Gene Summary

Gene:UHRF1; ubiquitin like with PHD and ring finger domains 1
Aliases: Np95, hNP95, ICBP90, RNF106, TDRD22, hUHRF1, huNp95
Summary:This gene encodes a member of a subfamily of RING-finger type E3 ubiquitin ligases. The protein binds to specific DNA sequences, and recruits a histone deacetylase to regulate gene expression. Its expression peaks at late G1 phase and continues during G2 and M phases of the cell cycle. It plays a major role in the G1/S transition by regulating topoisomerase IIalpha and retinoblastoma gene expression, and functions in the p53-dependent DNA damage checkpoint. It is regarded as a hub protein for the integration of epigenetic information. This gene is up-regulated in various cancers, and it is therefore considered to be a therapeutic target. Multiple transcript variants encoding different isoforms have been found for this gene. A related pseudogene exists on chromosome 12. [provided by RefSeq, Feb 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:E3 ubiquitin-protein ligase UHRF1
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: UHRF1 (cancer-related)

Ge TT, Yang M, Chen Z, et al.
UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells.
J Ovarian Res. 2016; 9(1):42 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Up-regulation of UHRF1 has been observed in a variety of cancers and appears to serve as an independent prognostic factor.
OBJECTIVE: To explore the effect of UHRF1 gene silencing on apoptosis and proliferation of cervical squamous cell carcinoma (CSCC) CaSki cells.
METHODS: This study consisted of 47 CSCC tissues and 40 normal cervical tissues. The CaSki cells were assigned into Blank group (CaSki cells not transfected), NC group (CaSki cells transfected with control siRNA), and UHRF1 Silence group (CaSki cells transfected with UHRF1 siRNA). qRT-PCR and Western blot were used for UHRF1 mRNA and protein expressions, CKK-8 assay for cell proliferation, flow cytometry for cell cycle and apoptosis, Western blot for expressions of apoptosis-related proteins. Nude mice tumor transplant experiment was performed.
RESULTS: UHRF1 exhibited higher mRNA and protein expressions in the CSCC tissues than normal cervical tissues (both P < 0.05). The cell proliferation ability in the UHRF1 Silence group was reduced when compared with the Blank group and the NC group, the cells at S-G2M stage in the UHRF1 Silence group were dropped when compared with the Blank group and the NC group (P < 0.05), while the cells at G0/G1 stage were elevated (P < 0.05), and the proportion of Annexin V positive cells in the UHRF1 Silence group was increased in comparison with the Blank group and the NC group (P < 0.05). Nude mice tumor transplant experiment indicated that the growth rate and weight of tumor in the Blank group and NC group was higher and heavier than the UHRF1 Silence group (P < 0.05).
CONCLUSION: UHRF1 showed a high expression in CSCC and UHRF1 silencing can reduce proliferation and enhance apoptosis of the CaSki cells.

Soleimani A, Ghanadi K, Noormohammadi Z, Irani S
The correlation between miR-146a C/G polymorphism and UHRF1 gene expression level in gastric tumor.
J Dig Dis. 2016; 17(3):169-74 [PubMed] Related Publications
OBJECTIVE: To investigate the association between the polymorphism of miR-146a and The ubiquitin-like with PHD and ring-finger domains 1 (UHRF1) expression in patients with gastric cancer.
METHODS: MiR-146a rs2910164 was genotyped in 130 patients with gastric cancer and 130 cancer-free individuals using polymerase chain reaction (PCR)-restriction fragment length polymorphism. UHRF1 expression was analyzed in 22 gastric cancer tissues and their adjacent normal tissues using quantitative real-time PCR.
RESULTS: No significant differences in genotype distributions of miR-146a rs2910164 were found between cases and controls, but we observed that grade II tumors were more frequently detected in patients with CG/CC genotype compared to those with CC genotype. UHRF1 expressions in cancerous tissues were significantly higher than in noncancerous tissues (1.89-fold). Patients with CC genotype showed a significant increase in UHRF1 expression in comparison to the carriers of GG/CG genotype. A higher UHRF1 expression was associated with cancer stage IV and grade III (P<0.05).
CONCLUSION: The overexpression of UHRF1 was correlated with the stage and grade of gastric cancer and is associated with the genotype distribution of rs2910164.

Wan X, Yang S, Huang W, et al.
UHRF1 overexpression is involved in cell proliferation and biochemical recurrence in prostate cancer after radical prostatectomy.
J Exp Clin Cancer Res. 2016; 35:34 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Biochemical recurrence (BCR) is widely used to define the treatment success and to make decisions on if or how to initiate a secondary therapy, but uniform criteria to define BCR after radical prostatectomy (RP) is not yet completely assessed. UHRF1 has a unique function in regulating the epigenome by linking DNA methylation with histone marks. The clinical value of UHRF1 in PCa has not been well done. Therefore, we evaluated the prognostic significance of UHRF1.
METHOD: UHRF1 expression in PCa cells was monitored by qRT-PCR and Western blot analyses. UHRF1 expression was knocked down using specific siRNAs, and the effects of knockdown on the proliferation, migration, cell cycle, and apoptosis of PCa cell lines were investigated. UHRF1 protein expression was evaluated in 225 PCa specimens using immunohistochemistry in tissue microarrays. Correlations between UHRF1 expression and the clinical features of PCa were assessed.
RESULTS: The results showed that UHRF1 was overexpressed in almost all of the PCa cell lines. In PCa cells, UHRF1 knockdown inhibited cell proliferation and migration, and induced apoptosis. UHRF1 expression levels were correlated with some clinical features of PCa. Multivariate analysis showed that UHRF1 expression was an independent prognostic factor for biochemical recurrence-free survival.
CONCLUSIONS: UHRF1 functions as an oncogene in prostate cancer and appears to be capable of predicting the risk of biochemical recurrence in PCa patients after radical prostatectomy, and may serve as a potential therapeutic target for PCa.

