Gene Summary

Gene:DDX3X; DEAD-box helicase 3, X-linked
Aliases: DBX, DDX3, HLP2, DDX14, CAP-Rf, MRX102
Summary:The protein encoded by this gene is a member of the large DEAD-box protein family, that is defined by the presence of the conserved Asp-Glu-Ala-Asp (DEAD) motif, and has ATP-dependent RNA helicase activity. This protein has been reported to display a high level of RNA-independent ATPase activity, and unlike most DEAD-box helicases, the ATPase activity is thought to be stimulated by both RNA and DNA. This protein has multiple conserved domains and is thought to play roles in both the nucleus and cytoplasm. Nuclear roles include transcriptional regulation, mRNP assembly, pre-mRNA splicing, and mRNA export. In the cytoplasm, this protein is thought to be involved in translation, cellular signaling, and viral replication. Misregulation of this gene has been implicated in tumorigenesis. This gene has a paralog located in the nonrecombining region of the Y chromosome. Pseudogenes sharing similarity to both this gene and the DDX3Y paralog are found on chromosome 4 and the X chromosome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ATP-dependent RNA helicase DDX3X
Source:NCBIAccessed: 13 March, 2017


What does this gene/protein do?
Show (51)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Liver CancerDDX3X and Liver Cancer View Publications9
MedulloblastomaDDX3X and Medulloblastoma
In an ICGC deep sequencing study of 125 medulloblastoma tumour-normal pairs, (Jones DTW et al, 2012) reported DDX3X mutations in 10 (8%) of cases.
View Publications7

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DDX3X (cancer-related)

Floor SN, Condon KJ, Sharma D, et al.
Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3.
J Biol Chem. 2016; 291(5):2412-21 [PubMed] Free Access to Full Article Related Publications
DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins.

Bol GM, Xie M, Raman V
DDX3, a potential target for cancer treatment.
Mol Cancer. 2015; 14:188 [PubMed] Free Access to Full Article Related Publications
RNA helicases are a large family of proteins with a distinct motif, referred to as the DEAD/H (Asp-Glu-Ala-Asp/His). The exact functions of all the human DEAD/H box proteins are unknown. However, it has been consistently demonstrated that these proteins are associated with several aspects of energy-dependent RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. In addition, DEAD/H box proteins participate in nuclear-cytoplasmic transport and organellar gene expression.A member of this RNA helicase family, DDX3, has been identified in a variety of cellular biogenesis processes, including cell-cycle regulation, cellular differentiation, cell survival, and apoptosis. In cancer, DDX3 expression has been evaluated in patient samples of breast, lung, colon, oral, and liver cancer. Both tumor suppressor and oncogenic functions have been attributed to DDX3 and are discussed in this review. In general, there is concordance with in vitro evidence to support the hypothesis that DDX3 is associated with an aggressive phenotype in human malignancies. Interestingly, very few cancer types harbor mutations in DDX3, which result in altered protein function rather than a loss of function.Efficacy of drugs to curtail cancer growth is hindered by adaptive responses that promote drug resistance, eventually leading to treatment failure. One way to circumvent development of resistant disease is to develop novel drugs that target over-expressed proteins involved in this adaptive response. Moreover, if the target gene is developmentally regulated, there is less of a possibility to abruptly accumulate mutations leading to drug resistance. In this regard, DDX3 could be a druggable target for cancer treatment. We present an overview of DDX3 biology and the currently available DDX3 inhibitors for cancer treatment.

Heerma van Voss MR, Vesuna F, Trumpi K, et al.
Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer.
Oncotarget. 2015; 6(29):28312-26 [PubMed] Free Access to Full Article Related Publications
Identifying druggable targets in the Wnt-signaling pathway can optimize colorectal cancer treatment. Recent studies have identified a member of the RNA helicase family DDX3 (DDX3X) as a multilevel activator of Wnt signaling in cells without activating mutations in the Wnt-signaling pathway. In this study, we evaluated whether DDX3 plays a role in the constitutively active Wnt pathway that drives colorectal cancer. We determined DDX3 expression levels in 303 colorectal cancers by immunohistochemistry. 39% of tumors overexpressed DDX3. High cytoplasmic DDX3 expression correlated with nuclear β-catenin expression, a marker of activated Wnt signaling. Functionally, we validated this finding in vitro and found that inhibition of DDX3 with siRNA resulted in reduced TCF4-reporter activity and lowered the mRNA expression levels of downstream TCF4-regulated genes. In addition, DDX3 knockdown in colorectal cancer cell lines reduced proliferation and caused a G1 arrest, supporting a potential oncogenic role of DDX3 in colorectal cancer. RK-33 is a small molecule inhibitor designed to bind to the ATP-binding site of DDX3. Treatment of colorectal cancer cell lines and patient-derived 3D cultures with RK-33 inhibited growth and promoted cell death with IC50 values ranging from 2.5 to 8 μM. The highest RK-33 sensitivity was observed in tumors with wild-type APC-status and a mutation in CTNNB1. Based on these results, we conclude that DDX3 has an oncogenic role in colorectal cancer. Inhibition of DDX3 with the small molecule inhibitor RK-33 causes inhibition of Wnt signaling and may therefore be a promising future treatment strategy for a subset of colorectal cancers.

