ARNTL

Gene Summary

Gene:ARNTL; aryl hydrocarbon receptor nuclear translocator like
Aliases: TIC, JAP3, MOP3, BMAL1, PASD3, BMAL1c, bHLHe5
Location:11p15.3
Summary:The protein encoded by this gene is a basic helix-loop-helix protein that forms a heterodimer with CLOCK. This heterodimer binds E-box enhancer elements upstream of Period (PER1, PER2, PER3) and Cryptochrome (CRY1, CRY2) genes and activates transcription of these genes. PER and CRY proteins heterodimerize and repress their own transcription by interacting in a feedback loop with CLOCK/ARNTL complexes. Defects in this gene have been linked to infertility, problems with gluconeogenesis and lipogenesis, and altered sleep patterns. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:aryl hydrocarbon receptor nuclear translocator-like protein 1
Source:NCBIAccessed: 09 March, 2017

Ontology:

What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Case-Control Studies
  • Staging
  • RTPCR
  • Circadian Rhythm
  • Circadian Clocks
  • Histones
  • Colorectal Cancer
  • Flavoproteins
  • Transcription Factors
  • Transfection
  • Messenger RNA
  • Apoptosis
  • Basic Helix-Loop-Helix Transcription Factors
  • Cryptochromes
  • Period Circadian Proteins
  • Melatonin
  • Young Adult
  • siRNA
  • Chromosome 11
  • Breast Cancer
  • Gene Expression
  • Proto-Oncogene Proteins c-myc
  • Skin
  • Gene Expression Profiling
  • CLOCK Proteins
  • DNA Methylation
  • ARNTL Transcription Factors
  • Cancer Gene Expression Regulation
  • Adenocarcinoma
  • ARNTL
  • Western Blotting
  • Stomach Cancer
  • Neoplasm Invasiveness
  • Nuclear Proteins
  • Melanoma
  • Genotype
  • Promoter Regions
  • Biomarkers, Tumor
  • Cell Proliferation
  • Signal Transduction
  • RNA Interference
  • Single Nucleotide Polymorphism
  • Prostate Cancer
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ARNTL (cancer-related)

Poletini MO, de Assis LV, Moraes MN, Castrucci AM
Estradiol differently affects melanin synthesis of malignant and normal melanocytes: a relationship with clock and clock-controlled genes.
Mol Cell Biochem. 2016; 421(1-2):29-39 [PubMed] Related Publications
Melanin production within melanocytes is regulated, among others, by estradiol, whose effects on melanogenesis are still not completely elucidated. Here we show that although 10(-7) M 17β-estradiol (E2) increased tyrosinase mRNA levels in B16-F10 malignant melanocytes, there was a transient decrease and abolishment of the temporal variation of melanin content. Both parameters were much higher in the malignant than in normal Melan-a cells. Considering that silencing clock machinery in human melanocytes increases melanogenesis, we investigated clock gene expression in those cell lines. Except for Melan-a Bmal1 and B16-F10 Per2 expression of control cells, Per1, Per2, and Bmal1 expression increased independently of cell type or E2 treatment after 24 h. However, melanoma cells showed a marked increase in Per1 and Bma11 expression in response to E2 at the same time points, what may rule out E2 as a synchronizer agent since the expression of those genes were not in antiphase. Next, we investigated the expression of Xpa, a clock-controlled gene, which in Melan-a cells, peaked at 18 h, and E2 treatment shifted this peak to 24 h, whereas B16-F10 Xpa expression peaked at 24 h in both control and E2 group, and it was higher compared to Melan-a cells in both groups. Therefore, malignant and normal melanocytes display profound differences on core elements of the local clock, and how they respond to E2, what is most probably determinant of the differences seen on melanin synthesis and Tyrosinase and Xpa expression. Understanding these processes at the molecular level could bring new strategies to treat melanoma.

Huisman SA, Ahmadi AR, IJzermans JN, et al.
Disruption of clock gene expression in human colorectal liver metastases.
Tumour Biol. 2016; 37(10):13973-13981 [PubMed] Free Access to Full Article Related Publications
The circadian timing system controls about 40 % of the transcriptome and is important in the regulation of a wide variety of biological processes including metabolic and proliferative functions. Disruption of the circadian clock could have significant effect on human health and has an important role in the development of cancer. Here, we compared the expression levels of core clock genes in primary colorectal cancer (CRC), colorectal liver metastases (CRLM), and liver tissue within the same patient. Surgical specimens of 15 untreated patients with primary CRC and metachronous CRLM were studied. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression of 10 clock genes: CLOCK, BMAL1, PER1, PER2, PER3, CRY1, CRY2, CSNK1E, TIM, TIPIN, and 2 clock-controlled genes: Cyclin-D1, and WEE1. Expression levels of 7 core clock genes were downregulated in CRLM: CLOCK (p = 0.006), BMAL1 (p = 0.003), PER1 (p = 0.003), PER2 (p = 0.002), PER3 (p < 0.001), CRY1 (p = 0.002), and CRY2 (p < 0.001). In CRC, 5 genes were downregulated: BMAL1 (p = 0.02), PER1 (p = 0.004), PER2 (p = 0.008), PER3 (p < 0.001), and CRY2 (p < 0.001). CSNK1E was upregulated in CRC (p = 0.02). Cyclin-D1 and WEE1 were both downregulated in CRLM and CRC. Related to clinicopathological factors, a significant correlation was found between low expression of CRY1 and female gender, and low PER3 expression and the number of CRLM. Our data demonstrate that the core clock is disrupted in CRLM and CRC tissue from the same patient. This disruption may be linked to altered cell-cycle dynamics and carcinogenesis.