Wotschofsky Z, Gummlich L, Liep J, et al.
Integrated microRNA and mRNA Signature Associated with the Transition from the Locally Confined to the Metastasized Clear Cell Renal Cell Carcinoma Exemplified by miR-146-5p.
PLoS One. 2016; 11(2):e0148746 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNAs (miRNAs) regulate gene expression by interfering translation or stability of target transcripts. This interplay between miRNA and their mRNA has been proposed as an important process in cancer development and progression. We have investigated molecular networks impacted by predicted mRNA targets of differentially expressed miRNAs in patients with clear cell renal cell carcinoma (ccRCC) diagnosed with or without metastasis.
MATERIAL AND METHODS: miRNA and mRNA microarray expression profiles derived from primary ccRCC from patients with (16 samples) or without diagnosed metastasis (22 samples) were used to identify anti-correlated miRNA-mRNA interaction in ccRCC. For this purpose, Ingenuity pathway analysis microRNA Target Filter, which enables prioritization of experimentally validated and predicted mRNA targets was used. By applying an expression pairing tool, the analysis was focused on targets exhibiting altered expression in our analysis, finding miRNAs and their target genes with opposite or same expression. The resulting identified interactions were revalidated by RT-qPCR in another cohort of ccRCC patients. A selection of the predicted miRNA-mRNA interactions was tested by functional analyses using miRNA knockdown and overexpression experiments in renal cancer cell lines.
RESULTS: Among the significantly differentially expressed miRNAs, we have identified three miRNAs (miR-146a-5p, miR-128a-3p, and miR-17-5p) that were upregulated in primary tumors from patients without metastasis and downregulated in primary tumors from patients with metastasis. We have further identified mRNA targets, which expression were inversely correlated to these 3 miRNAs, and have been previously experimentally demonstrated in cancer setting in humans. Specifically, we showed that CXCL8/IL8, UHRF1, MCM10, and CDKN3 were downregulated and targeted by miR-146a-5p. The interaction between miR-146a-5p and their targets CXCL8 and UHRF1 was validated in cell culture experiments.
CONCLUSIONS: We identified novel target genes of dysregulated miRNAs, which are involved in the transition from primary RCC without metastases into tumors generating distant metastasis.

Taniue K, Kurimoto A, Sugimasa H, et al.
Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1.
Proc Natl Acad Sci U S A. 2016; 113(5):1273-8 [PubMed] Free Access to Full Article Related Publications
Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its β-transducin repeat-containing protein (TrCP)-mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer.

Sheng Y, Wang H, Liu D, et al.
Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma.
Gynecol Oncol. 2016; 140(1):145-51 [PubMed] Related Publications
OBJECTIVE: Epigenetic changes in cancer and precancerous lesions could be utilized as biomarkers for cancer early detection. This study aims to investigate the novel biomarkers in endometrial carcinoma, and explore their epigenetic regulation.
METHODS: Methylation of six tumor suppressor genes (CDH13, SHP1, HIN1, DKK3, CTNNA1 and PCDH8) was evaluated in 155 endometrium samples. Changes of methylation and mRNA expression after treatment with 5-Aza-2'-deoxycytidine (5-Aza-CdR) or/and trichostatin A (TSA) were investigated by MSP and qRT-PCR respectively. Co-immunoprecipitation was used to detect the interactions between UHRF1 and PRMT5 proteins.
RESULTS: CDH13 and SHP1 promoters were highly methylated (81.36% and 86.44%, respectively) in endometrial carcinoma, while CDH13 promoter methylation was also present in complex hyperplasia and atypical hyperplasia (51.72% and 50.00%, respectively). Methylation of CDH13 and SHP1 promoters was associated with age and tumor differentiation or muscular infiltration depth. CDH13 and SHP1 promoters were completely methylated in endometrial carcinoma cell lines and were partially reversed by 5-Aza-CdR or TSA to induce mRNA levels (P<0.01). After combined treatment with these two agents, methylation of CDH13 and SHP1 promoters was completely reversed and expression of their mRNA was significantly increased (P<0.01). Moreover, PRMT5 could bind to UHRF1 and down-regulated by 5-Aza-CdR and/or TSA treatment (P<0.05).
CONCLUSIONS: Our data demonstrate for the first time that SHP1 methylation has high specificity for diagnosis of endometrial carcinoma, while CDH13 promoter methylation plays a role in the earlier stage. Furthermore, UHRF1 could form a complex with PRMT5 to contribute to the endometrial carcinogenesis.

