Gene Summary

Gene:CYP2D6; cytochrome P450 family 2 subfamily D member 6
Aliases: CPD6, CYP2D, CYP2DL1, CYPIID6, P450C2D, P450DB1, CYP2D7AP, CYP2D7BP, CYP2D7P2, CYP2D8P2, P450-DB1
Summary:This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and is known to metabolize as many as 25% of commonly prescribed drugs. Its substrates include antidepressants, antipsychotics, analgesics and antitussives, beta adrenergic blocking agents, antiarrythmics and antiemetics. The gene is highly polymorphic in the human population; certain alleles result in the poor metabolizer phenotype, characterized by a decreased ability to metabolize the enzyme's substrates. Some individuals with the poor metabolizer phenotype have no functional protein since they carry 2 null alleles whereas in other individuals the gene is absent. This gene can vary in copy number and individuals with the ultrarapid metabolizer phenotype can have 3 or more active copies of the gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cytochrome P450 2D6
Source:NCBIAccessed: 13 March, 2017


What does this gene/protein do?
Show (32)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Single-Stranded Conformational Polymorphism
  • Substrate Specificity
  • Breast Cancer
  • Alleles
  • Tissue Distribution
  • tau Proteins
  • Genotype
  • Chromosome 22
  • United Kingdom
  • Antineoplastic Agents, Hormonal
  • San Francisco
  • Proportional Hazards Models
  • Genetic Predisposition
  • Skin Cancer
  • Ukraine
  • Vomiting
  • Ribonuclease P
  • Smoking
  • Women's Health
  • Triglycerides
  • Case-Control Studies
  • Ultraviolet Rays
  • Cytochrome P-450 Enzyme System
  • Reproducibility of Results
  • Thoracic Neoplasms
  • Surveys and Questionnaires
  • Vitamin K
  • Sequence Deletion
  • Restriction Fragment Length Polymorphism
  • Messenger RNA
  • Thyroid Cancer
  • Glutathione Transferase
  • CYP2D6
  • Young Adult
  • Triazoles
  • p53 Protein
  • Texas
  • Venous Thromboembolism
  • Vulvar Cancer
Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CYP2D6 (cancer-related)

Kang G, Kim KR, Shim HJ, et al.
Effect of the allelic variants of ABCB1, CYP2D6 and HTR3B on response of ramosetron to prevent chemotherapy-induced nausea and vomiting in Korean cancer patients.
Asia Pac J Clin Oncol. 2017; 13(1):53-60 [PubMed] Related Publications
AIM: Despite appropriate use of antiemetics including 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists, chemotherapy-induced nausea and vomiting (CINV) is still an unsolved problem in patients with anticancer drugs. We examined whether the variants of ABCB1, CYP2D6 and HTR3B affect efficacy of ramosetron, a selective 5-HT3 receptor antagonist in a dose escalation clinical trial.
METHODS: We conducted a clinical trial on patients who underwent FOLFOX combination chemotherapy. The participants were randomized into three groups of ramosetron: 0.3 mg (standard dose), 0.45 mg and 0.6 mg. Rhodes index of nausea, vomiting and retching were measured at 1, 6 h, day 1, day 2 and day 7 after the administration of ramosetron as a clinical parameter of CINV and polymorphism was analyzed from genomic DNA.
RESULTS: There was a dose-dependent decrease in the nausea and vomiting scores at day 1 and day 2, not statistically significant. The Rhodes index of nausea, vomiting and retching score at day 1 in participants with HTR3B-100_-102delAAG deletion variants was significantly higher than wild type participants, regardless of dosages. However, the polymorphisms including ABCB1, CYP2D6 and other HTR3B genes did not affect response to ramosetron after chemotherapy.
CONCLUSION: These results suggest that the -AAG deletion variant of the 5-HT3B receptor gene may contribute to variability in response to antiemetic therapy for CINV regardless of dose escalation. These results suggest that carrying a -100_-102delAAG variant of 5-HT3 gene should be supported by alternate or additive antiemetics in addition to 5-HT3 antagonists to control acute emesis.

Hirose T, Fujita K, Kusumoto S, et al.
Association of pharmacokinetics and pharmacogenomics with safety and efficacy of gefitinib in patients with EGFR mutation positive advanced non-small cell lung cancer.
Lung Cancer. 2016; 93:69-76 [PubMed] Related Publications
OBJECTIVES: Gefitinib is a potent epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and is a key drug for patients with EGFR mutation-positive advanced non-small cell lung cancer (NSCLC). The pharmacokinetics of orally administered gefitinib varies greatly among patients. We prospectively evaluated the association of pharmacokinetics and pharmacogenomics with the safety and efficacy of gefitinib in patients with EGFR mutation-positive advanced NSCLC.
PATIENTS AND METHODS: Pharmacokinetics was evaluated with samples of peripheral blood obtained on day 1 before treatment and 1, 3, 5, 8, and 24h after gefitinib (250 mg per day) was administered and on days 8 and 15 as the trough values. The plasma concentration of gefitinib was analyzed with high-performance liquid chromatography. The genotypes of ABCG2, ABCB1, CYP3A4, CYP3A5, and CYP2D6 genes were analyzed with direct sequencing.
RESULTS: The subjects were 35 patients (21 women; median age, 72 years; range, 53 to 90 years) with stage IV adenocarcinoma harboring EGFR mutations. The median peak plasma concentration (Cmax) was 377 (range, 168-781)ng/mL. The median area under the curve (AUC) of the plasma concentration of gefitinib from 0 to 24h was 4893 (range, 698-13991) ng/mL h. The common adverse events were skin toxicity (68% of patients), diarrhea (46%), and liver injury (63%). One patient died of drug-induced interstitial lung disease (ILD). The overall response rate was 82.9% (95% confidence interval, 66.4%-93.4%). The median progression-free survival time was 10 months, and the median survival time was 25 months. The pharmacokinetics and pharmacogenomics were not associated with significantly different toxicities, response rates, or survival times with gefitinib. However, the AUC and Cmax were highest and the trough value on day 8 was the second highest in one patient who died of drug-induced ILD.
CONCLUSION: Elevated gefitinib exposure might be associated with drug-induced ILD.