Jiang L, Gu ZH, Yan ZX, et al.
Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.
Nat Genet. 2015; 47(9):1061-6 [PubMed] Related Publications
Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL.

Hueng DY, Tsai WC, Chiou HY, et al.
DDX3X Biomarker Correlates with Poor Survival in Human Gliomas.
Int J Mol Sci. 2015; 16(7):15578-91 [PubMed] Free Access to Full Article Related Publications
Primary high-grade gliomas possess invasive growth and lead to unfavorable survival outcome. The investigation of biomarkers for prediction of survival outcome in patients with gliomas is important for clinical assessment. The DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked (DDX3X) controls tumor migration, proliferation, and progression. However, the role of DDX3X in defining the pathological grading and survival outcome in patients with human gliomas is not yet clarified. We analyzed the DDX3X gene expression, WHO pathological grading, and overall survival from de-linked data. Further validation was done using quantitative RT-PCR of cDNA from normal brain and glioma, and immunohistochemical (IHC) staining of tissue microarray. Statistical analysis of GEO datasets showed that DDX3X mRNA expression demonstrated statistically higher in WHO grade IV (n = 81) than in non-tumor controls (n = 23, p = 1.13 × 10(-10)). Moreover, DDX3X level was also higher in WHO grade III (n = 19) than in non-tumor controls (p = 2.43 × 10(-5)). Kaplan-Meier survival analysis showed poor survival in patients with high DDX3X mRNA levels (n = 24) than in those with low DDX3X expression (n = 53) (median survival, 115 vs. 58 weeks, p = 0.0009, by log-rank test, hazard ratio: 0.3507, 95% CI: 0.1893-0.6496). Furthermore, DDX3X mRNA expression and protein production significantly increased in glioma cells compared with normal brain tissue examined by quantitative RT-PCR, and Western blot. IHC staining showed highly staining of high-grade glioma in comparison with normal brain tissue. Taken together, DDX3X expression level positively correlates with WHO pathologic grading and poor survival outcome, indicating that DDX3X is a valuable biomarker in human gliomas.

Çelik H, Sajwan KP, Selvanathan SP, et al.
Ezrin Binds to DEAD-Box RNA Helicase DDX3 and Regulates Its Function and Protein Level.
Mol Cell Biol. 2015; 35(18):3145-62 [PubMed] Free Access to Full Article Related Publications
Ezrin is a key regulator of cancer metastasis that links the extracellular matrix to the actin cytoskeleton and regulates cell morphology and motility. We discovered a small-molecule inhibitor, NSC305787, that directly binds to ezrin and inhibits its function. In this study, we used a nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS-MS)-based proteomic approach to identify ezrin-interacting proteins that are competed away by NSC305787. A large number of the proteins that interact with ezrin were implicated in protein translation and stress granule dynamics. We validated direct interaction between ezrin and the RNA helicase DDX3, and NSC305787 blocked this interaction. Downregulation or long-term pharmacological inhibition of ezrin led to reduced DDX3 protein levels without changes in DDX3 mRNA. Ectopic overexpression of ezrin in low-ezrin-expressing osteosarcoma cells caused a notable increase in DDX3 protein levels. Ezrin inhibited the RNA helicase activity of DDX3 but increased its ATPase activity. Our data suggest that ezrin controls the translation of mRNAs preferentially with a structured 5' untranslated region, at least in part, by sustaining the protein level of DDX3 and/or regulating its function. Therefore, our findings suggest a novel function for ezrin in regulation of gene translation that is distinct from its canonical role as a cytoskeletal scaffold at the cell membrane.

