DIRAS3

Gene Summary

Gene:DIRAS3; DIRAS family, GTP-binding RAS-like 3
Aliases: ARHI, NOEY2
Location:1p31
Summary:This gene is a member of the ras superfamily, and is expressed in normal ovarian and breast epithelial cells, but not in ovarian and breast cancers. It is an imprinted gene, with monoallelic expression of the paternal allele, which is associated with growth suppression. Thus, this gene appears to be a putative tumor suppressor gene whose function is abrogated in ovarian and breast cancers. [provided by RefSeq, Oct 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:GTP-binding protein Di-Ras3
HPRD
Source:NCBIAccessed: 17 August, 2015

Ontology:

What does this gene/protein do?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Mice, Inbred BALB C
  • Xenograft Models
  • Gene Expression
  • Growth Inhibitors
  • Phosphorylation
  • Genomic Imprinting
  • Apoptosis
  • Cell Cycle
  • Gene Silencing
  • Cell Movement
  • Tumor Suppressor Gene
  • CpG Islands
  • siRNA
  • Messenger RNA
  • Loss of Heterozygosity
  • Transcription
  • Acetylation
  • Western Blotting
  • Hydroxamic Acids
  • Histone Deacetylase Inhibitors
  • Breast Cancer
  • Down-Regulation
  • Ovarian Cancer
  • Promoter Regions
  • Histones
  • Signal Transduction
  • Luciferases
  • Tumor Markers
  • Cell Proliferation
  • Autophagy
  • RTPCR
  • DNA Methylation
  • rho GTP-Binding Proteins
  • Chromosome 1
  • Azacitidine
  • Cyclin D1
  • RHOA
  • Cancer Gene Expression Regulation
  • Neoplasm Invasiveness
Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DIRAS3 (cancer-related)

Barrow TM, Barault L, Ellsworth RE, et al.
Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer.
Int J Cancer. 2015; 137(3):537-47 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer because they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n = 38) and benign breast disease (n = 30) were compared with those from healthy individuals (n = 36), matched with the cancer patients by age at diagnosis, ethnicity, body mass index, menopausal status and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8% and SNRPN/SNURF ICR in 4%. Variation in methylation was significantly greater in breast tissue from cancer patients compared with that in healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher's exact test, p = 0.02) and progesterone-A (p = 0.02) receptor status. Aberrant events and increased variation in imprinted gene DNA methylation, therefore, seem to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression.

Yu J, Kong CZ, Zhang Z, et al.
Aplasia Ras homolog member I expression induces apoptosis in renal cancer cells via the β-catenin signaling pathway.
Mol Med Rep. 2015; 11(1):475-81 [PubMed] Related Publications
In numerous types of cancer, the Ras-associated tumor suppressor gene aplasia Ras homolog member I (ARHI), is downregulated. However, the function of ARHI in renal cancer remains to be elucidated. The present study investigated whether the suppressor gene ARHI influenced the growth of renal cancer cell lines and aimed to elucidate its mechanism of action, using the techniques of cell biology and molecular pathology. To the best of our knowledge, the present study was the first to determine the effects of ARHI on human renal cancer cells in vivo and in vitro. It was demonstrated that ARHI exhibited a tumor suppressor function in OS-RC-2 cells and acted via the β-catenin signaling pathway. It was additionally confirmed that the levels of ARHI messenger RNA and protein in renal cancer tissues were lower than those in matched normal tissues. These results provided a novel insight into the possible therapeutic applications of ARHI in renal cancer.