Ahmed NS, Elghazawy NH, ElHady AK, et al.
Design and synthesis of novel tamoxifen analogues that avoid CYP2D6 metabolism.
Eur J Med Chem. 2016; 112:171-9 [PubMed] Related Publications
Tamoxifen (TAM) is a widely used drug in the prophylaxis and treatment of breast cancer. TAM is metabolized to the more active 4-hydroxytamoxifen (4-OH-TAM) and endoxifen by cytochrome P450 (CYP) mainly CYP2D6 and CYP3A4 enzymes. Due to the genetic polymorphisms in CYP2D6 genes, high variation in the clinical outcomes of TAM treatment is observed among women of different populations. To address this issue, novel TAM analogues with possible altered activation pathways were synthesized. These analogues were tested for their antiproliferative action on MCF-7 breast cancer cell lines as well as their binding affinity for estrogen receptor (ER) ER-α and ER-β receptors. These entire novel compounds showed better antiproliferative activity than did TAM on the MCF-7 cells. Moreover, compound 10 exhibited a half maximal growth inhibition (GI50) that was 1000 times more potent than that of TAM (GI50 < 0.005 μM vs 1.58 μM, respectively). Along with a broad spectrum activity on various cancer cell lines, all the TAM analogues showed considerable activity on the ER-negative breast cancer cell line. For further study, compound 10 was incubated in human liver microsomes (HLM), human hepatocytes (hHEP) and CYP2D6 supersomes. The active hydroxyl metabolite was detected after incubation in HLM and hHEP, implicating the involvement of other enzymes in its metabolism. These results prove that this novel series of TAM analogues might provide improved clinical outcomes for poor 2D6 metabolizers.

Xie YQ, Chen JM, Liu Y
Interaction of the CYP1A1 gene polymorphism and smoking in non-small cell lung cancer susceptibility.
Genet Mol Res. 2016; 14(4):19411-7 [PubMed] Related Publications
Many studies have shown that genetic factors, environmental factors, and bad living habits, especially smoking, are risk factors for lung cancer. However, not all smokers develop lung cancer, which may be related to different genetic backgrounds. Currently, most research has investigated the GSTM1, XRCC1, XRCC3, CYP2D6, and C188T genes. Little research has been done on the cytochrome P450 (CYP) 1A1 gene, and results have varied. In addition, no results have been reported on the interactive effects of smoking and the CYP1A1 gene on lung cancer development. We used polymerase chain reaction restriction fragment length polymorphism to detect the CYP1A1 genotype, and investigate the effects of the CYP1A1 gene deletion and smoking alone, and in combination, on non-small cell lung cancer susceptibility. We enrolled 150 non-small cell lung cancer patients and 150 healthy control subjects. Subjects' smoking habits and CYP1A1 gene polymorphism were analyzed to investigate their role in the occurrence of lung cancer. The CYP1A1 gene deletion was found in 73.3% of non-small cell lung cancer patients and 20.0% of healthy subjects. The OR value was 2.28 (P < 0.05). Among smoking subjects, 77.8% exhibited non-small cell lung cancer, significantly higher than the 27.3% in non-smokers (P < 0.05). The OR value for the interaction of smoking and CYP1A1 gene deletion was 5.60, larger than the product of their individual OR values. The CYP1A1 gene deletion is a lung cancer risk factor, and interacts with smoking in non-small cell lung cancer development.

Argalácsová S, Slanař O, Vítek P, et al.
Contribution of ABCB1 and CYP2D6 genotypes to the outcome of tamoxifen adjuvant treatment in premenopausal women with breast cancer.
Physiol Res. 2015; 64 Suppl 4:S539-47 [PubMed] Related Publications
Recent pre-clinical evidence suggests that the active metabolite of tamoxifen, endoxifen, is a substrate for efflux pump P-glycoprotein. The aim of our study was to evaluate, if the polymoprhisms within ABCB1 gene alter tamoxifen adjuvant treatment efficacy in premenopausal women. Totally 71 premenopausal women with estrogen receptor positive breast cancer indicated for tamoxifen adjuvant treatment were followed retrospectively for median period of 56 months. The gentic polymorphisms of CYP2D6 and ABCB1 were analyzed and potential covariates as tumor grading, staging, age at the diagnosis, comedication, quantitative positivity of ER or PR were also evaluated. Cox proportional-hazards regression model indicated that patients carrying at least one variant allele in ABCB1 rs1045642 had significantly longer time to event survival compared to wild type subjects. Non-significant trend was noted for better treatment outcome of patients carrying at least one variant allele in the SNP rs2032582, while for the CYP2D6 polymorphism poor metabolizer phenotype resulted in worse outcome in comparison to extensive metabolizers subjects with HR of 4.04 (95 % CI 0.31-52.19). Similarly, patients using CYP2D6 inhibitors had non-significantly shorter time-to-event as compared to never users resulting in hazard ratio of 2.06 (95 % CI 0.40-10.63). ABCB1 polymorphisms may affect outcome of tamoxifen adjuvant treatment in premenopausal breast cancer patiens. This factor should be taken into account in addition to the CYP2D6 polymorphism or phenotypic inhibition of CYP2D6 activity.

Bell GC, Donovan KA, McLeod HL
Clinical Implications of Opioid Pharmacogenomics in Patients With Cancer.
Cancer Control. 2015; 22(4):426-32 [PubMed] Related Publications
BACKGROUND: Pain can be a significant burden for patients with cancer and may have negative effects on their quality of life. Opioids are potent analgesics and serve as a foundation for pain management. The variation in response to opioid analgesics is well characterized and is partly due to genetic variability.
METHODS: We reviewed the results of clinical studies to evaluate the relationships between genetic variants and select genes involved in the pharmacokinetics and pharmacodynamics of opioids, with an emphasis on patients with cancer.
RESULTS: In patients with cancer-related pain, genetic variation in OPRM1, COMT, and ABCB1 is associated with response to morphine, which is the most well-studied opioid. Although it has not been studied in patients with cancer-related pain, the effect of CYP2D6 variation is well characterized with codeine and tramadol. Evidence is limited for associating the genetic variation and pain response of oxycodone, hydrocodone, and fentanyl in patients with cancer.
CONCLUSION: The clinical availability of pharmacogenomic testing and research findings related to these polymorphic genes suggest that genotyping patients for these genetic variants may allow health care professionals to better predict patient response to pain and, thus, personalize pain treatment.