Su CY, Lin TC, Lin YF, et al.
DDX3 as a strongest prognosis marker and its downregulation promotes metastasis in colorectal cancer.
Oncotarget. 2015; 6(21):18602-12 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Conflicting results regarding the role of DEAD-box polypeptide 3 (DDX3) are seen not only between cancer types but also within the same type of cancer. In this study, we aimed at clarifying the prognostic significance of DDX3 in patients of major cancer types through large cohort survival analysis and further investigated its effects on cancer progression.
METHODS: Large cohort survival analysis of 7 cancer types, including colorectal cancer, breast cancer, lung cancer, head and neck cancer, liver cancer, glioblastoma, and ovarian cancer, was performed using public database at RNA level and was further confirmed by IHC analysis at protein level. Phenotype parameters of DDX3 knockdown colon cancer cells and the mechanism of DDX3 regulated cancer progression were investigated in vitro and in vivo.
RESULTS: In large cohort survival analysis, DDX3 had a significant prognostic predictive power in colorectal cancer at both RNA and protein level. Patients with low DDX3 expression had poor prognosis and frequent distant metastasis. Knockdown of DDX3 enhanced the migration and invasion abilities of colon cancer cells and promoted tumor metastasis in vivo. Snail upregulation with decreased membranous E-cadherin expression and reduced cell aggregation were found after DDX3 downregulation.
CONCLUSIONS: Our study revealed the strong prognostic effect of DDX3 on colorectal cancer among seven major cancer types through larger cohort survival analysis at RNA and protein level. Low DDX3 expression promotes Snail/E-cadherin pathway mediated cancer metastasis and poor clinical outcome in colorectal cancer patients.

Ojha J, Secreto CR, Rabe KG, et al.
Identification of recurrent truncated DDX3X mutations in chronic lymphocytic leukaemia.
Br J Haematol. 2015; 169(3):445-8 [PubMed] Free Access to Full Article Related Publications

Chen HH, Yu HI, Cho WC, Tarn WY
DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway.
Oncogene. 2015; 34(21):2790-800 [PubMed] Related Publications
The DEAD-box RNA helicase DDX3 is a versatile protein involved in multiple steps of gene expression and various cellular signaling pathways. DDX3 mutations have been implicated in the wingless (Wnt) type of medulloblastoma. We show here that small interfering RNA-mediated DDX3 knockdown in various cell lines increased cell-cell adhesion but decreased cell-extracellular matrix adhesion. Moreover, DDX3 depletion suppressed cell motility and impaired directional migration in the wound-healing assay. Accordingly, DDX3-depleted cells exhibited reduced invasive capacities in vitro as well as reduced metastatic potential in mice. We also examined the mechanism underlying DDX3-regulated cell migration. DDX3 knockdown reduced the levels of both Rac1 and β-catenin proteins, and consequentially downregulated the expression of several β-catenin target genes. Moreover, we demonstrated that DDX3-regulated Rac1 mRNA translation, possibly through an interaction with its 5'-untranslated region, and affected β-catenin protein stability in an Rac1-dependent manner. Taken together, our results indicate the DDX3-Rac1-β-catenin regulatory axis in modulating the expression of Wnt/β-catenin target genes. Therefore, this report provides a mechanistic context for the role of DDX3 in Wnt-type tumors.

Weinreb I, Zhang L, Tirunagari LM, et al.
Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin.
Genes Chromosomes Cancer. 2014; 53(10):845-56 [PubMed] Related Publications
Polymorphous low-grade adenocarcinoma (PLGA) and cribriform adenocarcinoma of minor salivary gland (CAMSG) are low-grade carcinomas arising most often in oral cavity and oropharynx, respectively. Controversy exists as to whether these tumors represent separate entities or variants of one spectrum, as they appear to have significant overlap, but also clinicopathologic differences. As many salivary carcinomas harbor recurrent translocations, paired-end RNA sequencing and FusionSeq data analysis was applied for novel fusion discovery on two CAMSGs and two PLGAs. Validated rearrangements were then screened by fluorescence in situ hybridization (FISH) in 60 cases. Histologic classification was performed without knowledge of fusion status and included: 21 CAMSG, 18 classic PLGA, and 21 with "mixed/indeterminate" features. The RNAseq of 2 CAMSGs showed ARID1A-PRKD1 and DDX3X-PRKD1 fusions, respectively, while no fusion candidates were identified in two PLGAs. FISH for PRKD1 rearrangements identified 11 additional cases (22%), two more showing ARID1A-PRKD1 fusions. As PRKD2 and PRKD3 share similar functions with PRKD1 in the diacylglycerol and protein kinase C signal transduction pathway, we expanded the investigation for these genes by FISH. Six additional cases each showed PRKD2 and PRKD3 rearrangements. Of the 26 (43%) fusion-positive tumors, there were 16 (80%) CAMSGs and 9 (45%) indeterminate cases. A PRKD2 rearrangement was detected in one PLGA (6%). We describe novel and recurrent gene rearrangements in PRKD1-3 primarily in CAMSG, suggesting a possible pathogenetic dichotomy from "classic" PLGA. However, the presence of similar genetic findings in half of the indeterminate cases and a single PLGA suggests a possible shared pathogenesis for these tumor types.