Li L, Gao P, Li Y, et al.
JMJD2A-dependent silencing of Sp1 in advanced breast cancer promotes metastasis by downregulation of DIRAS3.
Breast Cancer Res Treat. 2014; 147(3):487-500 [PubMed] Related Publications
Specificity protein 1(Sp1) is a ubiquitous transcription factor and is highly expressed in breast cancer. However, its expression pattern and role in breast cancer progression remain unclear. The purpose of this study is to examine the expression pattern of Sp1 and determine its role in breast cancer progression. Immunohistochemistry (IHC) was performed on breast cancer tissues to reveal the expression pattern of Sp1. Spearman rank correlation was used for clinical statistics. Gene and protein expressions were monitored by IHC analysis, quantitative polymerase chain reaction, and Western blot. Wound-healing and Transwell assays were conducted to assess the role of Sp1 in breast cancer. Co-immunoprecipitation, deletion mutagenesis, chromatin immunoprecipitation, and dual luciferase reporter gene assays were used for investigation of the regulatory network. Sp1 expression was downregulated in late stage breast cancer and in highly invasive breast cancer cell lines. Expression of Sp1 was negatively correlated with TNM staging (P = 0.002) and metastasis status (P = 0.023). Overexpression of Sp1 inhibited breast cancer cell migratory and invasive abilities, whereas knockdown of GTP-binding RAS-like 3 (DIRAS3, also known as ARHI, NOEY2) attenuated the inhibitory effects. Moreover, re-expression of DIRAS3 abolished Sp1 knockdown-mediated cell migration and invasion. Jumonji domain containing 2A (JMJD2A) inhibited Sp1 autoregulation and explains Sp1 expression pattern in breast cancer. Sp1 negatively regulated breast cancer metastasis by transcriptional activation of DIRAS3. Inhibition of Sp1 autoregulation by JMJD2A contributed to Sp1 expression pattern in breast cancer. Our findings provided evidence that targeted therapy against Sp1 might be useful in early stage breast cancer. However, in late stages, development of Sp1 activator may be more promising for breast cancer treatments.

Li LL, Xue AM, Li BX, et al.
JMJD2A contributes to breast cancer progression through transcriptional repression of the tumor suppressor ARHI.
Breast Cancer Res. 2014; 16(3):R56 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
INTRODUCTION: Breast cancer is a worldwide health problem and the leading cause of cancer death among females. We previously identified Jumonji domain containing 2A (JMJD2A) as a critical mediator of breast cancer proliferation, migration and invasion. We now report that JMJD2A could promote breast cancer progression through transcriptional repression of the tumor suppressor aplasia Ras homolog member I (ARHI).
METHODS: Immunohistochemistry was performed to examine protein expressions in 155 cases of breast cancer and 30 non-neoplastic tissues. Spearman correlation analysis was used to analyze the correlation between JMJD2A expression and clinical parameters as well as several tumor regulators in 155 cases of breast cancer. Gene and protein expressions were monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Results from knockdown of JMJD2A, overexpression of JMJD2A, Co-immunoprecipitation (Co-IP) assay, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) elucidated molecular mechanisms of JMJD2A action in breast cancer progression. Furthermore, the effects of ARHI overexpression on JMJD2A-mediated tumor progression were investigated in vitro and in vivo. For in vitro experiments, cell proliferation, wound-healing, migration and invasion were monitored by cell counting, scratch and Boyden Chamber assays. For in vivo experiments, control cells and cells stably expressing JMJD2A alone or together with ARHI were inoculated into mammary fat pads of mice. Tumor volume, tumor weight and metastatic nodules were measured by caliper, electronic balance and nodule counting, respectively.
RESULTS: JMJD2A was highly expressed in human breast cancers and positively correlated with tumor progression. Knockdown of JMJD2A increased ARHI expression whereas overexpression of JMJD2A decreased ARHI expression at both protein and mRNA levels. Furthermore, E2Fs and histone deacetylases were involved in the transcriptional repression of ARHI expression by JMJD2A. And the aggressive behavior of JMJD2A in breast cancers could be reversed by re-expression of ARHI in vitro and in vivo.
CONCLUSION: We demonstrated a cancer-promoting effect of JMJD2A and defined a novel molecular pathway contributing to JMJD2A-mediated breast cancer progression.

