (NSC), but not astrocyte, proliferation and is sufficient to induce glioma-like lesions in mice. Moreover, f-BRAF-driven NSC proliferation results from tuberin/Rheb-mediated mammalian target of rapamycin (mTOR) hyperactivation, leading to S6-kinase-dependent degradation of p27. Collectively, these results establish mTOR pathway activation as a key growth regulatory mechanism common to both sporadic and familial low-grade gliomas in children.

Franz DN, Weiss BD
Molecular therapies for tuberous sclerosis and neurofibromatosis.
Curr Neurol Neurosci Rep. 2012; 12(3):294-301 [PubMed] Related Publications
Neurofibromatosis type 1 (NF1) and tuberous sclerosis complex (TSC) are autosomal-dominant genetic disorders that result from dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway. NF1 is caused by mutations in the NF1 gene on chromosome 17q11.2. Its protein product, neurofibromin, functions as a tumor suppressor and ultimately produces constitutive upregulation of mTOR. TSC is caused by mutations in either the TSC1 (chromosome 9q34) or TSC2 (chromosome 16p.13.3) genes. Their protein products, hamartin and tuberin, respectively, form a dimer that acts via the GAP protein Rheb (Ras homolog enhanced in brain) to directly inhibit mTOR, again resulting in upregulation. Specific inhibitors of mTOR are in clinical use, including sirolimus, everolimus, temsirolimus, and deforolimus. Everolimus has been shown to reduce the volume and appearance of subependymal giant cell astrocytomas (SEGA), facial angiofibromas, and renal angiomyolipomas associated with TSC, with a recent FDA approval for SEGA not suitable for surgical resection. This article reviews the use of mTOR inhibitors in these diseases, which have the potential to be a disease-modifying therapy in these and other conditions.

Tigli H, Seven D, Tunc M, et al.
LKB1 mutations and their correlation with LKB1 and Rheb expression in bladder cancer.
Mol Carcinog. 2013; 52(8):660-5 [PubMed] Related Publications
Although there are extensive studies on the genetics of bladder cancer, several questions remain unanswered. One of the pathways which are altered in bladder cancer is the mTOR signaling pathway. In the present study, we analyzed the expression of Rheb gene and genetic alterations in the LKB1 gene which are the key components of mTOR pathway. Nine exons of the LKB1 gene were analyzed by direct sequencing in 51 bladder cancer patients. To investigate the expression of Rheb and LKB1, real-time quantitative RT-PCR was performed in bladder tumor and normal bladder tissue samples. We did not observed a statistically significant difference in Rheb or LKB1 expression between the tumor and normal tissue samples. We detected a novel missense mutation creating stop codon in a high percent of the tumor samples. Five different single nucleotide substitutions were also observed in the introns. Our results indicate that LKB1 gene may play a role in the progression of bladder cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RHEB, Cancer Genetics Web: http://www.cancer-genetics.org/RHEB.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999