Liu W, Qiao RH, Wang DM, et al.
UHRF1 promotes human osteosarcoma cell invasion by downregulating the expression of E‑cadherin in an Rb1‑dependent manner.
Mol Med Rep. 2016; 13(1):315-20 [PubMed] Related Publications
Ubiquitin‑like with plant homeodomain (PHD) and RING‑finger domain 1 (UHRF1) maintains methylation patterns following DNA replication and is expressed at high levels in various types of human cancer. UHRF1 has been identified as a novel oncogene involved in the pathogenesis of hepatocellular carcinoma. Previous studies have demonstrated that inhibition of the expression of UHRF1 suppresses the proliferation of cancer cells. However, the role of UHRF1 in human osteosarcoma has not been investigated. The present study examined the expression levels of UHRF1 and retinoblastoma 1 (Rb1) in human osteosarcoma cell lines by western blot analysis. Stable overexpression of UHRF1 or knockdown of Rb1 was achieved by lentiviral transfection. Subsequently, a Cell Counting Kit-8 assay and a cell invasion assay were performed to detect the biological functions of UHRF1 in vitro. The results of the present study demonstrated that UHRF1 promoted the proliferation of human osteosarcoma cells. The present study also reported that UHRF1 was able to enhance the invasion of osteosarcoma cells in a retinoblastoma 1 (Rb1)‑dependent manner. UHRF1 promoted invasion in Rb1‑positive osteosarcoma cells, but not in Saos‑2 cells with homozygous loss of Rb1. Similarly, knockdown of Rb1 in Rb1‑positive osteosarcoma cells enhanced levels of invasion and eliminated the regulation of invasion by UHRF1. UHRF1 was found to inhibit the mRNA and protein expression levels of Rb1. Furthermore, deletion of Rb1 was found to suppress the expression of E‑cadherin and promote epithelial‑to‑mesenchymal transition (EMT). In addition, the overexpression of UHRF1 inhibited the expression of E‑cadherin and promoted EMT via the suppression of Rb1. These data demonstrated that UHRF1 promotes osteosarcoma cell invasion by downregulating the expression of E‑cadherin and increasing EMT in an Rb1‑dependent manner.

Abu-Alainin W, Gana T, Liloglou T, et al.
UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis.
J Pathol. 2016; 238(3):423-33 [PubMed] Free Access to Full Article Related Publications
The cellular defence protein Nrf2 is a mediator of oncogenesis in pancreatic ductal adenocarcinoma (PDAC) and other cancers. However, the control of Nrf2 expression and activity in cancer is not fully understood. We previously reported the absence of Keap1, a pivotal regulator of Nrf2, in ∼70% of PDAC cases. Here we describe a novel mechanism whereby the epigenetic regulator UHRF1 suppresses Keap1 protein levels. UHRF1 expression was observed in 20% (5 of 25) of benign pancreatic ducts compared to 86% (114 of 132) of pancreatic tumours, and an inverse relationship between UHRF1 and Keap1 levels in PDAC tumours (n = 124) was apparent (p = 0.002). We also provide evidence that UHRF1-mediated regulation of the Nrf2 pathway contributes to the aggressive behaviour of PDAC. Depletion of UHRF1 from PDAC cells decreased growth and enhanced apoptosis and cell cycle arrest. UHRF1 depletion also led to reduced levels of Nrf2-regulated downstream proteins and was accompanied by heightened oxidative stress, in the form of lower glutathione levels and increased reactive oxygen species. Concomitant depletion of Keap1 and UHRF1 restored Nrf2 levels and reversed cell cycle arrest and the increase in reactive oxygen species. Mechanistically, depletion of UHRF1 reduced global and tumour suppressor promoter methylation in pancreatic cancer cell lines, and KEAP1 gene promoter methylation was reduced in one of three cell lines examined. Thus, methylation of the KEAP1 gene promoter may contribute to the suppression of Keap1 protein levels by UHRF1, although our data suggest that additional mechanisms need to be explored. Finally, we demonstrate that K-Ras drives UHRF1 expression, establishing a novel link between this oncogene and Nrf2-mediated cellular protection. Since UHRF1 over-expression occurs in other cancers, its ability to regulate the Keap1-Nrf2 pathway may be critically important to the malignant behaviour of these cancers.

Wang X, Wu Q, Xu B, et al.
MiR-124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine-tuning UHRF1.
FEBS J. 2015; 282(22):4376-88 [PubMed] Related Publications
UHRF1, an epigenetic factor, is implicated in various cellular processes of tumorigenesis. However, the modulation of UHRF1 expression in human bladder cancer at post-transcriptional levels remains unclear. Here, we report that miR-124 suppresses expression of UHRF1 to affect the progression of human bladder cancer through competitive binding of the same region of its 3'-UTR. We show that compared with corresponding normal tissues, UHRF1 is upregulated and miR-124 is downregulated in bladder cancer tissues, demonstrating an inverse correlation of miR-124 and UHRF1. Quantitative PCR and western blot assay demonstrated that over-expression of miR-124 resulted in the suppression of UHRF1. Furthermore, luciferase assay revealed that miR-124 could control the fate of target gene UHRF1 mRNA by binding 3'-UTR. The rescue experiment confirmed that miR-124 exerted its biological functions by targeting UHRF1. miR-124 over-expression significantly attenuated cellular proliferation, migration, invasion and vasculogenic mimicry in vitro, and tumor growth in vivo. UHRF1 siRNA showed significant inhibitory effects on bladder cancer cells. Collectively, our study demonstrates that miR-124 can impair the proliferation or metastasis of human bladder cancer cells by down-regulation of UHRF1.