Lu Z, Baquero MT, Yang H, et al.
DIRAS3 regulates the autophagosome initiation complex in dormant ovarian cancer cells.
Autophagy. 2014; 10(6):1071-92 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
DIRAS3 is an imprinted tumor suppressor gene that is downregulated in 60% of human ovarian cancers. Re-expression of DIRAS3 at physiological levels inhibits proliferation, decreases motility, induces autophagy, and regulates tumor dormancy. Functional inhibition of autophagy with choroquine in dormant xenografts that express DIRAS3 significantly delays tumor regrowth after DIRAS3 levels are reduced, suggesting that autophagy sustains dormant ovarian cancer cells. This study documents a newly discovered role for DIRAS3 in forming the autophagosome initiation complex (AIC) that contains BECN1, PIK3C3, PIK3R4, ATG14, and DIRAS3. Participation of BECN1 in the AIC is inhibited by binding of BECN1 homodimers to BCL2. DIRAS3 binds BECN1, disrupting BECN1 homodimers and displacing BCL2. Binding of DIRAS3 to BECN1 increases the association of BECN1 with PIK3C3 and ATG14, facilitating AIC activation. Amino acid starvation of cells induces DIRAS3 expression, reduces BECN1-BCL2 interaction and promotes autophagy, whereas DIRAS3 depletion blocks amino acid starvation-induced autophagy. In primary ovarian cancers, punctate expression of DIRAS3, BECN1, and the autophagic biomarker MAP1LC3 are highly correlated (P<0.0001), underlining the clinical relevance of these mechanistic studies. Punctate expression of DIRAS3 and MAP1LC3 was detected in only 21-23% of primary ovarian cancers but in 81-84% of tumor nodules found on the peritoneal surface at second-look operations following primary chemotherapy. This reflects a 4-fold increase (P<0.0001) in autophagy between primary disease and post-treatment recurrence. We suggest that DIRAS3 not only regulates the AIC, but induces autophagy in dormant, nutrient-deprived ovarian cancer cells that remain after conventional chemotherapy, facilitating their survival.

Lu Z, Yang H, Sutton MN, et al.
ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7.
Cell Death Differ. 2014; 21(8):1275-89 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
The process of autophagy has been described in detail at the molecular level in normal cells, but less is known of its regulation in cancer cells. Aplasia Ras homolog member I (ARHI; DIRAS3) is an imprinted tumor suppressor gene that is downregulated in multiple malignancies including ovarian cancer. Re-expression of ARHI slows proliferation, inhibits motility, induces autophagy and produces tumor dormancy. Our previous studies have implicated autophagy in the survival of dormant ovarian cancer cells and have shown that ARHI is required for autophagy induced by starvation or rapamycin treatment. Re-expression of ARHI in ovarian cancer cells blocks signaling through the PI3K and Ras/MAP pathways, which, in turn, downregulates mTOR and initiates autophagy. Here we show that ARHI is required for autophagy-meditated cancer cell arrest and ARHI inhibits signaling through PI3K/AKT and Ras/MAP by enhancing internalization and degradation of the epidermal growth factor receptor. ARHI-mediated downregulation of PI3K/AKT and Ras/ERK signaling also decreases phosphorylation of FOXo3a, which sequesters this transcription factor in the nucleus. Nuclear retention of FOXo3a induces ATG4 and MAP-LC3-I, required for maturation of autophagosomes, and also increases the expression of Rab7, required for fusion of autophagosomes with lysosomes. Following the knockdown of FOXo3a or Rab7, autophagolysosome formation was observed but was markedly inhibited, resulting in numerous enlarged autophagosomes. ARHI expression correlates with LC3 expression and FOXo3a nuclear localization in surgical specimens of ovarian cancer. Thus, ARHI contributes to the induction of autophagy through multiple mechanisms in ovarian cancer cells.

Zuo X, Qin Y, Zhang X, et al.
Breast cancer cells are arrested at different phases of the cell cycle following the re-expression of ARHI.
Oncol Rep. 2014; 31(5):2358-64 [PubMed] Related Publications
ARHI is a maternally imprinted tumor suppressor gene that is expressed in normal breast epithelial cells but not in most breast cancer cells. Aberrant methylation and hypernomic histone deacetylation have been implicated in the silencing of ARHI. To investigate the mechanism of ARHI induction, MDA-MB-231 breast cancer cells were either transfected with the eukaryotic expression vector, pcDNA3.1(+)-ARHI, or were simultaneously treated with a histone deacetylase inhibitor, [trichostatin A, (TSA)] and the methyltransferase inhibitor, 5-aza-2'-deoxycytidine (DAC). The latter treatment group also included the targeting of ARHI by small interfering RNA (siRNA) to further examine interactions between ARHI and the drugs applied. Levels of ARHI were detected by western blotting, MTT assays were used to evaluate cell proliferation, and both cell cycle progression and apoptosis were detected using flow cytometry. Both the transfection of pcDNA3.1(+)‑ARHI and the application of TSA+DAC induced the expression of ARHI. Furthermore, reduced cell proliferation, cell cycle arrest and enhanced apoptosis were observed for both groups compared to controls. However, a G1/S cell cycle arrest was observed for the pcDNA3.1(+)-ARHI group, while a G2 cell cycle arrest was observed for the TSA+DAC group. The latter effect was reversed with the introduction of ARHI-targeted siRNA in combination with TSA+DAC treatment. To further clarify these observations, expression levels of several key cell cycle regulators were analyzed by western blotting. The pcDNA3.1(+)-ARHI group exhibited higher expression levels of p53, p21 and p27, and lower levels of cyclin D1, CDK4 and CDK6 when compared to the control group (P<0.05). For the TSA+DAC group, higher levels of p53, p21, cyclin B1 and Chk1 were detected, concomitant with lower levels of CDK1, when compared to the control group. Taken together, these results suggest that ARHI acts as a tumor suppressor gene in MDA-MB-231 cells and, although TSA+DAC can block the cells at different cell cycle phage, the antitumor effect is ARHI-dependent.