Puram RV, Kowalczyk MS, de Boer CG, et al.
Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML.
Cell. 2016; 165(2):303-16 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.

Murugesan G, Guenther-Johnson J, Mularo F, et al.
Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR.
Int J Lab Hematol. 2016; 38(3):284-97 [PubMed] Related Publications
INTRODUCTION: The 2008 WHO criteria for the diagnosis and classification of myeloproliferative neoplasms (MPN) rely in part upon the assessment of mutations in JAK2 and MPL genes. Recently, mutations in calreticulin (CALR) have been identified in MPN lacking JAK2 and MPL mutations. We have validated a sensitive fragment analysis assay to detect CALR mutations.
METHODS: Genomic DNA from peripheral blood, bone marrow, and FFPE bone marrow clot preparations from 52 MPN specimens with known JAK2 and MPL mutation status and 29 non-MPN specimens was analyzed. CALR mutation testing was performed by fragment length analysis, and the results were confirmed by sequencing. Accuracy, precision, sensitivity, specificity, and robustness of the assay were determined.
RESULTS: Forty specimens (32 JAK2+, 2 JAK2-/MPL+, and 6 JAK2-/MPL-) were negative for CALR mutations. Twelve specimens had CALR mutations including 52 bp deletion (5), 5 bp insertion (6), and a novel 9 bp deletion (1). This 9 bp inframe deletion occurring at an allelic burden of 50% would delete three amino acids. One specimen with a 52 bp deletion also had JAK2 V617F mutation. All 29 non-MPN specimens were negative for CALR mutations. The assay accurately identified the mutation status of all 52 MPN specimens and had a coefficient of variation <3% for the fragment size and mutant peaks with a sensitivity of 5% for indels.
CONCLUSIONS: Fragment analysis is an accurate and sensitive method for the detection of CALR indels. The novel 9 bp deletion is likely a germline variant. Consequence of coexisting JAK2 V617F and CALR mutations requires careful interpretation.

Brantley E, Callero MA, Berardi DE, et al.
AhR ligand Aminoflavone inhibits α6-integrin expression and breast cancer sphere-initiating capacity.
Cancer Lett. 2016; 376(1):53-61 [PubMed] Related Publications
Traditional chemotherapies debulk tumors but fail to produce long-term clinical remissions due to their inability to eradicate tumor-initiating cells (TICs). This necessitates therapy with activity against the TIC niche. Αlpha6-integrin (α6-integrin) promotes TIC growth. In contrast, aryl hydrocarbon receptor (AhR) signaling activation impedes the formation of mammospheres (clusters of cells enriched for TICs). We investigated the ability of AhR agonist Aminoflavone (AF) and AF pro-drug (AFP464) to disrupt mammospheres derived from breast cancer cells and a M05 mammary mouse model of breast cancer respectively. We further examined the capacity of AF and AFP464 to exhibit anticancer activity and modulate the expression of 'stemness' genes including α6-integrin using immunofluorescence, flow cytometry and qRT-PCR analysis. AF disrupted mammospheres and prevented secondary mammosphere formation. In contrast, AF did not disrupt mammospheres derived from AhR ligand-unresponsive MCF-7 cells. AFP464 treatment suppressed M05 tumor growth and disrupted corresponding mammospheres. AF and AFP464 reduced the expression and percentage of cells that stained for 'stemness' markers including α6-integrin in vitro and in vivo respectively. These data suggest AFP464 thwarts bulk breast tumor and TIC growth via AhR agonist-mediated α6-integrin inhibition.

Rangel MC, Bertolette D, Castro NP, et al.
Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer.
Breast Cancer Res Treat. 2016; 156(2):211-26 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/β-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/β-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.

Repouskou A, Prombona A
c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level.
Biochim Biophys Acta. 2016; 1859(4):541-52 [PubMed] Related Publications
Cell proliferation in mammals follows a circadian rhythm while disruption of clock gene expression has been linked to tumorigenesis. Expression of the c-Myc oncogene is frequently deregulated in tumors, facilitating aberrant cell proliferation. c-MYC protein levels display circadian rhythmicity, which is compatible with an in vitro repressive role of the clock-activating complex BMAL1/CLOCK on its promoter. In this report, we provide evidence for the in vivo binding of the core circadian factor BMAL1 on the human c-Myc promoter. In addition, analysis of protein synthesis and degradation rates, as well as post-translational acetylation, demonstrate that the clock tightly controls cellular MYC levels. The oncoprotein itself is a transcription factor that by responding to mitogenic signals regulates the expression of several hundred genes. c-MYC-driven transcription is generally exerted upon dimerization with MAX and binding to E-box elements, a sequence that is also recognized by the circadian heterodimer. Our reporter assays reveal that the MYC/MAX dimer cannot affect transcription of the circadian gene Per1. However, when overexpressed, c-MYC is able to repress Per1 transactivation by BMAL1/CLOCK via targeting selective E-box sequences. Importantly, upon serum stimulation, MYC was detected in BMAL1 protein complexes. Together, these data demonstrate a novel interaction between MYC and circadian transactivators resulting in reduced clock-driven transcription. Perturbation of Per1 expression by MYC constitutes a plausible alternative explanation for the deregulated expression of clock genes observed in many types of cancer.