He X, Feng S
Role of Metabolic Enzymes P450 (CYP) on Activating Procarcinogen and their Polymorphisms on the Risk of Cancers.
Curr Drug Metab. 2015; 16(10):850-63 [PubMed] Related Publications
Cytochrome P450 (CYP450) enzymes are the most important metabolizing enzyme family exists among all organs. Apart from their role in the deactivation of most endogenous compounds and xenobiotics, they also mediate most procarcinogens oxidation to ultimate carcinogens. There are several modes of CYP450s activation of procarcinogens. 1) Formation of epoxide and diol-epoxides intermediates, such as CYP1A1 and CYP1B1 mediates PAHs oxidation to epoxide intermediates; 2) Formation of diazonium ions, such as CYP2A6, CYP2A13 and CYP2E1 mediates activation of most nitrosamines to unstable metabolites, which can rearrange to give diazonium ions. 3) Formation of reactive semiquinones and quinines, such as CYP1A1 and CYP1B1 transformation of estradiol to catechol estrogens, subsequently formation semiquinones; 4) Formation of toxic O-esterification, such as CYP1A1 and CYP1A2 metabolizes PhIP to N(2)-acetoxy-PhIP and N(2)-sulfonyloxy-PhIP, which are carcinogenic metabolites. 5) Formation of free radical, such as CYP2E1 is involved in activation tetrachloromethane to free radicals. While for CYP2B6 and CYP2D6, only a minor role has been found in procarcinogens activation. In addition, as the gene polymorphisms reflected, the polymorphisms of CYP1A1 (-3801T/C and -4889A/G), CYP1A2 (- 163C/A and -2467T/delT), CYP1B1 (-48G/C, -119G/T and -432G/C), CYP2E1 (-1293G/C and -1053 C/T) have been associated with an increased risk of lung cancer. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), and CYP2E1 (PstI/Rsa and 9-bp insertion) have an association with higher risk colon cancers, whereas CYP1A2 (-163C/A and -3860G/A) polymorphism is found to be among the protective factors. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), CYP1B1 -432G/C, CYP2B6 (-516G/T and -785A/G) may increase the risk of breast cancer. In conclusion, CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2E1 are responsible for most of the procarcinogens activation, and their gene polymorphisms are associated with the risk of cancers.

Chin FW, Chan SC, Abdul Rahman S, et al.
CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.
Breast J. 2016 Jan-Feb; 22(1):54-62 [PubMed] Related Publications
The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the clinical outcome of the patients.

Yazdi MF, Rafieian S, Gholi-Nataj M, et al.
CYP2D6 Genotype and Risk of Recurrence in Tamoxifen Treated Breast Cancer Patients.
Asian Pac J Cancer Prev. 2015; 16(15):6783-7 [PubMed] Related Publications
BACKGROUND: Despite consistent pharmacogenetic effects of CYP2D6 on tamoxifen exposure, there is considerable controversy regarding the validity of CYP2D6 as a predictor of tamoxifen outcome. Understanding the current state of evidence in this area and its limitations is important for the care of patients who require endocrine therapy for breast cancer.
MATERIALS AND METHODS: A total of 101 patients with breast cancer who received tamoxifen therapy for at least 3 years, were genotyped for common alleles of the CYP2D6 gene by nested-PCR and restriction fragment length polymorphism PCR. Patients were classified as extensive or poor metabolizers (PM) based on CYP2D6*4 alleles in 3 different groups according to the menopause, Her2-neu status, and stage 3.
RESULTS: The mean age of the patients with the disease recurrence was 50.8±6.4 and in non recurrent patients was 48.2±6.8. In this study 63.3% (n=64) patients were extensive metabolizers and 36.6% (n=37) were poor metabolizers. Sixty four of the 101 patients (63.3%) were Her2-neu positive. For tamoxifen- treated patients, no statistically significant difference in rate of recurrence observed between CYP2D6 metabolic variants in stage 3 and post-menopausal patients. However, there was a significant association between CYP2D6 genotype and recurrence in tamoxifen-treated Her2-neu positive patients. Compared with other women with breast cancer, those with Her2-neu positive breast cancer and extensive metabolizer alleles had a decreased likelihood of recurrence.
CONCLUSIONS: This study for the first time demonstrated significant effects of CYP2D6 extensive metabolizer alleles on risk of recurrence in Her2-neu positive breast cancer patients receiving adjuvant tamoxifen therapy. Therefore, CYP2D6 metabolism, as measured by genetic variation, can be a predictor of breast cancer outcome in Her2-neu positive women receiving tamoxifen.

Wang J, Xie H, Ling Q, et al.
Coding-noncoding gene expression in intrahepatic cholangiocarcinoma.
Transl Res. 2016; 168:107-21 [PubMed] Related Publications
Recent studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in human cancers. However, the function of lncRNAs and their downstream mechanisms are largely unknown in the molecular pathogenesis of intrahepatic cholangiocarcinoma (ICC). In the present study, we performed transcriptomic profiling of ICC and paired adjacent noncancerous tissues (N) by using lncRNA and messenger RNA (mRNA) microarrays. Quantitative real-time polymerase chain reaction was used to validate the microarray results. We tested for correlations between the expression levels of lncRNAs and target genes. Clinicopathologic characteristics and overall survival were compared using the t test and the Kaplan-Meier method, respectively. A total of 2773 lncRNAs were significantly upregulated in ICC tissues compared with the noncancerous tissues, whereas 2392 lncRNAs were downregulated. Bioinformatic analysis indicated that most of the genes were involved in carcinogenesis, hepatic system diseases, and signal transductions. Positive correlations were found between 4 lncRNA-mRNA pairs (RNA43085 and SULF1, RNA47504 and KDM8, RNA58630 and PCSK6, and RNA40057 and CYP2D6). When the clinicopathologic characteristics were accounted for, the cumulative overall survival rate was found to be associated with low expression levels of CYP2D6 (P = 0.005) and PCSK6 (P = 0.038). Patients with high expression levels of CYP2D6 and RNA40057 had a better prognosis (P = 0.014). Our results suggested that the lncRNA expression profiling in ICC tissues is profoundly different from that in noncancerous tissues. Thus, lncRNA may be a potential diagnostic and prognostic biomarker for ICC. Furthermore, the combined assessment of lncRNA and mRNA expressions might predict the survival of patients with ICC.