Kool M, Jones DT, Jäger N, et al.
Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition.
Cancer Cell. 2014; 25(3):393-405 [PubMed] Free Access to Full Article Related Publications
Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant.

Bish R, Vogel C
RNA binding protein-mediated post-transcriptional gene regulation in medulloblastoma.
Mol Cells. 2014; 37(5):357-64 [PubMed] Free Access to Full Article Related Publications
Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

Hagerstrand D, Tong A, Schumacher SE, et al.
Systematic interrogation of 3q26 identifies TLOC1 and SKIL as cancer drivers.
Cancer Discov. 2013; 3(9):1044-57 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: 3q26 is frequently amplified in several cancer types with a common amplified region containing 20 genes. To identify cancer driver genes in this region, we interrogated the function of each of these genes by loss- and gain-of-function genetic screens. Specifically, we found that TLOC1 (SEC62) was selectively required for the proliferation of cell lines with 3q26 amplification. Increased TLOC1 expression induced anchorage-independent growth, and a second 3q26 gene, SKIL (SNON), facilitated cell invasion in immortalized human mammary epithelial cells. Expression of both TLOC1 and SKIL induced subcutaneous tumor growth. Proteomic studies showed that TLOC1 binds to DDX3X, which is essential for TLOC1-induced transformation and affected protein translation. SKIL induced invasion through upregulation of SLUG (SNAI2) expression. Together, these studies identify TLOC1 and SKIL as driver genes at 3q26 and more broadly suggest that cooperating genes may be coamplified in other regions with somatic copy number gain.
SIGNIFICANCE: These studies identify TLOC1 and SKIL as driver genes in 3q26. These observations provide evidence that regions of somatic copy number gain may harbor cooperating genes of different but complementary functions.

Bol GM, Raman V, van der Groep P, et al.
Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer.
PLoS One. 2013; 8(5):e63548 [PubMed] Free Access to Full Article Related Publications
AIMS: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.
METHODS AND RESULTS: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.
CONCLUSIONS: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.

Brandimarte L, Pierini V, Di Giacomo D, et al.
New MLLT10 gene recombinations in pediatric T-acute lymphoblastic leukemia.
Blood. 2013; 121(25):5064-7 [PubMed] Related Publications
The MLLT10 gene, located at 10p13, is a known partner of MLL and PICALM in specific leukemic fusions generated from recurrent 11q23 and 11q14 chromosome translocations. Deep sequencing recently identified NAP1L1/12q21 as another MLLT10 partner in T-cell acute lymphoblastic leukemia (T-ALL). In pediatric T-ALL, we have identified 2 RNA processing genes, that is, HNRNPH1/5q35 and DDX3X/Xp11.3 as new MLLT10 fusion partners. Gene expression profile signatures of the HNRNPH1- and DDX3X-MLLT10 fusions placed them in the HOXA subgroup. Remarkably, they were highly similar only to PICALM-MLLT10-positive cases. The present study showed MLLT10 promiscuity in pediatric T-ALL and identified a specific MLLT10 signature within the HOXA subgroup.