Okazaki F, Matsunaga N, Okazaki H, et al.
Circadian Clock in a Mouse Colon Tumor Regulates Intracellular Iron Levels to Promote Tumor Progression.
J Biol Chem. 2016; 291(13):7017-28 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Iron is an important biological catalyst and is critical for DNA synthesis during cell proliferation. Cellular iron uptake is enhanced in tumor cells to support increased DNA synthesis. Circadian variations in DNA synthesis and proliferation have been identified in tumor cells, but their relationship with intracellular iron levels is unclear. In this study, we identified a 24-h rhythm in iron regulatory protein 2 (IRP2) levels in colon-26 tumors implanted in mice. Our findings suggest that IRP2 regulates the 24-h rhythm of transferrin receptor 1 (Tfr1) mRNA expression post-transcriptionally, by binding to RNA stem-loop structures known as iron-response elements. We also found thatIrp2mRNA transcription is promoted by circadian clock genes, including brain and muscle Arnt-like 1 (BMAL1) and the circadian locomotor output cycles kaput (CLOCK) heterodimer. Moreover, growth in colon-26(Δ19) tumors expressing the clock-mutant protein (CLOCK(Δ19)) was low compared with that in wild-type colon-26 tumor. The time-dependent variation of cellular iron levels, and the proliferation rate in wild-type colon-26 tumor was decreased by CLOCK(Δ19)expression. Our findings suggest that circadian organization contributes to tumor cell proliferation by regulating iron metabolism in the tumor.

Mazzoccoli G, Colangelo T, Panza A, et al.
Deregulated expression of cryptochrome genes in human colorectal cancer.
Mol Cancer. 2016; 15:6 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
BACKGROUND: Circadian disruption and deranged molecular clockworks are involved in carcinogenesis. The cryptochrome genes (CRY1 and CRY2) encode circadian proteins important for the functioning of biological oscillators. Their expression in human colorectal cancer (CRC) and in colon cancer cell lines has not been evaluated so far.
METHODS: We investigated CRY1 and CRY2 expression in fifty CRCs and in the CaCo2, HCT116, HT29, SW480 cell lines.
RESULTS: CRY1 (p = 0.01) and CRY2 (p < 0.0001) expression was significantly changed in tumour tissue, as confirmed in a large independent CRC dataset. In addition, lower CRY1 mRNA levels were observed in patients in the age range of 62-74 years (p = 0.018), in female patients (p = 0.003) and in cancers located at the transverse colon (p = 0.008). Lower CRY2 levels were also associated with cancer location at the transverse colon (p = 0.007). CRC patients displaying CRY1 (p = 0.042) and CRY2 (p = 0.043) expression levels over the median were hallmarked by a poorer survival rate. Survey of selected colon cancer cell lines evidenced variable levels of cryptochrome genes expression and time-dependent changes in their mRNA levels. Moreover, they showed reduced apoptosis, increased proliferation and different response to 5-fluorouracil and oxaliplatin upon CRY1 and CRY2 ectopic expression. The relationship with p53 status came out as an additional layer of regulation: higher CRY1 and CRY2 protein levels coincided with a wild type p53 as in HCT116 cells and this condition only marginally affected the apoptotic and cell proliferation characteristics of the cells upon CRY ectopic expression. Conversely, lower CRY and CRY2 levels as in HT29 and SW480 cells coincided with a mutated p53 and a more robust apoptosis and proliferation upon CRY transfection. Besides, an heterogeneous pattern of ARNTL, WEE and c-MYC expression hallmarked the chosen colon cancer cell lines and likely influenced their phenotypic changes.
CONCLUSION: Cryptochrome gene expression is altered in CRC, particularly in elderly subjects, female patients and cancers located at the transverse colon, affecting overall survival. Altered CRY1 and CRY2 expression patterns and the interplay with the genetic landscape in colon cancer cells may underlie phenotypic divergence that could influence disease behavior as well as CRC patients survival and response to chemotherapy.

Chen CL, Uthaya Kumar DB, Punj V, et al.
NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism.
Cell Metab. 2016; 23(1):206-19 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Stem cell markers, including NANOG, have been implicated in various cancers; however, the functional contribution of NANOG to cancer pathogenesis has remained unclear. Here, we show that NANOG is induced by Toll-like receptor 4 (TLR4) signaling via phosphorylation of E2F1 and that downregulation of Nanog slows down hepatocellular carcinoma (HCC) progression induced by alcohol western diet and hepatitis C virus protein in mice. NANOG ChIP-seq analyses reveal that NANOG regulates the expression of genes involved in mitochondrial metabolic pathways required to maintain tumor-initiating stem-like cells (TICs). NANOG represses mitochondrial oxidative phosphorylation (OXPHOS) genes, as well as ROS generation, and activates fatty acid oxidation (FAO) to support TIC self-renewal and drug resistance. Restoration of OXPHOS activity and inhibition of FAO renders TICs susceptible to a standard care chemotherapy drug for HCC, sorafenib. This study provides insights into the mechanisms of NANOG-mediated generation of TICs, tumorigenesis, and chemoresistance through reprogramming of mitochondrial metabolism.