Xu YC, Zhang FC, Li JJ, et al.
RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients.
Oncol Rep. 2015; 34(4):1883-94 [PubMed] Related Publications
The study investigated the clinical significance of RRM1 (ribonucleoside reductase subunit M1), TUBB3 (tubulin-β-III), TOP2A (DNA topoisomerase II), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1) and CYP2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6) for the diagnosis and possible predictive roles in breast cancer. Tissue microarray detected the expression of RRM1, tubulin-β-III, Topo IIα, CYP19A1 and CYP2D6 protein in breast cancer tissue and tissue adjacent to tumors (TATs). In addition, a publically available tool, was used to assess the prognostic value of their gene expression in breast cancer ( Analysis for relapse-free survival (RFS), disease-free survival (DFS) and overall survival (OS) was performed. Cytoplasmic RRM1, tubulin-β-III, CYP19A1 and Topo IIα staining were significantly higher in breast cancer tissues compared with TATs (P<0.050). Significant correlation occurred between RRM1 expression with pathological classification (P=0.018), lymph node involvement (P=0.035) and ER status (P=0.003). Tubulin-β-III and CYP2D6 expression correlated significantly with tumor grade (P=0.021 for tubulin-β-III and P=0.029 for CYP2D6, respectively). Cox analysis showed that the protein expression of CYP2D6, CYP19A1, RRM1, Topo IIα or tubulin-β-III was not an independent prognostic factor. A significant association occurred between RFS and TUBB3, TOP2A, CYP19A1, and CYP2D6 mRNA expression. With CYP19A1 (P<0.001) and CYP2D6 (P<0.001), a high expression was associated with good clinical outcome. Conversely, a low expression of TUBB3 (P<0.001) and TOP2A (P<0.001) was associated with good clinical outcome. TUBB3 (P=0.0004) and TOP2A (P<0.001) were significant prognostic factors in predicting the patient OS. The expression of RRM1, tubulin-β-III, Topo IIα and CYP19A1 in tumor tissues was significantly higher than that in TATs. TUBB3, TOP2A, CYP19A1 and CYP2D6 gene expression, but not protein expression, was associated with patient survival.

Romero-Lorca A, Novillo A, Gaibar M, et al.
Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients.
PLoS One. 2015; 10(7):e0132269 [PubMed] Free Access to Full Article Related Publications
Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B17 del/del individuals. Our observations suggest that patients carrying mutations UGT1A448Val, UGT2B7268Tyr or with wt genotypes for UGT2B17nodel and UGT2B15523Lys could be the best candidates for a good response to tamoxifen therapy in terms of eliciting effective plasma active tamoxifen metabolite levels. However, additional studies examining the effects of UGT genotype on overall patient response to TAM are needed to further examine the role of UGT polymorphisms in the therapeutic efficacy of TAM.

Ribeiro MP, Santos AE, Custódio JB
Rethinking tamoxifen in the management of melanoma: New answers for an old question.
Eur J Pharmacol. 2015; 764:372-8 [PubMed] Related Publications
The use of the antiestrogen tamoxifen in melanoma therapy is controversial due to the unsuccessful outcomes and a still rather unclarified mechanism of action. It seemed that the days of tamoxifen in malignant melanoma therapy were close to an end, but new evidence may challenge this fate. On one hand, it is now believed that metabolism is a major determinant of tamoxifen clinical outcomes in breast cancer patients, which is a variable that has yet to be tested in melanoma patients, since the tamoxifen active metabolite endoxifen demonstrated superior cytostatic activity over the parent drug in melanoma cells; on the other hand, new evidence has emerged regarding estrogen-mediated signaling in melanoma cells, including the methylation of the estrogen receptor-α gene promoter and the expression of the G protein coupled estrogen receptor. The expression of estrogen receptor-α and G protein coupled estrogen receptor, as well as the cytochrome P450 (CYP) 2D6 genotype, may be used as predictive biomarkers to select the patients that may respond to antiestrogens based on specific traits of their tumors. This review focused on these new evidences and how they may contribute to shed new light on this long-lasting controversy, as well as their possible implications for future investigations.

Bhat GA, Shah IA, Rafiq R, et al.
Family history of cancer and the risk of squamous cell carcinoma of oesophagus: a case-control study in Kashmir, India.
Br J Cancer. 2015; 113(3):524-32 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Only a few studies have examined the association between family history of cancer (FHC) and the risk of oesophageal squamous cell carcinoma (ESCC) in high incidence areas of ESCC. We conducted a case-control study to evaluate the relationship between FHC and ESCC risk in Kashmir, India, with analysis of detailed epidemiological data and information on multiple gene polymorphisms.
METHODS: We collected detailed information on FHC and a number of socio-demographic and lifestyle factors, and also obtained blood samples for genetic analysis from 703 histopathologically confirmed ESCC cases and 1664 individually matched controls. Conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs).
RESULTS: Participants who had FHC showed a strong association with ESCC risk, and the risk was stronger when first-degree relatives (FDRs) had FHC (OR=6.8; 95% CI=4.6-9.9). Having a sibling with a cancer showed the strongest association (OR=10.8; 95% CI=6.0-19.3), but having a child with a cancer was not associated with ESCC risk. A history of any cancer in the spouse was also associated with ESCC risk (OR=4.1; 95% CI=1.6-10.2). Those with two or more relatives with FHC were at a higher risk of ESCC. After restricting FHC to familial ESCC only, the above associations were strengthened, except when spouses were affected with ESCC (OR=2.5; 95% CI=0.7-8.9). When we examined the associations between several single-nucleotide polymorphisms and ESCC in those with and without FHC, the associations of variant genotypes in cytochrome P450 (CYP) 2C19 and CYP2D6 and the wild genotype of CYP2E1 with ESCC were much stronger in those with FHC. The FHC had an additive interaction with several risk factors of ESCC in this population.
CONCLUSION: Our results showed that FHC was strongly associated with ESCC risk in Kashmir. It seems both genetic factors and shared environment are involved in this association.