Li J, Cui G, Sun L, et al.
ARHI overexpression induces epithelial ovarian cancer cell apoptosis and excessive autophagy.
Int J Gynecol Cancer. 2014; 24(3):437-43 [PubMed] Related Publications
OBJECTIVE: ARHI is a maternally imprinted tumor suppressor gene that is responsible for initiating programmed cell death and inhibiting cancer cell growth. However, the influence of ARHI on epithelial ovarian cancer cell death and the underlying mechanisms behind how ARHI regulates cancer cells still require further studies.
METHODS: Epithelial ovarian cancer cells TOV112D and ES-2 were used in this in vitro study. Cell proliferation, apoptosis, and autophagy activities were compared in TOV112D and ES-2 cells transfected with ARHI vectors or control vectors. Bcl-2 siRNA was transfected into TOV112D cells to investigate the roles of Bcl-2 played in regulating apoptosis and autophagy.
RESULTS: ARHI expression was reduced in TOV112D and ES-2 cells compared with normal epithelial ovarian cells (NOE095 and HOSEpiC). Overexpressed ARHI inhibited cancer cell proliferation, whereas induced forced cell apoptosis and excessive formation of autophagosomes inhibited promoted cell death. Furthermore, we found that Bcl-2 expression moderately declined in response to ARHI overexpressing in ES-2 and TOV112D cells; meanwhile, more apoptotic cells and higher LC3 level presented after silence of Bcl-2 in TOV112D cells. Reduced Bcl-2-Beclin 1 complex were observed in ARHI overexpressing cells. Moreover, modulation of ARHI to Bcl-2 expression could be ascribed partially to the activation of PI3k/AKT pathway. The addition of LY294002 enabled to suppress Bcl-2 expression and cell proliferation.
CONCLUSIONS: The silence of ARHI expression in vitro seems to accelerate the malignant transformation of healthy ovarian cells by restraining apoptosis and autophagy. The overexpressed ARHI in TOV112D cancer cells suppresses the activation of PI3K/AKT and reduces the expression of Bcl-2, leading to enhanced cell apoptosis and autophagic cancer cell death.

Chen J, Shi S, Yang W, Chen C
Over-expression of ARHI decreases tumor growth, migration, and invasion in human glioma.
Med Oncol. 2014; 31(3):846 [PubMed] Related Publications
This study was conducted to evaluate the role of tumor suppressor gene ras homologue member I (ARHI) in human glioma tumors. We examined expression of ARHI in human glioma tumors and normal brain tissue and also in 4 different glioma cell lines. Furthermore, the effects of ARHI over-expression produced by cellular transfection on the growth of human glioma U251 cells cultured in vitro were also studied. Expression of ARHI was evaluated in samples of glioma tumors obtained from 59 patients who underwent surgery at the Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China. Ten samples of normal brain tissue were used as controls. Additionally, in vitro studies were conducted in which a recombinant vector carrying ARHI cDNA was constructed and transfected into U251 glioma cells with reduced expression of ARHI. Following transfection, the MTT assay, flow cytometry, TUNEL procedure, Transwell assay, and wound-healing test were employed to evaluate the biological functions of ARHI in U251 glioma cells in vitro. Analyses of mRNA and protein expression revealed that ARHI was significantly down-regulated in glioma tissues as well as in 4 malignant glioma cell lines. Over-expression of ARHI resulted in suppression of glioma cell proliferation, arrest of cell cycle progression, reduction in cell migration and invasion, and promotion of cell apoptosis. Collectively, our data highlight the importance of ARHI in glioma progression and provide the first biological basis for ARHI as a novel candidate target for gene therapy of glioma.