Fan CC, Lee LY, Yu MY, et al.
Upregulated hPuf-A promotes breast cancer tumorigenesis.
Tumour Biol. 2013; 34(5):2557-64 [PubMed] Related Publications
hPuf-A is a member of RNA-binding PUF family that regulates mRNA translation. Redistribution of hPuf-A from the nucleolus to the nucleoplasm upon genotoxic stress modulates the poly(ADP-ribosyl)ation activity of PARP-1. Here, we report a novel function of hPuf-A involved in promoting breast cancer progression. Immunohistochemical studies showed higher expression levels of hPuf-A in stage I, II, III, and IV breast cancer specimens in contrast with those of hPuf-A in ductal carcinoma in situ. The presence of hPuf-A is highly associated with colony formation capacities in breast cancer T47D and MDA-MB-231 cells. Xenograft growth of hPuf-A-silenced and hPuf-A overexpressing MDA-MB-231 cells in nude mice was substantially in concert with colony formation capacities. This promoting effect of hPuf-A in tumorigenesis might be correlated with the regulation of its associated mRNAs, such as RbAp48 and DDX3. Collectively, hPuf-A may have diagnostic values in breast cancer progression.

Wu DW, Lee MC, Wang J, et al.
DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer.
Oncogene. 2014; 33(12):1515-26 [PubMed] Related Publications
P53 inactivation by p53 mutation and E6 oncoprotein has a crucial role in human carcinogenesis. DDX3 has been shown to be a target of p53. In this study, we hypothesized that DDX3 loss by p53 inactivation may promote tumor malignancy and poor patients' outcome. Mechanically, DDX3 loss by p53 knockdown and E6 overexpression was observed in A549 lung cancer cells. Conversely, DDX3 expression was markedly elevated by wild-type (WT) p53 ectopic expression in p53-null H1299 cells, E6-knockdown TL-1 lung cancer and SiHa cervical cancer cells. Interestingly, DDX3 loss promotes soft-agar growth and invasive capability; however, both capabilities were suppressed by DDX3 overexpression. We next expected that DDX3 loss might result in Slug-suppressed E-cadherin expression via decreased MDM2-mediated Slug degradation. As expected, MDM2 transcription is suppressed by DDX3 loss via decreased SP1 binding activity to the MDM2 promoter. Consequently, Slug expression was elevated by the reduction of MDM2 because of DDX3 loss, and E-cadherin expression was suppressed by Slug. Consistent observations in the correlation of DDX3 loss with MDM2, Slug and E-cadherin were seen in lung tumors from lung cancer patients. In addition, patients with low-DDX3 tumors had poorer survival and relapse than patients with high-DDX3 tumors. In conclusion, we suggest that DDX3 loss by p53 inactivation via MDM2/Slug/E-cadherin pathway promotes tumor malignancy and poor patient outcome.

Lee CH, Lin SH, Yang SF, et al.
Low/negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer.
Oral Dis. 2014; 20(1):76-83 [PubMed] Related Publications
OBJECTIVE: DDX3 has diverse biological functions in translation control, cell growth regulation, and tumor progression. Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide with a poor clinical prognosis. The impact of DDX3 expression in OSCC is seldom discussed.
MATERIALS AND METHODS: Tumor tissues and adjacent normal tissues were obtained from 324 patients with OSCC. In this study, we used immunohistochemical staining methods to investigate the associations between DDX3 expression and the clinicopathological characteristics of OSCC.
RESULTS: Low/negative DDX3 expression in tumor cells was significantly associated OSCC patient characteristics including male gender (P < 0.001), smoking (P < 0.001), alcohol consumption (P < 0.001), betel quid chewing (P = 0.002), poor relapse-free survival (P = 0.001), and poor overall survival (OS) (P = 0.001). Patients with low/negative DDX3 expression, and particularly non-smoker OSCC patients, had significantly worse OS as defined by the log-rank test (P = 0.020 for all cases; P = 0.008 for non-smoker patients). In non-smoker patients with OSCC, low/negative DDX3 expression in tumor cells was associated with poor prognosis (P = 0.024) and a 3.802-fold higher death risk, as determined by Cox regression.
CONCLUSIONS: Low/negative DDX3 expression in tumor cells was significantly associated with aggressive clinical manifestations and might be an independent survival predictor, particularly in non-smoker patients with OSCC.