de Vries Schultink AH, Zwart W, Linn SC, et al.
Effects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen.
Clin Pharmacokinet. 2015; 54(8):797-810 [PubMed] Free Access to Full Article Related Publications
The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen receptor-α-positive breast cancer and substantially decreases recurrence and mortality rates. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5, resulting in the formation of active metabolites, including 4-hydroxy-tamoxifen and endoxifen. Therefore, polymorphisms in the genes encoding these enzymes are proposed to influence tamoxifen and active tamoxifen metabolites in the serum and consequently affect patient response rates. To tailor tamoxifen treatment, multiple studies have been performed to clarify the influence of polymorphisms on its pharmacokinetics and pharmacodynamics. Nevertheless, personalized treatment of tamoxifen based on genotyping has not yet met consensus. This article critically reviews the published data on the effect of various genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tamoxifen, and reviews the clinical implications of its findings. For each CYP enzyme, the influence of polymorphisms on pharmacokinetic and pharmacodynamic outcome measures is described throughout this review. No clear effects on pharmacokinetics and pharmacodynamics were seen for various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19 and CYP3A4/5. For CYP2D6, there was a clear gene-exposure effect that was able to partially explain the interindividual variability in plasma concentrations of the pharmacologically most active metabolite endoxifen; however, a clear exposure-response effect remained controversial. These controversial findings and the partial contribution of genotype in explaining interindividual variability in plasma concentrations of, in particular, endoxifen, imply that tailored tamoxifen treatment may not be fully realized through pharmacogenetics of metabolizing enzymes alone.

Wu SB, Cai LN, Yang XH, et al.
Impact of CYP2D6 Polymorphisms on Postoperative Fentanyl Analgesia in Gastric Cancer Patients.
Genet Test Mol Biomarkers. 2015; 19(5):248-52 [PubMed] Related Publications
BACKGROUND: This study investigated the influence of human cytochrome P450 2D6 (CYP2D6) gene polymorphism in gastric cancer (GC) patients to understand the pharmacogenomic basis for patient response to postoperative fentanyl analgesia.
METHODS: The prospective study design contained 212 patients recovering from radical gastrectomy. Peripheral blood samples were collected after general anesthesia, and CYP2D6 genotypes were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. After providing adequate instructions to operate the analgesia pump, patients self-administered fentanyl via patient controlled intravenous analgesia. The cumulative amount of fentanyl self-administered and the associated adverse effects were recorded at 6, 12, 24, and 48 h postoperatively.
RESULTS: Five patients, out of the 212 patients recruited to this study, failed to complete the study. The remaining 207 patients were classified into three groups based on their genotypes: W/W group (n=44), M/W group (n=112), and M/M group (n=51). Our results demonstrated that the cumulative amount of fentanyl consumption significantly increased in the M/M group at 6, 12, and 24 h postoperatively, compared with the W/W group (p<0.05). In addition, visual analogue scale (VAS) score in the M/M group was significantly higher than the W/W group in the analepsia period after general anesthesia and at 6 h postoperatively (p<0.05). No significant adverse effects were observed in all the groups (p>0.05).
CONCLUSION: CYP2D6 polymorphism influenced patient response to postoperative fentanyl analgesia in GC patients.

Zhang X, Pu Z, Ge J, et al.
Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy.
Med Sci Monit. 2015; 21:563-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The global incidence of breast cancer is increasing, mainly due to the sharp rise in breast cancer incidence in Asia. The aim of this study was to evaluate the association of CYP2D6*10 (c.100C>T and c.1039C>T), OATP1B1 A388G, and OATP1B1 T521C polymorphisms with overall survival (OS) for hormone receptor (estrogen receptor or progesterone receptor)-positive tumors (ER+/PR+) breast cancer patients after adjuvant tamoxifen (TAM) therapy.
MATERIAL AND METHODS: We included 296 invasive breast cancer patients with hormone receptor-positive tumors during the period 2002-2009. We collected patient data, including clinical features, TAM therapy, and survival status. Archived paraffin blocks from surgery were the source of tissue for genotyping. CYP2D6*10, OATP1B1 A388G, and T521C polymorphisms were detected by direct sequencing of genomic DNA. OS was assessed with Kaplan-Meier analysis, while the Cox proportional hazards model was used to implement multivariate tests for the prognostic significance.
RESULTS: There was a significant difference in OS between OATP1B1 T521C wild-type and the mutant genotype C carrier (P=0.034). However, there was no difference in overall survival between wild-type and carrier groups for CYP2D6*10 (P=0.096) and OATP1B1 A388G (P=0.388), respectively.
CONCLUSIONS: These results suggest that the OATP1B1 T521C mutation may be an independent prognostic marker for breast cancer patients using TAM therapy.

Pesenti C, Gusella M, Sirchia SM, Miozzo M
Germline oncopharmacogenetics, a promising field in cancer therapy.
Cell Oncol (Dordr). 2015; 38(1):65-89 [PubMed] Related Publications
Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient's genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.

Kobayashi H, Sato K, Niioka T, et al.
Relationship Among Gefitinib Exposure, Polymorphisms of Its Metabolizing Enzymes and Transporters, and Side Effects in Japanese Patients With Non-Small-Cell Lung Cancer.
Clin Lung Cancer. 2015; 16(4):274-81 [PubMed] Related Publications
INTRODUCTION: The present study investigated the effects of patients' genetic variations in the pharmacokinetics of gefitinib at steady-state. We analyzed 31 Japanese patients with non-small-cell lung cancer (NSCLC) who had been treated with gefitinib. We focused on common polymorphisms within important gefitinib exposure genes, including cytochromes P450 (CYPs) CYP3A4*1G, CYP3A5 (*3), and CYP2D6 (*5 and *10) and ATP-binding cassette (ABC) ABCG2 (421C>A) and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T).
MATERIALS AND METHODS: Fourteen days after beginning 250 mg of gefitinib therapy, when the patients were in steady-state, blood samples were collected just before and 1, 2, 4, 6, 8, 12, and 24 hours after oral gefitinib administration. The plasma concentrations of gefitinib were measured using high-performance liquid chromatography.
RESULTS: The median area under the concentration-time curve from 0 to 24 hours (AUC0-24) and trough plasma concentration (C0) of gefitinib was 10,086 ng · h/mL (range, 3247-24,726 ng · h/mL) and 334 ng/mL (range, 77.9-813 ng/mL), respectively. No significant differences were found in the AUC0-24 or C0 for gefitinib or in the frequency of diarrhea, skin rash or hepatotoxicity among the CYP3A4, CYP3A5, CYP2D6, ABCG2 (421C>A), and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T) genotype groups. However, the AUC0-24 and C0 levels of gefitinib in the patients with diarrhea or hepatotoxicity were significantly greater than in those without (diarrhea: AUC0-24, 14,246 vs. 8918 ng · h/mL, P = .006; C0: 421 vs. 261 ng/mL, P = .002; hepatotoxicity: AUC0-24, 12,967 vs. 8473 ng · h/mL, P = .024; C0: 420 vs. 248 ng/mL, P = .002).
CONCLUSION: The side effects from gefitinib were related to exposure but not genetic polymorphism. Therefore, therapeutic drug monitoring after beginning gefitinib therapy rather than the analysis of polymorphism before initiating therapy might be beneficial.