Wang C, Wang X, Su Z, et al.
The novel mTOR inhibitor Torin-2 induces autophagy and downregulates the expression of UHRF1 to suppress hepatocarcinoma cell growth.
Oncol Rep. 2015; 34(4):1708-16 [PubMed] Related Publications
Mammalian target of rapamycin (mTOR) is frequently upregulated in hepatocellular carcinoma (HCC). Blockage of mTOR was found to induce marked reduction in HCC growth in preclinical models. In the present study, we tested a novel mTOR inhibitor, Torin-2, for its antitumor efficacy in HCC cell lines Hep G2, SNU-182 and Hep 3B2.1-7. The HCC cell lines were cultured in vitro. These cells were treated with Torin-2. Cell apoptosis was evaluated by Annexin V staining. Cell proliferation and cell cycle progression were determined by Ki67 staining and propidium iodide staining, respectively. mTOR signaling, autophagy induction and expression of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) were assessed by western blot analysis. The UHRF1 mRNA level was determined by real-time PCR. We found that Torin-2 effectively suppressed the growth and survival of HCC cell lines, demonstrated by reduced proliferation and a high rate of apoptosis. Further study elucidated that in addition to blocking mTOR complex 1 (mTORC1)-associated cell cycle progression and induction of autophagy, Torin-2 downregulated transcription of UHRF1, an essential regulator of DNA methylation that is highly expressed in HCC cell lines. Consistently, the level of DNA (cytosine-5)-methyltransferase 1 (DNMT1) was higher after treatment of the HCC cell lines with Torin-2. The downregulation of UHRF1 by Torin-1 was partially due to a decrease in the UHRF1 mRNA level. Torin-2 effectively inhibited HCC cell proliferation through induction of autophagy. Torin‑2-induced downregulation of UHRF1 expression may also contribute to its antitumor effect. Our research provides new clues regarding the antitumor effects of Torin-2 and sheds light on a novel therapeutic approach for HCC.

Ge M, Gui Z, Wang X, Yan F
Analysis of the UHRF1 expression in serum and tissue for gastric cancer detection.
Biomarkers. 2015; 20(3):183-8 [PubMed] Related Publications
OBJECTIVE: To analyze the Ubiquitin-like with PHD and ring finger domains (UHRF) 1 expression in gastric cancer (GC).
METHODS: The concentrations of UHRF1 DNA in serum were compared between 187 GC patients and 56 healthy controls using real-time PCR. Immunohistochemical analysis using tissue microarrays was performed.
RESULTS: UHRF1 DNA levels were significantly higher in GC patients compared to healthy controls (p < 0.001) and have associations with age and lymph node metastasis (LNM). The UHRF1 expression was significantly higher in tumor tissue than matched normal tissues (p < 0.001).
CONCLUSIONS: The UHRF1 expression in serum and tissue may represent a novel biomarker for GC diagnosis and prognosis.

Zhou L, Shang Y, Jin Z, et al.
UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation.
Cancer Biol Ther. 2015; 16(8):1241-51 [PubMed] Free Access to Full Article Related Publications
Epigenetic changes play significant roles in cancer development. UHRF1, an epigenetic regulator, has been shown to be overexpressed and to coordinate tumor suppressor gene (TSG) silencing in several cancers. In a previous study, we found that UHRF1 promoted gastric cancer (GC) invasion and metastasis. However, the role and underlying mechanism of UHRF1 in GC carcinogenesis remain largely unknown. In the present study, we investigated UHRF1 expression and function in GC proliferation and explored its downstream regulatory mechanism. The results demonstrated that UHRF1 overexpression was an independent and significant predictor of GC prognosis. Downregulation of UHRF1 suppressed GC proliferation and growth in vitro and in vivo, and UHRF1 upregulation showed opposite effects. Furthermore, downregulation of UHRF1 reactivated 7 TSGs, including CDX2, CDKN2A, RUNX3, FOXO4, PPARG, BRCA1 and PML, via promoter demethylation. These results provide insight into the GC proliferation process, and suggest that targeting UHRF1 represents a new therapeutic approach to block GC development.

Ma J, Peng J, Mo R, et al.
Ubiquitin E3 ligase UHRF1 regulates p53 ubiquitination and p53-dependent cell apoptosis in clear cell Renal Cell Carcinoma.
Biochem Biophys Res Commun. 2015; 464(1):147-53 [PubMed] Related Publications
Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is a multi-domain ubiquitin E3 ligase that plays critical roles in regulation of DNA methylation and histone ubiquitination. In this study, we found UHRF1 is frequently overexpressed in human clear cell Renal Cell Carcinoma (ccRCC) tissues both at mRNA and protein levels. We showed that UHRF1 directly interacts with p53 both in vivo and in vitro. A new domain (PD) in UHRF1 was required for interaction with p53. We found that UHRF1 down-regulates p53 transactivation activity which was depends on the ubiquitin E3 ligase function. UHRF1 can promote non-degradative ubiquitination of p53, suppress p53 pathway activation and p53-dependent apoptosis in ccRCC cells. Together, our study suggests that UHRF1, which overexpressed ccRCC, may act as a p53 regulator, suppress p53 pathway activation and help ccRCC cells to escape from p53-dependent apoptosis.

Park SA, Platt J, Lee JW, et al.
E2F8 as a Novel Therapeutic Target for Lung Cancer.
J Natl Cancer Inst. 2015; 107(9) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown.
METHODS: E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student's t test. All statistical tests were two-sided.
RESULTS: LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047).
CONCLUSIONS: We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment.