Zhao L, Li F, Taylor EW
Can tobacco use promote HCV-induced miR-122 hijacking and hepatocarcinogenesis?
Med Hypotheses. 2013; 80(2):131-3 [PubMed] Related Publications
Chronic hepatitis C virus (HCV) infection is a well-recognized risk factor for hepatocellular carcinoma (HCC). As a co-risk factor, the role of tobacco use in HCV-driven carcinogenesis and relevant underlying mechanisms remain largely unclear. The latest discoveries about HCV replication have shown that HCV RNA hijacks cellular miRNA-122 by forming an Ago2-HCV-miR-122 complex that stabilizes the HCV genome and enhances HCV replication. Our previous work has demonstrated that aqueous tobacco smoke extract (TSE) is a potent activator of HIV replication via TSE-mediated viral protection from oxidative stress and activation of a set of genes that can promote viral replication. Since HCV is, like HIV, an enveloped virus that should be equally susceptible to lipid peroxidation, and since one of the TSE-upregulated genes, the DDX3 helicase, is known to facilitate HCV replication, we hypothesize that (1) tobacco use can similarly enhance HCV viability and replication, and promote HCC progression by up-regulation of DDX3, and (2) by competing for binding with miR-122 as a competing endogenous RNA (ceRNA), HCV replication can liberate miR-122's direct target, oncogenic gene cyclin G1 (CCNG1); furthermore, simultaneous tobacco use can synergistically enhance this competing effect via HCV upregulation. Our hypotheses may lay a foundation for better understanding of carcinogenesis in HCV-driven HCC and the potential role of tobacco as a cofactor. Disrupting the HCV ceRNA effect may provide a new strategy for designing anti HCV/HCC drugs.

Jones DT, Jäger N, Kool M, et al.
Dissecting the genomic complexity underlying medulloblastoma.
Nature. 2012; 488(7409):100-5 [PubMed] Free Access to Full Article Related Publications
Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.

Pugh TJ, Weeraratne SD, Archer TC, et al.
Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations.
Nature. 2012; 488(7409):106-10 [PubMed] Free Access to Full Article Related Publications
Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, β-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic β-catenin signalling in medulloblastoma.

Robinson G, Parker M, Kranenburg TA, et al.
Novel mutations target distinct subgroups of medulloblastoma.
Nature. 2012; 488(7409):43-8 [PubMed] Free Access to Full Article Related Publications
Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.

Panda H, Chuang TD, Luo X, Chegini N
Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3.
J Clin Endocrinol Metab. 2012; 97(7):E1316-26 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Evidence suggests that a number of microRNA (miRNA) are aberrantly expressed in endometrial disorders with potential posttranscriptional regulation of their specific target genes, including ovarian steroid receptors.
OBJECTIVES: Our objective was to assess the endometrial expression of miR-98 and miR-181a and their respective target genes, progesterone (P4) receptor membrane component 1 (PGRMC1) and P4 receptor (PGR).
DESIGN, SETTING, AND PATIENTS: We evaluated tissue expression and in vitro regulation at an academic university medical center in endometrial biopsies and endometrial tissues from follicular and luteal phases with and without exposure to hormonal therapies and grade I-III endometrial cancer (n = 52).
INTERVENTIONS: INTERVENTIONS included endometrial biopsies and in vitro transfection.
MAIN OUTCOME MEASURES: We evaluated expression and function of miR-98 and miR-181a.
RESULTS: Aberrant expression of miR-98 and miR-181a is associated with endometrial transition from normal into cancerous states, which to some extent is influenced by hormonal milieu, and exhibited an inverse relationship with PGMRC1 and PGR expression, respectively. Treatments of Ishikawa cells with 17β-estradiol, P4, or medroxyprogesterone acetate had limited effects on miR-98, miR-181a, and PGRMC1 expression, whereas 17β-estradiol treatment increased PGR expression. In Ishikawa cells, gain of function of miR-98 repressed PGRMC1 and CYP19A1, and miR-181a repressed PGR, DDX3X, and TIMP3 at mRNA and protein levels through direct interactions with their respective 3'-untranslated regions and CCNE1 through miR-181a-induced DDX3X repression, with miR-98 reducing the rate of cell proliferation as compared with controls.
CONCLUSION: miR-98 and miR-181a through their regulatory functions on PGRMC1, PGR, CYP19A1, TIMP3, and DDX3X expression may influence a wide range of endometrial cellular activities during normal menstrual cycle and transition into disease states, including endometrial cancer.

Schröder PC, Fernández-Irigoyen J, Bigaud E, et al.
Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III: Characterization of DDX3X as a target of S-adenosylmethionine.
J Proteomics. 2012; 75(10):2855-68 [PubMed] Free Access to Full Article Related Publications
Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Proteomics: The clinical link.