Blackburn HL, Ellsworth DL, Shriver CD, Ellsworth RE
Role of cytochrome P450 genes in breast cancer etiology and treatment: effects on estrogen biosynthesis, metabolism, and response to endocrine therapy.
Cancer Causes Control. 2015; 26(3):319-32 [PubMed] Related Publications
PURPOSE: The cytochrome P450 (CYP) genes are oxygenases involved in estrogen biosynthesis and metabolism, generation of DNA damaging procarcinogens, and response to anti-estrogen therapies. Since lifetime estrogen exposure is an established risk factor for breast cancer, determining the role of CYP genes in breast cancer etiology may provide critical information for understanding tumorigenesis and response to treatment.
METHODS: This review summarizes literature available in PubMed published between 1993 and 2013 that focuses on studies evaluating the effects of DNA variants in CYP genes on estrogen synthesis, metabolism, and generation of procarcinogens in addition to response to anti-estrogen therapies.
RESULTS: Evaluation of DNA variants in estrogen metabolism genes was largely inconclusive. Meta-analyses of data from CYP19A1 support an association between the number of (TTTA) n repeats in intron 4 and breast cancer risk, but the biological mechanism for this relationship is unknown. Associations between single nucleotide polymorphism in CYP1B1 and DNA damage caused by procarcinogenic estrogen metabolites were ambiguous. Variants in CYP2D6 are associated with altered metabolism tamoxifen; however, current data do not support widespread clinical testing. The effect of variants in CYP19A1 in response to aromatase inhibitors is also questionable.
CONCLUSION: Evaluation of DNA variants in CYP genes involved with estrogen metabolism or treatment response has been inconclusive, reflecting small samples sizes, tumor heterogeneity, and differences between populations. Better-powered studies that account for genetic backgrounds and tumor phenotypes are thus necessary.

Kalia M
Biomarkers for personalized oncology: recent advances and future challenges.
Metabolism. 2015; 64(3 Suppl 1):S16-21 [PubMed] Related Publications
Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells and oncology is a branch of medicine that deals with tumors. The last decade has seen significant advances in the development of biomarkers in oncology that play a critical role in understanding molecular and cellular mechanisms which drive tumor initiation, maintenance and progression. Clinical molecular diagnostics and biomarker discoveries in oncology are advancing rapidly as we begin to understand the complex mechanisms that transform a normal cell into an abnormal one. These discoveries have fueled the development of novel drug targets and new treatment strategies. The standard of care for patients with advanced-stage cancers has shifted away from an empirical treatment strategy based on the clinical-pathological profile to one where a biomarker driven treatment algorithm based on the molecular profile of the tumor is used. Recent advances in multiplex genotyping technologies and high-throughput genomic profiling by next-generation sequencing make possible the rapid and comprehensive analysis of the cancer genome of individual patients even from very little tumor biopsy material. Predictive (diagnostic) biomarkers are helpful in matching targeted therapies with patients and in preventing toxicity of standard (systemic) therapies. Prognostic biomarkers identify somatic germ line mutations, changes in DNA methylation, elevated levels of microRNA (miRNA) and circulating tumor cells (CTC) in blood. Predictive biomarkers using molecular diagnostics are currently in use in clinical practice of personalized oncotherapy for the treatment of five diseases: chronic myeloid leukemia, colon, breast, lung cancer and melanoma and these biomarkers are being used successfully to evaluate benefits that can be achieved through targeted therapy. Examples of these molecularly targeted biomarker therapies are: tyrosine kinase inhibitors in chronic myeloid leukemia and gastrointestinal tumors; anaplastic lymphoma kinase (ALK) inhibitors in lung cancer with EML4-ALk fusion; HER2/neu blockage in HER2/neu-positive breast cancer; and epidermal growth factor receptors (EGFR) inhibition in EGFR-mutated lung cancer. This review presents the current state of our knowledge of biomarkers in five selected cancers: chronic myeloid leukemia, colorectal cancer, breast cancer, non-small cell lung cancer and melanoma.

Rangel LB, Taraba JL, Frei CR, et al.
Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer.
Breast Cancer Res Treat. 2014; 148(3):571-80 [PubMed] Free Access to Full Article Related Publications
Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S.

Mota P, Silva HC, Soares MJ, et al.
Genetic polymorphisms of phase I and phase II metabolic enzymes as modulators of lung cancer susceptibility.
J Cancer Res Clin Oncol. 2015; 141(5):851-60 [PubMed] Related Publications
OBJECTIVES: Tobacco exposure remains the main etiologic factor for lung cancer (LC). Interactions between environment and individual genetic profile are particularly important for this disease. The aim of this study was to evaluate the contribution of CYP1A1*2A, CYP1A1*2C, CYP2D6*4, GSTP1, GSTM1, GSTT1 and NAT2 polymorphisms for the susceptibility to LC in a Portuguese population considering their demographic and clinical characteristics.
MATERIALS AND METHODS: A total of 200 LC and 247 controls subjects from the Centre of Portugal were studied. Clinical and demographic characteristics were collected from clinical files and by individual questionnaires. Polymorphisms of CYP1A1*2A, CYP1A1*2C, CYP2D6*4, GSTP1, GSTM1, GSTT1 and NAT2 were genotyped using PCR-RFLP, PCR multiplex, ARMS and real time.
RESULTS: Gender, family history of cancer, smoke cessation and alcohol consumption were independent risk factors (p < 0.05). Associations found between phases I and II genes and LC population reveal a sex dependent distribution. Logistic regression analysis demonstrates that enhanced activation by CYPs, associated by reduced or loss of function of phase II enzymes, can lead to a greater risk. GSTP1 and NAT2 polymorphisms studied have a significant contribution for the histological tumour types and the presence of metastases, at time of diagnosis, respectively, when males with smoking habits were considered.
CONCLUSION: Multiple interactions between environment and individual characteristics are clearly associated to this disease. Variants of the detoxification genes may act synergistically contributing to this disease and modifying the risk posed by smoking and sex. The GSTT1*0 and GSTP1 (Ile462Val) might contribute to the malignant phenotype through different mechanisms.