Jiang W, Zhao S, Jiang X, et al.
The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway.
Cancer Lett. 2016; 371(2):314-25 [PubMed] Related Publications
Disruption of the circadian clock has been shown to be associated with tumor development. This study aimed to investigate the role of the core circadian gene Bmal1 in pancreatic cancer (PC). We first found that the levels of Bmal1 were downregulated in PC samples and were closely correlated with the clinicopathological features of patients. To dissect the underlying mechanism, we performed a RNA-seq assay followed by systematic gene function and pathway enrichment analyses. We detected an anti-apoptotic and pro-proliferative transcriptome profile after Bmal1 knockdown in PC cells. Further in vitro and in vivo studies confirmed that Bmal1 overexpression significantly inhibited cell proliferation and invasion and induced G2/M cell cycle arrest, whereas Bmal1 knockdown promoted PC growth, as demonstrated in Bmal1-manipulated AsPC-1 and BxPC-3 cell lines. Our mechanistic studies indicated that Bmal1 could directly bind to the p53 gene promoter and thereby transcriptionally activate the downstream tumor suppressor pathway in a p53-dependent manner. In sum, our findings suggest that Bmal1 acts as an anti-oncogene in PC and represents a potential biomarker for its diagnosis.

Yang MY, Lin PM, Hsiao HH, et al.
Up-regulation of PER3 Expression Is Correlated with Better Clinical Outcome in Acute Leukemia.
Anticancer Res. 2015; 35(12):6615-22 [PubMed] Related Publications
BACKGROUND: Altered expression of circadian clock genes has been linked to various types of cancer. This study aimed to investigate whether these genes are also altered in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL).
MATERIALS AND METHODS: The expression profiles of nine circadian clock genes of peripheral blood (PB) leukocytes from patients with newly-diagnosed AML (n=41), ALL (n=23) and healthy individuals (n=51) were investigated.
RESULTS: In AML, the expression of period 1 (PER1), period 2 (PER2), period 3 (PER3), cryptochrome 1 (CRY1), cryptochrome 2 (CRY2), brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1), and timeless (TIM) was significantly down-regulated, while that of CK1ε was significantly up-regulated. In ALL, the expression of PER3 and CRY1 was significantly down-regulated, whereas those of CK1ε and TIM were significantly up-regulated. Recovery of PER3 expression was observed in both patients with AML and those with ALL who achieved remission but not in patients who relapsed after treatment.
CONCLUSION: Circadian clock genes are altered in patients with acute leukemia and up-regulation of PER3 is correlated with a better clinical outcome.

Lu H, Chu Q, Xie G, et al.
Circadian gene expression predicts patient response to neoadjuvant chemoradiation therapy for rectal cancer.
Int J Clin Exp Pathol. 2015; 8(9):10985-94 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Preoperative neoadjuvant chemoradiation therapy may be useful in patients with operable rectal cancer, but treatment responses are variable. We examined whether expression levels of circadian clock genes could be used as biomarkers to predict treatment response. We retrospectively analyzed clinical data from 250 patients with rectal cancer, treated with neoadjuvant chemoradiation therapy in a single institute between 2011 and 2013. Gene expression analysis (RT-PCR) was performed in tissue samples from 20 patients showing pathological complete regression (pCR) and 20 showing non-pCR. The genes analyzed included six core clock genes (Clock, Per1, Per2, Cry1, Cry2 and Bmal1) and three downstream target genes (Wee1, Chk2 and c-Myc). Patient responses were analyzed through contrast-enhanced pelvic MRI and endorectal ultrasound, and verified by histological assessment. pCR was defined histologically as an absence of tumor cells. Among the 250 included patients, 70.8% showed regression of tumor size, and 18% showed pCR. Clock, Cry2 and Per2 expressions were significantly higher in the pCR group than in the non-pCR group (P<0.05), whereas Per1, Cry1 and Bmal1 expressions did not differ significantly between groups. Among the downstream genes involved in cell cycle regulation, c-Myc showed significantly higher expression in the pCR group (P<0.05), whereas Wee1 and Chk2 expression did not differ significantly between groups. Circadian genes are potential biomarkers for predicting whether a patient with rectal cancer would benefit from neoadjuvant chemoradiation therapy.

Tsai ST, Wang PJ, Liou NJ, et al.
ICAM1 Is a Potential Cancer Stem Cell Marker of Esophageal Squamous Cell Carcinoma.
PLoS One. 2015; 10(11):e0142834 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer diagnosed in Asian countries, with its incidence on the rise. Cancer stem cell (CSC; also known as tumor-initiating cells, TIC) is inherently resistant to cytotoxic chemotherapy and radiation and associates with poor prognosis and therapy failure. Targeting therapy against cancer stem cell has emerged as a potential therapeutic approach to develop effective regimens. However, the suitable CSC marker of ESCC for identification and targeting is still limited. In this study, we screened the novel CSC membrane protein markers using two distinct stemness characteristics of cancer cell lines by a comparative approach. After the validation of RT-PCR, qPCR and western blot analyses, intercellular adhesion molecule 1 (ICAM1) was identified as a potential CSC marker of ESCC. ICAM1 promotes cancer cell migration, invasion as well as increasing mesenchymal marker expression and attenuating epithelial marker expression. In addition, ICAM1 contributes to CSC properties, including sphere formation, drug resistance, and tumorigenesis in mouse xenotransplantation model. Based on the analysis of ICAM1-regulated proteins, we speculated that ICAM1 regulates CSC properties partly through an ICAM1-PTTG1IP-p53-DNMT1 pathway. Moreover, we observed that ICAM1 and CD44 could have a compensation effect on maintaining the stemness characteristics of ESCC, suggesting that the combination of multi-targeting therapies should be under serious consideration to acquire a more potent therapeutic effect on CSC of ESCC.