Liu H, Zhang J, Wang S, et al.
Screening of autoantibodies as potential biomarkers for hepatocellular carcinoma by using T7 phase display system.
Cancer Epidemiol. 2012; 36(1):82-8 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Autoantibodies to tumor-associated proteins in the serum profile, as new biomarkers, may improve the early detection of HCC.
METHODS: In this study, we interrogated a HCC cDNA T7 phage library for tumor-associated proteins using biopan enrichment techniques with HCC patient and normal sera. The enrichment of tumor-associated proteins after biopanning was tested using plaque assay and immunochemical detection. The putative tumor-associated phage clones were collected for PCR and sequencing analysis. Identities of those selected sequences were revealed through the sequence BLAST program. The identified phage-expressed proteins were then used to develop phage protein ELISA to measure matching autoantibodies using 70 HCC patients, 50 chronic hepatitis patients, and 70 normal serum samples. The logistic regression model and leave-one-out validation were used to evaluate predictive accuracies with a single marker as well as with combined markers.
RESULTS: Twenty-six phage-displayed proteins have sequence identity with known or putative tumor-associated proteins. Immunochemical reactivity of patient sera with phage-expressed proteins showed that the autoantibodies to phage-expressed protein CENPF, DDX3, HSPA4, HSPA5, VIM, LMNB1, and TP53 had statistical significance in HCC patients. Measurements of the seven autoantibodies combined in a logistic regression model showed that combined measurements of these autoantibodies was more predictive of disease than any single antibody alone, underscoring the importance of identifying multiple potential markers.
CONCLUSION: Autoantibody in the serum profiling is a promising approach for early detection and diagnosis of HCC. The panel of autoantibodies appears preferable to achieve superior accuracy rather than an autoantibody alone, and may have significant relevance to tumor biology, novel drug development, and immunotherapies.

Wu DW, Liu WS, Wang J, et al.
Reduced p21(WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer.
Clin Cancer Res. 2011; 17(7):1895-905 [PubMed] Related Publications
PURPOSE: DDX3 alteration has been shown to participate in hepatocellular tumorigenesis via p21(WAF1/CIP1) (p21) deregulation. We observed that DDX3 and p21 expression in lung tumors was negatively associated with E6 expression. Therefore, the aim of this study was to clarify whether deregulation of p21 by DDX3 via an E6-inactivated p53 pathway would enhance tumor progression in HPV-associated lung cancers.
EXPERIMENTAL DESIGN: Real-time PCR, luciferase assays, immunoprecipitation, and chromatin immunoprecipitation (ChIP) were performed to determine whether DDX3 was regulated by p53 to synergistically enhance p21 transcriptional activity. Cell proliferation was examined by cell counting and colony formation assays. DDX3 and p21 expression were evaluated in 138 lung tumors by real-time PCR and immunohistochemistry. The prognostic value of p21 expression on relapse-free survival (RFS) was analyzed by Kaplan-Meier analysis.
RESULTS: Real-time PCR, luciferase assays, and ChIP assays indicated that three putative p53 binding sites, located at -1,080/-1,070, -695/-685, and -283/-273 on the DDX3 promoter, were required for DDX3 transcription. DDX3 deregulation by the E6-inactivated p53 pathway could promote cell proliferation and the ability to form colonies via reduced Sp1 binding activity on the p21 promoter. Among tumors, p21 expression was positively associated with DDX3 expression and negatively related with E6 expression, particularly in early-stage (I + II) tumors. Interestingly, low p21 expression was associated with a poor RFS in early-stage lung cancer.
CONCLUSION: The reduction of p21 by the alteration of the p53-DDX3 pathway plays an essential role in early-stage HPV-associated lung tumorigenesis and is correlated with poor RFS of lung cancer patients.