Yan F, Wang X, Shao L, et al.
Analysis of UHRF1 expression in human ovarian cancer tissues and its regulation in cancer cell growth.
Tumour Biol. 2015; 36(11):8887-93 [PubMed] Related Publications
Ubiquitin-like with PHD and ring finger domains 1 (UHRF1), known as ICB90 or Np95, has been found to be overexpressed in numerous cancers. In this study, we evaluated the expression level of UHRF1 in ovarian cancer. UHRF1 levels in paired ovarian cancer tissues and adjacent normal tissues from 80 ovarian cancer patients were detected using relative quantitatively PCR and Western blot. Small interfering RNA (siRNA) was introduced in two human ovarian cancer cell lines (SKOV-3 and OVCAR-3) to downregulate the expression of UHRF1. The proliferation of siRNA-treated cells was examined using cell counting kit-8 (CCK-8) assay. The growth of these cells showed a remarkable decrease. Moreover, flow cytometric and Hoechst 33342 assays were used to detect the apoptosis. The diagnostic value of UHRF1 messenger RNA (mRNA) expression in ovarian cancer was estimated by receiver-operator characteristic (ROC) curve. The correlation between UHRF1 mRNA expression and clinicopathologic features of ovarian cancer patients was evaluated by χ (2) test. Our results demonstrated that both UHRF1 mRNA and protein were highly expressed in ovarian cancer tissues and significantly higher than that in adjacent normal tissues. Moreover, the inhibition of UHRF1 may lead to cells to undergo apoptosis. Thus, UHRF1 could act as a new oncogenic factor in ovarian cancer and be a potential molecular target for ovarian cancer gene therapy.

Qu X, Davison J, Du L, et al.
Identification of differentially methylated markers among cytogenetic risk groups of acute myeloid leukemia.
Epigenetics. 2015; 10(6):526-35 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation.

Duvall-Noelle N, Karwandyar A, Richmond A, Raman D
LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex.
Oncogene. 2016; 35(9):1122-33 [PubMed] Free Access to Full Article Related Publications
Nuclear LASP-1 (LIM and SH3 protein-1) has a direct correlation with overall survival of breast cancer patients. In this study, immunohistochemical analysis of a human breast TMA showed that LASP-1 is absent in normal human breast epithelium but the expression increases with malignancy and is highly nuclear in aggressive breast cancer. We investigated whether the chemokines and growth factors present in the tumor microenvironment could trigger nuclear translocation of LASP-1.Treatment of human breast cancer cells with CXCL12, EGF and HRG, and HMEC-CXCR2 cells with CXCL8 facilitated nuclear shuttling of LASP-1. Data from the biochemical analysis of the nuclear and cytosolic fractions further confirmed the nuclear translocation of LASP-1 upon chemokine and growth factor treatment. CXCL12-dependent nuclear import of LASP-1 could be blocked by CXCR4 antagonist, AMD-3100. Knock down of LASP-1 resulted in alterations in gene expression leading to an increased level of cell-junction and extracellular matrix proteins and an altered cytokine secretory profile. Three-dimensional cultures of human breast cancer cells on Matrigel revealed an altered colony growth, morphology and arborization pattern in LASP-1 knockdown cells. Functional analysis of the LASP-1 knockdown cells revealed increased adhesion to collagen IV and decreased invasion through the Matrigel. Proteomic analysis of immunoprecipitates of LASP-1 and subsequent validation approaches revealed that LASP-1 associated with the epigenetic machinery especially UHRF1, DNMT1, G9a and the transcription factor Snail1. Interestingly, LASP-1 associated with UHRF1, G9a, Snail1 and di- and tri-methylated histoneH3 in a CXCL12-dependent manner based on immunoprecipitation and proximity ligation assays. LASP-1 also directly bound to Snail1 which may stabilize Snail1. Thus, nuclear LASP-1 appears to functionally serve as a hub for the epigenetic machinery.

Zhu M, Xu Y, Ge M, et al.
Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis.
Cancer Sci. 2015; 106(7):833-9 [PubMed] Free Access to Full Article Related Publications
The UHRF1 protein is pivotal for DNA methylation and heterochromatin formation, leading to decreased expressions of tumor suppressor genes and contributing to tumorigenesis. However, the factors that modulate UHRF1 expression in colorectal cancer (CRC) remain unclear. Here we showed that, compared with corresponding normal tissues, UHRF1 was upregulated and microRNA-9 (miR-9) was downregulated in CRC tissues. The expression of UHRF1 was inversely correlated with overall survival rates of patients with CRC. Overexpression of miR-9 in CRC cell lines significantly attenuated CRC cell proliferation and promoted cell apoptosis. The expression of UHRF1 was markedly reduced in pre-miR-9 transfected CRC cells. Using luciferase reporter assay, we confirmed that miR-9 was a direct upstream regulator of UHRF1. Finally, analysis of miR-9 and UHRF1 levels in human CRC tissues revealed that expression of miR-9 was inversely correlated with UHRF1 expression. Collectively, our results offer in vitro validation of the concept that miR-9 could repress the expression of UHRF1, and function as a tumor-suppressive microRNA in CRC. It may serve as a prognostic and therapeutic marker for CRC.