Kim IW, Han N, Kim MG, et al.
Copy number variability analysis of pharmacogenes in patients with lymphoma, leukemia, hepatocellular, and lung carcinoma using The Cancer Genome Atlas data.
Pharmacogenet Genomics. 2015; 25(1):1-7 [PubMed] Related Publications
OBJECTIVE: Individual differences in drug efficacy and toxicity remain an important clinical concern. We investigated copy number variation (CNV) frequencies for pharmacogenes using The Cancer Genome Atlas dataset.
MATERIALS AND METHODS: One hundred and fifty-two pharmacogenes were selected from liver hepatocellular carcinoma, lung squamous cell carcinoma (LUSC), acute myeloid leukemia, and lymphoid neoplasm diffuse large B-cell lymphoma (DLBL). The germ line and somatic CNV frequencies were analyzed.
RESULTS: We found CNVs with more than 1% frequency in drug-metabolizing enzymes including CYP2A6, CYP2D6, GSTP1, CYP2E1, GSTM1, GSTT1, and SULT1A1, drug transporters such as SLC19A1 and SLC28A1, and targets such as FHIT in normal tissue or blood. GSTM1 had the highest frequency for gene gain (45.45, 39.18, 31.01, and 34.77%, respectively) and for gene loss (18.18, 29.38, 20.89, and 26.68%, respectively) in DLBL, acute myeloid leukemia, liver hepatocellular carcinoma, and LUSC. P2RY12 and P2RY1 had the highest frequency for gene gain in LUSC (26.95 and 26.68%, respectively) whereas ABCB1 and ABL2 had the highest frequency for gene gain in DLBL (27.27%) in cancer tissue or blood.
CONCLUSION: Germ line and somatic CNVs of pharmacogenes may play a role in determining individual variations in drug responses. Inclusion of CNVs in pharmacogenetic variations holds promise as biomarkers that can increase the benefits and reduce the risks of drug therapy on an individual level.

Günaldı M, Erkisi M, Afşar CU, et al.
Evaluation of endometrial thickness and bone mineral density based on CYP2D6 polymorphisms in Turkish breast cancer patients receiving tamoxifen treatment.
Pharmacology. 2014; 94(3-4):183-9 [PubMed] Related Publications
BACKGROUND: Several previous studies have examined the effect of CYP2D6 gene polymorphism on the efficacy and metabolism of tamoxifen (Tamoxifen Teva, Nolvadex) in the treatment of breast cancer. In the present study, the metabolic profiles associated with various CYP2D6 genotypes were evaluated.
METHOD: In the present study 92 Turkish breast cancer patients with early-stage hormone receptor-positive tumors treated with adjuvant tamoxifen (20 mg) were evaluated for CYP2D6 genotype and metabolic profiles. Known side effects of tamoxifen treatment, including endometrial thickening, changes in serum lipid levels and bone density, and hepatosteatosis, were evaluated according to the CYP2D6 polymorphism.
RESULT: The distribution of metabolic characteristics in the Turkish population was as follows: 77.1% normal metabolism, 11.5% intermediate metabolism, 5.2% ultrarapid metabolism, and 2.1% poor metabolism. The CYP2D6 genotypes associated with rapid metabolism were CYP2D6 3X*1/*1 duplication (DUP) and CYP2D6 2X*1/*2, while poor metabolism was associated with the genotypes CYP2D6 *3/*4 and CYP2D6 *6/*6. There was no statistically significant relationship between metabolic characteristics and bone density or hepatosteatosis. A statistically significant difference in total cholesterol and triglycerides was detected in lipid profile analysis (p = 0.003, p = 0.02). Assessment of endometrial thickness revealed a significant association of hyperplasia and poor metabolism, and an association between atrophy and ultrarapid metabolism (p = 0.01).
CONCLUSION: Significant development of endometrial hyperplasia was identified among individuals with poor tamoxifen metabolism. As a result, tamoxifen may be a significant predictor of endometrial thickening among individuals with poor metabolic characteristics.

Martins DM, Vidal FC, Souza RD, et al.
Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease-free survival.
Braz J Med Biol Res. 2014; 47(11):1008-15 [PubMed] Free Access to Full Article Related Publications
The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols.

Maximov PY, McDaniel RE, Fernandes DJ, et al.
Pharmacological relevance of endoxifen in a laboratory simulation of breast cancer in postmenopausal patients.
J Natl Cancer Inst. 2014; 106(10) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tamoxifen is metabolically activated via a CYP2D6 enzyme system to the more potent hydroxylated derivatives 4-hydroxytamoxifen and endoxifen. This study addresses the pharmacological importance of endoxifen by simulating clinical scenarios in vitro.
METHODS: Clinical levels of tamoxifen metabolites in postmenopausal breast cancer patients previously genotyped for CYP2D6 were used in vitro along with clinical estrogen levels (estrone and estradiol) in postmenopausal patients determined in previous studies. The biological effects on cell growth were evaluated in a panel of estrogen receptor-positive breast cancer cell lines via cell proliferation assays and real-time polymerase chain reaction (PCR). Data were analyzed with one- and two-way analysis of variance and Student's t test. All statistical tests were two-sided.
RESULTS: Postmenopausal levels of estrogen-induced proliferation of all test breast cancer cell lines (mean fold induction ± SD vs vehicle control: MCF-7 = 11 ± 1.74, P < .001; T47D = 7.52 ± 0.72, P < .001; BT474 = 1.75 ± 0.23, P < .001; ZR-75-1 = 5.5 ± 1.95, P = .001. Tamoxifen and primary metabolites completely inhibited cell growth regardless of the CYP2D6 genotype in all cell lines (mean fold induction ± SD vs vehicle control: MCF-7 = 1.57 ± 0.38, P = .54; T47D = 1.17 ± 0.23, P = .79; BT474 = 0.96 ± 0.2, P = .98; ZR-75-1 = 0.86 ± 0.67, P = .99). Interestingly, tamoxifen and its primary metabolites were not able to fully inhibit the estrogen-stimulated expression of estrogen-responsive genes in MCF-7 cells (P < .05 for all genes), but the addition of endoxifen was able to produce additional antiestrogenic effect on these genes.
CONCLUSIONS: The results indicate that tamoxifen and other metabolites, excluding endoxifen, completely inhibit estrogen-stimulated growth in all cell lines, but additional antiestrogenic action from endoxifen is necessary for complete blockade of estrogen-stimulated genes. Endoxifen is of supportive importance for the therapeutic effect of tamoxifen in a postmenopausal setting.