Wang YJ, Herlyn M
The emerging roles of Oct4 in tumor-initiating cells.
Am J Physiol Cell Physiol. 2015; 309(11):C709-18 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Octamer-binding transcription factor 4 (Oct4), a homeodomain transcription factor, is well established as a master factor controlling the self-renewal and pluripotency of pluripotent stem cells. Also, a large body of research has documented the detection of Oct4 in tumor cells and tissues and has indicated its enrichment in a subpopulation of undifferentiated tumor-initiating cells (TICs) that critically account for tumor initiation, metastasis, and resistance to anticancer therapies. There is circumstantial evidence for low-level expression of Oct4 in cancer cells and TICs, and the participation of Oct4 in various TIC functions such as its self-renewal and survival, epithelial-mesenchymal transition (EMT) and metastasis, and drug resistance development is implicated from considerable Oct4 knockdown and overexpression-based studies. In a few studies, efforts have been made to identify Oct4 target genes in TICs of different sources. Based on such information, Oct4 in TICs appears to act via mechanisms quite distinct from those in pluripotent stem cells, and a main challenge for future studies is to unravel the molecular mechanisms of action of Oct4, particularly to address the question on how such low levels of Oct4 may exert its functions in TICs. Acquiring cells from their native microenvironment that are of high enough quantity and purity is the key to reliably analyze Oct4 functions and its target genes in TICs, and the information gained may greatly facilitate targeting and eradicating those cells.

Mélin C, Perraud A, Christou N, et al.
New ex-ovo colorectal-cancer models from different SdFFF-sorted tumor-initiating cells.
Anal Bioanal Chem. 2015; 407(28):8433-43 [PubMed] Related Publications
Despite effective treatments, relapse of colorectal cancer (CRC) is frequent, in part caused by the existence of tumor-initiating cells (TICs). Different subtypes of TICs, quiescent and activated, coexist in tumors, defining the tumor aggressiveness and therapeutic response. These subtypes have been sorted by hyperlayer sedimentation field-flow fractionation (SdFFF) from WiDr and HCT116 cell lines. On the basis of a new strategy, including TIC SdFFF sorting, 3D Matrigel amplification, and grafting of corresponding TIC colonies on the chick chorioallantoic membrane (CAM), specific tumor matrices could be obtained. If tumors had similar architectural structure with vascularization by the host system, they had different proliferative indices in agreement with their initial quiescent or activated state. Protein analysis also revealed that tumors obtained from a population enriched for "activated" TICs lost "stemness" properties and became invasive. In contrast, tumors obtained from a population enriched for "quiescent" TICs kept their stemness properties and seemed to be less proliferative and invasive. Then, it was possible to produce different kinds of tumor which could be used as selective supports to study carcinogenesis and therapy sensitivity.

Han H, Du Y, Zhao W, et al.
PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells.
Nat Commun. 2015; 6:8271 [PubMed] Related Publications
Tumour-initiating cells (TICs) are advocated to constitute the sustaining force to maintain and renew fully established malignancy; however, the molecular mechanisms responsible for these properties are elusive. We previously demonstrated that voltage-gated calcium channel α2δ1 subunit marks hepatocellular carcinoma (HCC) TICs. Here we confirm directly that α2δ1 is a HCC TIC surface marker, and identify let-7c, miR-200b, miR-222 and miR-424 as suppressors of α2δ1(+) HCC TICs. Interestingly, all the four miRNAs synergistically target PBX3, which is sufficient and necessary for the acquisition and maintenance of TIC properties. Moreover, PBX3 drives an essential transcriptional programme, activating the expression of genes critical for HCC TIC stemness including CACNA2D1, EpCAM, SOX2 and NOTCH3. In addition, the expression of CACNA2D1 and PBX3 mRNA is predictive of poor prognosis for HCC patients. Collectively, our study identifies an essential signalling pathway that controls the switch of HCC TIC phenotypes.

Zhao H, Guo Y, Li S, et al.
A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway.
Oncotarget. 2015; 6(31):31927-43 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Tumor-initiating cell (TIC) is a subpopulation of cells in tumors that are responsible for tumor initiation and progression. Recent studies indicate that hepatocellular carcinoma-initiating cells (HCICs) confer the high malignancy, recurrence and multi-drug resistance in hepatocellular carcinoma (HCC). In this study, we found that Icaritin, a prenylflavonoid derivative from Epimedium Genus, inhibited malignant growth of HCICs. Icaritin decreased the proportion of EpCAM-positive (a HCICs marker) cells, suppressed tumorsphere formation in vitro and tumor formation in vivo. We also found that Icaritin reduced expression of Interleukin-6 Receptors (IL-6Rs), attenuated both constitutive and IL-6-induced phosphorylation of Janus-activated kinases 2 (Jak2) and Signal transducer and activator of transcription 3 (Stat3), and inhibited Stat3 downstream genes, such as Bmi-1 and Oct4. The inhibitory activity of Icaritin in HCICs was augmented by siRNA-mediated silencing of Stat3 but attenuated by constitutive activation of Stat3.Taken together, our results indicate that Icaritin is able to inhibit malignant growth of HCICs and suggest that Icaritin may be developed into a novel therapeutic agent for effective treatment of HCC.