Wiseman EF, Chen X, Han N, et al.
Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma.
Mol Cancer. 2015; 14:69 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Survival rates for oesophageal adenocarcinoma (OAC) remain disappointingly poor and current conventional treatment modalities have minimal impact on long-term survival. This is partly due to a lack of understanding of the molecular changes that occur in this disease. Previous studies have indicated that the transcription factor FOXM1 is commonly upregulated in this cancer type but the impact of this overexpression on gene expression in the context of OAC is largely unknown. FOXM1 does not function alone but works alongside the antagonistically-functioning co-regulatory MMB and DREAM complexes.
METHODS: To establish how FOXM1 affects gene expression in OAC we have identified the FOXM1 target gene network in OAC-derived cells using ChIP-seq and determined the expression of both its coregulatory partners and members of this target gene network in OAC by digital transcript counting using the Nanostring gene expression assay.
RESULTS: We find co-upregulation of FOXM1 with its target gene network in OAC. Furthermore, we find changes in the expression of its coregulatory partners, including co-upregulation of LIN9 and, surprisingly, reduced expression of LIN54. Mechanistically, we identify LIN9 as the direct binding partner for FOXM1 in the MMB complex. In the context of OAC, both coregulator (eg LIN54) and target gene (eg UHRF1) expression levels are predictive of disease stage.
CONCLUSIONS: Together our data demonstrate that there are global changes to the FOXM1 regulatory network in OAC and the expression of components of this network help predict cancer prognosis.

Deng W, Yan M, Yu T, et al.
Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer.
Cell Physiol Biochem. 2015; 35(5):1677-88 [PubMed] Related Publications
BACKGROUND: microRNAs can repress the expression of target genes by destabilizing their mRNAs or by inhibiting their translation. Our previous findings suggested that miR-193a-3p inhibited the progression of NSCLC both in vitro and in vivo. However, the biological processes and molecular pathways through which this miRNA exerts its positive effects are unknown.
METHODS: To explore the molecular mechanisms by which miR-193a-3p inhibited NSCLC metastasis, we investigated the changes in the protein profile of SPC-A-1sci (highly metastatic) cells in response to the up-regulation of miR-193a-3p expression using a proteomics approach (iTRAQ combined with NanoLC-MS/MS). Changes in the profiles of the expressed proteins were verified using western blotting and were analyzed using the DAVID and STRING programs.
RESULTS: In the two replicated experiments, 4962/4946 proteins were identified, and the levels of expression of 4923/4902 proteins were quantified. In total, 112 of these proteins were differentially expressed. Among them, the up-regulated levels of expression of two of the 62 proteins with up-regulated expression (PPP2R2A and GSN) and the down-regulated levels of expression four of the 50 proteins with down-regulated expression (LMNB2, UHRF1, G3BP1, and HNRNPU) were verified using western blotting. The bioinformatics analysis revealed the interactions and signaling networks of these differentially expressed proteins.
CONCLUSION: miR-193a-3p inhibited the metastasis of lung cancer cells by deregulating the expression of tumor-related proteins. These findings may improve the understanding of the molecular mechanisms underlying the metastatic-inhibitory effect of miR-193a-3p on lung cancer cells.

Kim KB, Son HJ, Choi S, et al.
H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation.
Nucleic Acids Res. 2015; 43(7):3509-23 [PubMed] Free Access to Full Article Related Publications
Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.

Yan F, Shao LJ, Hu XY
Knockdown of UHRF1 by lentivirus-mediated shRNA inhibits ovarian cancer cell growth.
Asian Pac J Cancer Prev. 2015; 16(4):1343-8 [PubMed] Related Publications
Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has been reported to be over-expressed in many cancers, but its role in ovarian cancer remains elusive. Here, we determined whether knockdown of UHRF1 by lentivirus-mediated shRNA could inhibit ovarian cancer cell growth. Lentivirus- mediated short hairpin RNAs (lv-shRNAs-UHRF1) were designed to trigger the gene silencing RNA interference (RNAi) pathway. The efficiency of lentivirus-mediated shRNA infection into HO-8910 and HO-8910 PM cells was determined using fluorescence microscopy to observe lentivirus-mediated GFP expressionand was confirmed to be over 80 percent. UHRF1 expression in infected HO-8910 and HO-8910 PM was evaluated by real-time PCR and Western blot analysis. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability; flow cytometry and Hoechst 33342 assay was applied to measure cell cycle arrest and apoptosis. Cell invasion was assessed using transwell chambers. Our results demonstrated that the loss of UHRF1 promoted HO-8910 and HO-8910 PM cell apoptosis, while inhibiting cell proliferation. In addition, UHRF1 knockdown significantly inhibited the invasion of human ovarian cancer cells. In the present study, we also showed that depleting HO-8910 cells of UHRF1 caused activation of the DNA damage response pathway, with the cell cycle arrested in G2/M-phase. The DNA damage response in cells depleted of UHRF1 was illustrated by phosphorylation of CHK (checkpoint kinase) 2 on Thr68, phosphorylation of CDC25 (cell division control 25) on Ser 216 and phosphorylation of CDK1 (cyclin-dependent kinase 1) on Tyr 15.

Zhuo H, Tang J, Lin Z, et al.
The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma.
Mol Carcinog. 2016; 55(2):209-19 [PubMed] Related Publications
MEG3 as a tumor suppressor has been reported to be linked with pathogenesis of malignancies including hepatocellular carcinoma (HCC). However, the mechanism of MEG3 in HCC still remains unclear. In our study, the aberrant decreased level of MEG3 in 72 tumor tissues obtained from HCC patients and cell lines was examined by using real-time PCR. The inhibition affection in proliferation and inducing affection in apoptosis was further confirmed in vivo and vitro, we also demonstrated that MEG3 regulates HCC cell proliferation and apoptosis partially via the accumulation of p53. Besides, the hypermethylation of MEG3 in promoter region was identified by bisulfite sequencing while MEG3 increased with the inhibition of methylation. Subsequently, UHRF1, a new identified oncogene which is required for DNA methylation and recruits, was investigated. A negative correlation of MEG3 and UHRF1 expression was verified in primary HCC tissues. Down-regulation of UHRF1 induced MEG3 expression in HCC cell lines, which could be reversed by the up-regulation of UHRF1. In addition, up-regulation of MEG3 in HCC cells partially diminished the promotion of proliferation induced by UHRF1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of MEG3 indicated worse overall and relapse-free survivals compared with high expression of MEG3. Cox proportional hazards analyses showed that MEG3 expression was an independent prognostic factor for HCC patients. In conclusion, we demonstrated MEG3, acting as a potential biomarker in predicting the prognosis of HCC, was regulated by UHRF1 via recruiting DNMT1 and regulated p53 expression.