Han J, Wang L, Yang Y, Zhang J
Meta-analyses of the effect of CYP1A1 and CYP2D6 polymorphisms on the risk of head and neck squamous cell carcinoma.
Oncol Res Treat. 2014; 37(7-8):406-11 [PubMed] Related Publications
BACKGROUND: CYP1A1 and CYP2D6 are important genes encoding enzymes involved in the metabolism of toxic chemicals and carcinogens. However, inconclusive results for the association between CYP1A1 and CYP2D6 polymorphisms and the risk of head and neck squamous cell carcinoma (HNSCC) have been reported. We conducted a meta-analysis to evaluate the association of CYP1A1 and CYP2D6 polymorphisms with the risk of HNSCC.
METHODS: A database search yielded 19 relevant studies. 3 polymorphisms were included in the meta-analysis: CYP1A1, CYP2D6*4 and CYP2D6*10. Random or fixed effect models were used in the analysis.
RESULTS: The CYP1A1 polymorphism was associated with HNSCC (for m1m1 vs. m1m2: odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.030-1.542, pheterogeneity = 0.025; for the recessive model: OR = 1.316, 95% CI = 1.065-1.625, pheterogeneity = 0.001). The analysis showed evidence for association between the CYP2D6*4 polymorphism and HNSCC in Asian populations; however, negative results were also observed in other models. A significant association was also observed between CYP2D6*10 polymorphism and HNSCC risk.
CONCLUSIONS: The current study demonstrates that the CYP1A1 and CYP2D6 polymorphisms are associated with susceptibility to both development and progression of HNSCC.

Maximov PY, McDaniel RE, Fernandes DJ, et al.
Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes.
Br J Pharmacol. 2014; 171(24):5624-35 [PubMed] Free Access to Full Article Related Publications
BACKGROUND AND PURPOSE: Tamoxifen is a prodrug that is metabolically activated by 4-hydroxylation to the potent primary metabolite 4-hydroxytamoxifen (4OHT) or via another primary metabolite N-desmethyltamoxifen (NDMTAM) to a biologically active secondary metabolite endoxifen through a cytochrome P450 2D6 variant system (CYP2D6). To elucidate the mechanism of action of tamoxifen and the importance of endoxifen for its effect, we determined the anti-oestrogenic efficacy of tamoxifen and its metabolites, including endoxifen, at concentrations corresponding to serum levels measured in breast cancer patients with various CYP2D6 genotypes (simulating tamoxifen treatment).
EXPERIMENTAL APPROACH: The biological effects of tamoxifen and its metabolites on cell growth and oestrogen-responsive gene modulation were evaluated in a panel of oestrogen receptor-positive breast cancer cell lines. Actual clinical levels of tamoxifen metabolites in breast cancer patients were used in vitro along with actual levels of oestrogens observed in premenopausal patients taking tamoxifen.
KEY RESULTS: Tamoxifen and its primary metabolites (4OHT and NDMTAM) only partially inhibited the stimulant effects of oestrogen on cells. The addition of endoxifen at concentrations corresponding to different CYP2D6 genotypes was found to enhance the anti-oestrogenic effect of tamoxifen and its metabolites with an efficacy that correlated with the concentration of endoxifen; at concentrations corresponding to the extensive metabolizer genotype it further inhibited the actions of oestrogen. In contrast, lower concentrations of endoxifen (intermediate and poor metabolizers) had little or no anti-oestrogenic effects.
CONCLUSIONS AND IMPLICATIONS: Endoxifen may be a clinically relevant metabolite in premenopausal patients as it provides additional anti-oestrogenic actions during tamoxifen treatment.

Chen H, Shen ZY, Xu W, et al.
Expression of P450 and nuclear receptors in normal and end-stage Chinese livers.
World J Gastroenterol. 2014; 20(26):8681-90 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the expression of P450 enzyme genes by using end-stage liver disease samples and trimmed normal Chinese donor livers.
METHODS: The end-stage liver disease samples [n = 93, including hepatocellular carcinoma (HCC), peri-HCC tissue, hepatitis B virus cirrhosis, alcoholic cirrhosis, and severe cirrhosis] and trimmed normal Chinese donor livers (n = 35) from The Institute of Organ Transplantation in Beijing, China. Total RNA was extracted, purified, and subjected to real-time RT-PCR analysis.
RESULTS: For cytochrome P450 enzymes 1 (CYP1) family, the expression of CYP1A2 was decreased 90% in HCC, 80% in alcoholic cirrhosis, and 65% in severe cirrhosis. For CYP2 family, the expression of CAR was decreased 50% in HCC, but increased 50% in peri-HCC tissues. Similar decreases (about 50%) of CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP2E1 were observed in HCC, as compared to peri-HCC tissues and normal livers. CYP2C19 were decreased in all end-stage liver diseases and CYP2E1 also decreased in alcoholic cirrhosis and severe cirrhosis. For CYP3 family, the expression of PXR was decreased 60% in HCC, together with decreases in CYP3A4, CYP3A5, and CYP3A7. In contrast, the expression of CYP3A7 was slightly increased in HBV cirrhosis. The expression of CYP4A11 was decreased 85% in HCC, 7% in alcoholic cirrhosis and severe liver cirrhosis, along with decreases in PPARα. The 93 end-stage livers had much higher inter-individual variations in gene expression than 35 normal livers.
CONCLUSION: The expression of CYP enzyme genes and corresponding nuclear receptors was generally decreased in end-stage liver diseases, and significant differences in gene expression were evident between peri-HCC and HCC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CYP2D6, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999