Vogelsang M, Wilson M, Kirchhoff T
Germline determinants of clinical outcome of cutaneous melanoma.
Pigment Cell Melanoma Res. 2016; 29(1):15-26 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Cutaneous melanoma (CM) is the most lethal form of skin cancer. Despite the constant increase in melanoma incidence, which is in part due to incremental advances in early diagnostic modalities, mortality rates have not improved over the last decade and for advanced stages remain steadily high. While conventional prognostic biomarkers currently in use find significant utility for predicting overall general survival probabilities, they are not sensitive enough for a more personalized clinical assessment on an individual level. In recent years, the advent of genomic technologies has brought the promise of identification of germline DNA alterations that may associate with CM outcomes and hence represent novel biomarkers for clinical utilization. This review attempts to summarize the current state of knowledge of germline genetic factors studied for their impact on melanoma clinical outcomes. We also discuss ongoing problems and hurdles in validating such surrogates, and we also project future directions in discovery of more powerful germline genetic factors with clinical utility in melanoma prognostication.

Gilboa-Geffen A, Hamar P, Le MT, et al.
Gene Knockdown by EpCAM Aptamer-siRNA Chimeras Suppresses Epithelial Breast Cancers and Their Tumor-Initiating Cells.
Mol Cancer Ther. 2015; 14(10):2279-91 [PubMed] Related Publications
Effective therapeutic strategies for in vivo siRNA delivery to knockdown genes in cells outside the liver are needed to harness RNA interference for treating cancer. EpCAM is a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells (TIC, also known as cancer stem cells). Here, we show that aptamer-siRNA chimeras (AsiC, an EpCAM aptamer linked to an siRNA sense strand and annealed to the siRNA antisense strand) are selectively taken up and knock down gene expression in EpCAM(+) cancer cells in vitro and in human cancer biopsy tissues. PLK1 EpCAM-AsiCs inhibit colony and mammosphere formation (in vitro TIC assays) and tumor initiation by EpCAM(+) luminal and basal-A triple-negative breast cancer (TNBC) cell lines, but not EpCAM(-) mesenchymal basal-B TNBCs, in nude mice. Subcutaneously administered EpCAM-AsiCs concentrate in EpCAM(+) Her2(+) and TNBC tumors and suppress their growth. Thus, EpCAM-AsiCs provide an attractive approach for treating epithelial cancer.

Innominato PF, Lim AS, Palesh O, et al.
The effect of melatonin on sleep and quality of life in patients with advanced breast cancer.
Support Care Cancer. 2016; 24(3):1097-105 [PubMed] Related Publications
BACKGROUND: Fatigue and sleep problems are prevalent in cancer patients and can be associated with disruption of circadian rhythmicity. In this prospective phase II trial, we sought to assess the effect of melatonin on circadian biomarkers, sleep, and quality of life in breast cancer patients.
METHODS: Thirty-two patients with metastatic breast cancer, receiving hormonal or trastuzumab therapy, took 5 mg of melatonin at bedtime for 2 months. Before starting and after 2 months on melatonin therapy, sleep and circadian rhythmicity were assessed by actigraphy, diurnal patterns of serum cortisol, and the expression of the core clock genes PER2 and BMAL1 in peripheral blood mononuclear cells. The European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 questionnaire was completed for subjective parameters.
RESULTS: Bedtime melatonin was associated with a significant improvement in a marker of objective sleep quality, sleep fragmentation and quantity, subjective sleep, fatigue severity, global quality of life, and social and cognitive functioning scales. Morning clock gene expression was increased following bedtime melatonin intake. Melatonin did not affect actigraphy measure of circadian rhythmicity, or the diurnal cortisol pattern.
CONCLUSION: These results invite further investigation of melatonin as a potentially useful therapeutic agent for improving sleep and quality of life in cancer patients.