Kim MY, Park SJ, Shim JW, et al.
Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells.
Int J Oncol. 2015; 46(4):1659-66 [PubMed] Related Publications
Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity.

Jung YD, Shim JW, Park SJ, et al.
Downregulation of UHRF1 promotes EMT via inducing CXCR4 in human cancer cells.
Int J Oncol. 2015; 46(3):1232-42 [PubMed] Related Publications
Activation of epithelial-mesenchymal transition (EMT) is important for malignant tumor progression exhibiting migratory and invasive properties. UHRF1 (ubiquitin-like, with PHD and RING finger domains 1), as an epigenetic regulator, plays a crucial role in DNA CpG methylation, chromatin remodeling and gene expression. Many studies demonstrated that UHRF1 is aberrantly expressed in various types of human cancer. However, the precise role of UHRF1 in human cancers remains highly controversial. In the present study, we found that downregulation of UHRF1 enhances the migratory and invasive properties of human cancer cells by inducing EMT, and that the CXCR4 signaling pathway is strictly necessary for UHRF1 deficiency-mediated induction of EMT. Downregulation of UHRF1 induced the expression of the EMT-regulating transcription factors, Zeb1, Slug and Snail and then led to decreased protein level of E-cadherin, and increased protein level of N-cadherin and vimentin, including increased migratory and invasive properties of human cancer cells. In addition, siRNA targeting of Zeb1 or Snail effectively attenuated UHRF1 deficiency-induced EMT, but siRNA targeting of Slug did not, indicating that Zeb1 and Snail play key roles in this event. Moreover, downregulation of UHRF1 induced the expression of CXCR4 in HepG2 cells. siRNA targeting of CXCR4 greatly suppressed the UHRF1 deficiency-induced EMT, as evidenced by a reversal of expression patterns of Snail and Zeb1, and by reduced migratory and invasive properties of HepG2 cells. In conclusion, our results demonstrate that downregulation of UHRF1 contributes to the induction of EMT in human cancer cells via the activation of CXCR4 signaling pathway. Our observation also suggests that UHRF1 may play a pivotal role in suppressing the malignant alteration of cancer cells.

Boukhari A, Alhosin M, Bronner C, et al.
CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells.
Anticancer Res. 2015; 35(1):149-57 [PubMed] Related Publications
CD47, an integrin-associated protein is over-expressed in several tumors including glioblastomas. Activation of CD47 induces proliferation of human astrocytoma cells but not normal astrocytes via an Akt-dependent way. However, the pathways mediating this process are still unknown. The epigenetic integrator UHRF1 (Ubiquitin-like containing PHD and RING Finger 1) is over-expressed in various cancers and plays a vital role in the silencing of numerous tumor suppressor genes including p16(INK4A), thereby promoting cell proliferation. The aim of the present study was to investigate the role of UHRF1 and p16(INK4A) in CD47-induced effects. Herein we showed that activation of CD47 in human astrocytoma cell lines U87 and CCF- STTG1 (Grade IV), up-regulated the expression of UHRF1 with subsequent down-regulation of p16(INK4A), thus promoting cell proliferation. Blockage of CD47 using a blocking antibody down-regulated UHRF1 expression, accompanied by a re-expression of p16(INK4A), conducting to decreased cell proliferation in both cancer cell lines. Neither CD47 activation nor its blocking has any effect on UHRF1/p16(INK4A) expression in normal human astrocytes. Depletion of CD47 in the U87 cell line resulted in down-regulation of UHRF1. We also found that CD47 activated the inflammatory genes IL-6, IL-7 and MCP-1 by a NF-κB-dependent mechanism in human astrocytoma but not in normal astrocytes. In conclusion, the present findings indicate that CD47 activation increases expression of UHRF1 and suggest, for the first time, that CD47 regulates the epigenetic code by targeting UHRF1. This could represent a new pathway towards cell proliferation and metastasis.

Wu SM, Cheng WL, Liao CJ, et al.
Negative modulation of the epigenetic regulator, UHRF1, by thyroid hormone receptors suppresses liver cancer cell growth.
Int J Cancer. 2015; 137(1):37-49 [PubMed] Related Publications
The thyroid hormone, 3,3',5-triiodo-l-thyronine (T3 ), mediates several physiological processes, including embryonic development, cellular differentiation, metabolism and regulation of cell proliferation. Thyroid hormone (T3 ) and its receptor (TR) are involved in metabolism and growth. In addition to their developmental and metabolic functions, TRs play a tumor suppressor role, and therefore, their aberrant expression can lead to tumor transformation. Aberrant epigenetic silencing of tumor suppressor genes promotes cancer progression. The epigenetic regulator, Ubiquitin-like with PHD and ring finger domains 1 (UHRF1), is overexpressed in various cancers. In our study, we demonstrated that T3 negatively regulates UHRF1 expression, both in vitro and in vivo. Our results further indicate that UHRF1 regulation by T3 is indirect and mediated by Sp1. Sp1-binding elements of UHRF1 were identified at positions -664/-505 of the promoter region using the luciferase and chromatin immunoprecipitation assays. Notably, UHRF1 and Sp1 levels were elevated in subgroups of hepatocellular carcinoma patients and inversely correlated with TRα1 expression. Knockdown of UHRF1 expression should therefore provide a means to inhibit hepatoma cell proliferation. Expression of UHRF1 was downregulated by TRs, in turn, relieving silencing of the UHRF1 target gene, p21. Based on the collective findings, we propose that T3 /TR signaling induces hepatoma cell growth inhibition via UHRF1 repression.