Sun M, Song L, Zhou T, et al.
The role of DDX3 in regulating Snail.
Biochim Biophys Acta. 2011; 1813(3):438-47 [PubMed] Free Access to Full Article Related Publications
DDX3, a DEAD box protein family member, appears to promote the progression of some cancers, which may partly result from its impedance of death receptor-mediated apoptosis. We found that another mechanism by which DDX3 may aid cancer progression is by promoting increased levels of the transcription factor Snail. Snail represses expression of cellular adhesion proteins, leading to increased cell migration and metastasis of many types of cancer. Knockdown of DDX3 levels by shRNA reduced basal levels of Snail in HeLa and MCF-7 cells, and this was associated with reduced cell proliferation and migration. Snail protein and mRNA levels were increased by treatment with the HDAC inhibitors sodium butyrate or trichostatin A, and these increases were attenuated in cells with DDX3 knocked down. Treatment of cells with camptothecin was discovered to increase Snail protein levels, and this increase was diminished in cells with DDX3 knocked down. Analysis of 31 patient glioblastoma multiforme (GBM) samples revealed a significant correlation between the levels of DDX3 and Snail. Thus, DDX3 is required for basal Snail expression and increases in Snail induced by HDAC inhibitors or camptothecin, indicating that this action of DDX3 may contribute to its promotion of the progression of some cancers.

McGivern DR, Lemon SM
Tumor suppressors, chromosomal instability, and hepatitis C virus-associated liver cancer.
Annu Rev Pathol. 2009; 4:399-415 [PubMed] Free Access to Full Article Related Publications
Hepatitis C virus (HCV) is the only known RNA virus with an exclusively cytoplasmic life cycle that is associated with cancer. The mechanisms by which it causes cancer are unclear, but chronic immune-mediated inflammation and associated oxidative chromosomal DNA damage probably play a role. Compelling data suggest that the path to hepatocellular carcinoma in chronic hepatitis C shares some important features with the mechanisms of transformation employed by DNA tumor viruses. Interactions of viral proteins with key regulators of the cell cycle, the retinoblastoma-susceptibility protein, p53, and possibly DDX5 and DDX3 lead to enhanced cellular proliferation and may also compromise multiple cell-cycle checkpoints that maintain genomic integrity, thus setting the stage for carcinogenesis. Dysfunctional DNA damage and mitotic spindle checkpoints resulting from these interactions may promote chromosomal instability and leave the hepatocyte unable to control DNA damage caused by oxidative stress mediated by HCV proteins, alcohol, and immune-mediated inflammation.

Oveland E, Gjertsen BT, Wergeland L, et al.
Ligand-induced Flt3-downregulation modulates cell death associated proteins and enhances chemosensitivity to idarubicin in THP-1 acute myeloid leukemia cells.
Leuk Res. 2009; 33(2):276-87 [PubMed] Related Publications
Sustained ligand stimulation of the receptor tyrosine kinase Flt3 resulted in its downregulation and a refractory signaling phase in primary acute myeloid leukemia (AML) cells and in the AML cell line THP-1. Stable isotope amino acid labeling in cell culture and mass spectrometry were used to compare protein expression patterns in THP-1 before and after Flt3-downregulation. 375 distinct proteins were identified where ATP-dependent RNA helicase DDX3, HNRPU, Matrin-3, Importin-7 and Bax were among the 25 most upregulated proteins and Hausp/UBP7, UBE2N and ERp29 among the 17 most downregulated. THP-1 cells with receptor downregulation were sensitized to idarubicin-induced apoptosis but not cytarabine. We hypothesize that FL-induced receptor modulation may chemosensitize selected AML subsets.

Botlagunta M, Vesuna F, Mironchik Y, et al.
Oncogenic role of DDX3 in breast cancer biogenesis.
Oncogene. 2008; 27(28):3912-22 [PubMed] Related Publications
Benzo[a]pyrene diol epoxide (BPDE), the active metabolite of benzo[a]pyrene present in tobacco smoke, is a major cancer-causing compound. To evaluate the effects of BPDE on human breast epithelial cells, we exposed an immortalized human breast cell line, MCF 10A, to BPDE and characterized the gene expression pattern. Of the differential genes expressed, we found consistent activation of DDX3, a member of the DEAD box RNA helicase family. Overexpression of DDX3 in MCF 10A cells induced an epithelial-mesenchymal-like transformation, exhibited increased motility and invasive properties, and formed colonies in soft-agar assays. Besides the altered phenotype, MCF 10A-DDX3 cells repressed E-cadherin expression as demonstrated by both immunoblots and by E-cadherin promoter-reporter assays. In addition, an in vivo association of DDX3 and the E-cadherin promoter was demonstrated by chromatin immunoprecipitation assays. Collectively, these results demonstrate that the activation of DDX3 by BPDE, can promote growth, proliferation and neoplastic transformation of breast epithelial cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DDX3X, Cancer Genetics Web: http://www.cancer-genetics.org/DDX3X.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999