Dulong S, Ballesta A, Okyar A, Lévi F
Identification of Circadian Determinants of Cancer Chronotherapy through In Vitro Chronopharmacology and Mathematical Modeling.
Mol Cancer Ther. 2015; 14(9):2154-64 [PubMed] Related Publications
Cancer chronotherapy aims at enhancing tolerability and efficacy of anticancer drugs through their delivery according to circadian clocks. However, mouse and patient data show that lifestyle, sex, genetics, drugs, and cancer can modify both host circadian clocks and metabolism pathways dynamics, and thus the optimal timing of drug administration. The mathematical modeling of chronopharmacology could indeed help moderate optimal timing according to patient-specific determinants. Here, we combine in vitro and in silico methods, in order to characterize the critical molecular pathways that drive the chronopharmacology of irinotecan, a topoisomerase I inhibitor with complex metabolism and known activity against colorectal cancer. Large transcription rhythms moderated drug bioactivation, detoxification, transport, and target in synchronized colorectal cancer cell cultures. These molecular rhythms translated into statistically significant changes in pharmacokinetics and pharmacodynamics according to in vitro circadian drug timing. The top-up of the multiple coordinated chronopharmacology pathways resulted in a four-fold difference in irinotecan-induced apoptosis according to drug timing. Irinotecan cytotoxicity was directly linked to clock gene BMAL1 expression: The least apoptosis resulted from drug exposure near BMAL1 mRNA nadir (P < 0.001), whereas clock silencing through siBMAL1 exposure ablated all the chronopharmacology mechanisms. Mathematical modeling highlighted circadian bioactivation and detoxification as the most critical determinants of irinotecan chronopharmacology. In vitro-in silico systems chronopharmacology is a new powerful methodology for identifying the main mechanisms at work in order to optimize circadian drug delivery.

Sicchieri RD, da Silveira WA, Mandarano LR, et al.
ABCG2 is a potential marker of tumor-initiating cells in breast cancer.
Tumour Biol. 2015; 36(12):9233-43 [PubMed] Related Publications
The existence of tumor-initiating cells (TICs) within solid tumors has been hypothesized to explain tumor heterogeneity and resistance to cancer therapy. In breast cancer, the expression of CD44 and CD24 and the activity of aldehyde dehydrogenase 1 (ALDH1) can be used to selectively isolate a cell population enriched in TICs. However, the ideal marker to identify TICs has not been established. The aim of this study was to evaluate the expression of novel potential markers for TIC in breast carcinoma. We prospectively analyzed the expression of CD44, CD24, ABCG2, and CXCR4, and the activity of ALDH1 by using flow cytometry in 48 invasive ductal carcinomas from locally advanced and metastatic breast cancer patients who were administered primary chemotherapy. A mammosphere assay was employed in 30 samples. The relationship among flow cytometric analyses, ABCG2 gene expression, and clinical and pathological responses to therapy was analyzed. The GSE32646 database was analyzed in silico to identify genes associated with tumors with low and high ABCG2 expression. We observed that the presence of ABCG2(+) cells within the primary tumor was the only marker to predict the formation of mammospheres in vitro (R (2) = 0.15, p = 0.029). Quantitative polymerase chain reaction (qPCR) revealed a positive correlation between ABCG2 expression and the presence of ABCG2(+) cells within the primary tumor. The expression of ABCG2 was predictive of the response to neoadjuvant chemotherapy in our experiments and in the GSE32646 dataset (p = 0.04 and p = 0.002, respectively). The in silico analysis demonstrated that ABCG2(Up) breast cancer samples have a slower cell cycle and a higher expression of membrane proteins but a greater potential for chromosomal instability, metastasis, immune evasion, and resistance to hypoxia. Such genetic characteristics are compatible with highly aggressive and resistant tumors. Our results support the hypothesis that the presence of ABCG2(+) cells in breast carcinomas is a marker of resistance to chemotherapy, and based on in vitro assays and the genetic profile, we show, for the first time, that ABCG2 protein can be used as an independent marker for TIC identification in breast cancer.

Schech A, Kazi A, Yu S, et al.
Histone Deacetylase Inhibitor Entinostat Inhibits Tumor-Initiating Cells in Triple-Negative Breast Cancer Cells.
Mol Cancer Ther. 2015; 14(8):1848-57 [PubMed] Related Publications
Mortality following breast cancer diagnosis is mainly due to the development of distant metastasis. To escape from the primary site, tumor cells undergo the epithelial-to-mesenchymal transition (EMT), which helps them acquire a more motile and invasive phenotype. In our previous study, we showed that class I selective HDAC inhibitor entinostat reverses the EMT phenotype through reversal of epigenetic repression of E-cadherin. Recent evidence suggests that a subset of cells within a breast tumor may drive the metastatic outgrowth following escape from the primary site. These cells, termed tumor-initiating cells (TIC), represent a great threat to overall prognosis. They are critical in terms of drug resistance and tumor initiation at metastatic sites. Acquisition of EMT traits has also been shown to impart TIC phenotype to the cells, making EMT a "dual-threat" for prognosis. In the current study, we show that entinostat treatment can reduce the percentage of TIC cells from triple-negative breast cancer (TNBC) cells. Entinostat treatment was able to reduce the CD44(high)/CD24(low) cell population, ALDH-1 activity, as well as protein and mRNA expression of known TIC markers such as Bmi-1, Nanog, and Oct-4. Next, we inoculated MDA-MB-231 cells transfected with firefly luciferase (231/Luc) in mammary fat pad of NSG mice. The mice were then treated with entinostat (2.5 mg/kg/d), and tumor development and formation of metastasis were assessed by bioluminescence imaging. Treatment with entinostat significantly reduced tumor formation at the primary site as well as lung metastasis. As such, entinostat may help prevent development of distant metastasis.