Cui L, Chen J, Zhang Q, et al.
Up-regulation of UHRF1 by oncogenic Ras promoted the growth, migration, and metastasis of pancreatic cancer cells.
Mol Cell Biochem. 2015; 400(1-2):223-32 [PubMed] Related Publications
Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) has been reported as a marker for the differential diagnosis of pancreatic cancer and chronic pancreatitis. However, the expression pattern and biological functions of UHRF1 in the progression of pancreatic cancer are not fully understood. In this study, it was found that the expression of UHRF1 was significantly up-regulated in pancreatic cancer samples compared to their adjacent normal tissues. Meanwhile, the expression of UHRF1 was inversely correlated with the survival of pancreatic cancer patients. Moreover, in the biological function studies, UHRF1 was shown to promote the growth, migration, and metastasis of pancreatic cancer cells in vitro and in vivo. Mechanistically, the expression of UHRF1 was induced by oncogenic Ras in both pancreatic cancer mouse model and cultured cells. Taken together, our study demonstrated that UHRF1 played an oncogenic role in the progression of pancreatic cancer, and UHRF1 might be a promising target for the treatment of pancreatic cancer.

Varol N, Konac E, Bilen CY
Does Wnt/β-catenin pathway contribute to the stability of DNMT1 expression in urological cancer cell lines?
Exp Biol Med (Maywood). 2015; 240(5):624-30 [PubMed] Free Access to Full Article Related Publications
DNA methylation is considered as one of the most important epigenetic mechanisms and it is catalyzed by DNA methyltransferases (DNMTs). DNMT1 abundance has been frequently seen in urogenital system tumors but the reasons for this abundance are not well understood. We aimed to look into the effects of Wnt/β-catenin signaling pathway on overexpression of DNMT1 and aberrant expression of UHRF1 and HAUSP which are responsible for stability of DNMT1 at transcriptional and protein levels in urogenital cancers. In this context, firstly, Wnt/β-catenin signaling pathway was activated by using SB216763 which is a glycogen synthase kinase-3 (GSK3) β inhibitor. Cell proliferation levels in bladder cancer cells, renal cell carcinoma, and prostate cancer cells treated with GSK3β inhibitor (SB216763) were detected by WST-1 reagent. WIF-1 gene methylation profile was determined by methylation-specific PCR (MSP); expression levels of target genes β-catenin and WIF-1 by real-time PCR; and protein levels of β-catenin, DNMT1, pGSK3β(Ser9), HAUSP, and UHRF1 by Western Blot. Our results indicated that treatment with SB216763 caused an increased cell proliferation at low dose. mRNA levels of β-catenin increased after treatment with SB216273 and protein levels of pGSK3β(Ser9), β-catenin, and DNMT1 increased in comparison to control. HAUSP and UHRF1 were either up-regulated or down-regulated at the same doses depending on the type of cancer. Also, we showed that protein levels of DNMT1, β-catenin, HAUSP, and UHRF1 decreased after re-expression of WIF-1 following treatment with DAC. In Caki-2 cells, β-catenin pathway might have accounted for the stability of DNMT1 expression, whereas such relation is not valid for T24 and PC3 cells. Our findings may offer a new approach for determination of molecular effects of Wnt/β-catenin signal pathway on DNMT1. This may allow us to identify new molecular targets for the treatment of urogenital cancers.

Benavente CA, Finkelstein D, Johnson DA, et al.
Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression.
Oncotarget. 2014; 5(20):9594-608 [PubMed] Free Access to Full Article Related Publications
The retinoblastoma (Rb) family of proteins are key regulators of cell cycle exit during development and their deregulation is associated with cancer. Rb is critical for normal retinal development and germline mutations lead to retinoblastoma making retinae an attractive system to study Rb family signaling. Rb coordinates proliferation and differentiation through the E2f family of transcription factors, a critical interaction for the role of Rb in retinal development and tumorigenesis. However, whether the roles of the different E2fs are interchangeable in controlling development and tumorigenesis in the retina or if they have selective functions remains unknown. In this study, we found that E2f family members play distinct roles in the development and tumorigenesis. In Rb;p107-deficient retinae, E2f1 and E2f3 inactivation rescued tumor formation but only E2f1 rescued the retinal development phenotype. This allowed the identification of key target genes for Rb/E2f family signaling contributing to tumorigenesis and those contributing to developmental defects. We found that Sox4 and Sox11 genes contribute to the developmental phenotype and Hells and Uhrf1 contribute to tumorigenesis. Using orthotopic human xenografts, we validated that upregulation of HELLS and UHRF1 is essential for the tumor phenotype. Also, these epigenetic regulators are important for the regulation of SYK.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. UHRF1, Cancer Genetics Web: http://www.cancer-genetics.org/UHRF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999