Damelin M, Bankovich A, Park A, et al.
Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions.
Clin Cancer Res. 2015; 21(18):4165-73 [PubMed] Related Publications
PURPOSE: Triple-negative breast cancer (TNBC) and ovarian cancer each comprise heterogeneous tumors, for which current therapies have little clinical benefit. Novel therapies that target and eradicate tumor-initiating cells (TIC) are needed to significantly improve survival.
EXPERIMENTAL DESIGN: A panel of well-annotated patient-derived xenografts (PDX) was established, and surface markers that enriched for TIC in specific tumor subtypes were empirically determined. The TICs were queried for overexpressed antigens, one of which was selected to be the target of an antibody-drug conjugate (ADC). The efficacy of the ADC was evaluated in 15 PDX models to generate hypotheses for patient stratification.
RESULTS: We herein identified E-cadherin (CD324) as a surface antigen able to reproducibly enrich for TIC in well-annotated, low-passage TNBC and ovarian cancer PDXs. Gene expression analysis of TIC led to the identification of Ephrin-A4 (EFNA4) as a prospective therapeutic target. An ADC comprising a humanized anti-EFNA4 monoclonal antibody conjugated to the DNA-damaging agent calicheamicin achieved sustained tumor regressions in both TNBC and ovarian cancer PDX in vivo. Non-claudin low TNBC tumors exhibited higher expression and more robust responses than other breast cancer subtypes, suggesting a specific translational application for tumor subclassification.
CONCLUSIONS: These findings demonstrate the potential of PF-06647263 (anti-EFNA4-ADC) as a first-in-class compound designed to eradicate TIC. The use of well-annotated PDX for drug discovery enabled the identification of a novel TIC target, pharmacologic evaluation of the compound, and translational studies to inform clinical development.

Lehmann R, Childs L, Thomas P, et al.
Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach.
PLoS One. 2015; 10(5):e0126283 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN) controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG). To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/β and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, β, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer.

Xie Q, Wu Q, Mack SC, et al.
CDC20 maintains tumor initiating cells.
Oncotarget. 2015; 6(15):13241-54 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes-FOXM1 and p21CIP1/WAF1-elucidating a potential point for therapeutic intervention.

Pasdar EA, Smits M, Stapelberg M, et al.
Characterisation of mesothelioma-initiating cells and their susceptibility to anti-cancer agents.
PLoS One. 2015; 10(5):e0119549 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Malignant mesothelioma (MM) is an aggressive type of tumour causing high mortality. One reason for this paradigm may be the existence of a subpopulation of tumour-initiating cells (TICs) that endow MM with drug resistance and recurrence. The objective of this study was to identify and characterise a TIC subpopulation in MM cells, using spheroid cultures, mesospheres, as a model of MM TICs. Mesospheres, typified by the stemness markers CD24, ABCG2 and OCT4, initiated tumours in immunodeficient mice more efficiently than adherent cells. CD24 knock-down cells lost the sphere-forming capacity and featured lower tumorigenicity. Upon serial transplantation, mesospheres were gradually more efficiently tumrigenic with increased level of stem cell markers. We also show that mesospheres feature mitochondrial and metabolic properties similar to those of normal and cancer stem cells. Finally, we show that mesothelioma-initiating cells are highly susceptible to mitochondrially targeted vitamin E succinate. This study documents that mesospheres can be used as a plausible model of mesothelioma-initiating cells and that they can be utilised in the search for efficient agents against MM.

Wei W, Lewis MT
Identifying and targeting tumor-initiating cells in the treatment of breast cancer.
Endocr Relat Cancer. 2015; 22(3):R135-55 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Breast cancer is the most common cancer in women (excluding skin cancer), and it is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - because of traits that tumor cells possess before treatment - or acquired - because of traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes the existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSCs). TICs have the capacity to self-renew and to generate new tumors that consist entirely of clonally derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies and that they can survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow, which results in disease relapse. It has also been hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative for achieving a cure. In the present review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear to be important for TIC function and may represent promising therapeutic targets.

Chitikova Z, Pusztaszeri M, Makhlouf AM, et al.
Identification of new biomarkers for human papillary thyroid carcinoma employing NanoString analysis.
Oncotarget. 2015; 6(13):10978-93 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
We previously reported an upregulation of the clock transcript BMAL1, correlating with TIMP1 expression in fresh-frozen samples from papillary thyroid carcinoma (PTC). Since frozen postoperative biopsy samples are difficult to obtain, we aimed to validate the application of high-precision NanoString analysis for formalin-fixed paraffin-embedded (FFPE) thyroid nodule samples and to screen for potential biomarkers associated with PTC. No significant differences were detected between fresh-frozen and FFPE samples. NanoString analysis of 51 transcripts in 17 PTC and 17 benign nodule samples obtained from different donors and in 24 pairs of benign and PTC nodules, obtained from the same donor (multinodular goiters), confirmed significant alterations in the levels of BMAL1, c-MET, c-KIT, TIMP1, and other transcripts. Moreover, we identified for the first time alterations in CHEK1 and BCL2 levels in PTC. A predictive score was established for each sample, based on the combined expression levels of BMAL1, CHEK1, c-MET, c-KIT and TIMP1. In combination with BRAF mutation analysis, this predictive score closely correlated with the clinicopathological characteristics of the analyzed thyroid nodules. Our study identified new thyroid transcripts with altered levels in PTC using the NanoString approach. A predictive score correlation coefficient might contribute to improve the preoperative diagnosis of thyroid nodules.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ARNTL, Cancer Genetics Web: http://www.cancer-genetics.org/ARNTL.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999