Lyu T, Jia N, Wang J, et al.
Expression and epigenetic regulation of angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma.
Epigenetics. 2013; 8(12):1330-46 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
The initiation of angiogenesis can mark the transition from tumor dormancy to active growth and recurrence. Mechanisms that regulate recurrence in human cancers are poorly understood, in part because of the absence of relevant models. The induction of ARHI (DIRAS3) induces dormancy and autophagy in human ovarian cancer xenografts but produces autophagic cell death in culture. The addition of VEGF to cultures maintains the viability of dormant autophagic cancer cells, thereby permitting active growth when ARHI is downregulated, which mimics the "recurrence" of growth in xenografts. Two inducible ovarian cancer cell lines, SKOv3-ARHI and Hey-ARHI, were used. The expression level of angiogenesis factors was evaluated by real-time PCR, immunohistochemistry, immunocytochemistry and western blot; their epigenetic regulation was measured by bisulfite sequencing and chromatin immunoprecipitation. Six of the 15 angiogenesis factors were upregulated in dormant cancer cells (tissue inhibitor of metalloproteinases-3, TIMP3; thrombospondin-1, TSP1; angiopoietin-1; angiopoietin-2; angiopoietin-4; E-cadherin, CDH1). We found that TIMP3 and CDH1 expression was regulated epigenetically and was related inversely to the DNA methylation of their promoters in cell cultures and in xenografts. Increased H3K9 acetylation was associated with higher TIMP3 expression in dormant SKOv3-ARHI cells, while decreased H3K27me3 resulted in the upregulation of TIMP3 in dormant Hey-ARHI cells. Elevated CDH1 expression during dormancy was associated with an increase in both H3K4me3 and H3K9Ac in two cell lines. CpG demethylating agents and/or histone deacetylase inhibitors inhibited the re-growth of dormant cancer cells, which was associated with the re-expression of anti-angiogenic genes. The expression of the anti-angiogenic genes TIMP3 and CDH1 is elevated during dormancy and is reduced during the transition to active growth by changes in DNA methylation and histone modification.

Niemczyk M, Ito Y, Huddleston J, et al.
Imprinted chromatin around DIRAS3 regulates alternative splicing of GNG12-AS1, a long noncoding RNA.
Am J Hum Genet. 2013; 93(2):224-35 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
Imprinted gene clusters are regulated by long noncoding RNAs (lncRNAs), CCCTC binding factor (CTCF)-mediated boundaries, and DNA methylation. DIRAS3 (also known as ARH1 or NOEY1) is an imprinted gene encoding a protein belonging to the RAS superfamily of GTPases and is located within an intron of a lncRNA called GNG12-AS1. In this study, we investigated whether GNG12-AS1 is imprinted and coregulated with DIRAS3. We report that GNG12-AS1 is coexpressed with DIRAS3 in several tissues and coordinately downregulated with DIRAS3 in breast cancers. GNG12-AS1 has several splice variants, all of which initiate from a single transcription start site. In placenta tissue and normal cell lines, GNG12-AS1 is biallelically expressed but some isoforms are allele-specifically spliced. Cohesin plays a role in allele-specific splicing of GNG12-AS1. In breast cancer cell lines with loss of DIRAS3 imprinting, DIRAS3 and GNG12-AS1 are silenced in cis and the remaining GNG12-AS1 transcripts are predominantly monoallelic. The GNG12-AS1 locus, which includes DIRAS3, provides an example of imprinted cotranscriptional splicing and a potential model system for studying the long-range effects of CTCF-cohesin binding on splicing and transcriptional interference.

Li Y, Liu M, Zhang Y, et al.
Effects of ARHI on breast cancer cell biological behavior regulated by microRNA-221.
Tumour Biol. 2013; 34(6):3545-54 [PubMed] Related Publications
The aplysia ras homolog member I (ARHI) is a tumor suppressor gene and is downregulated in various cancers. The downregulation of ARHI was regulated by miR-221 in prostate cancer cell lines. However, it has not been reported whether ARHI is regulated by miR-221 in breast cancer. Here, we reported that the ARHI protein level was downregulated in breast cancer tissues and breast cancer cell lines. The overexpression of ARHI could inhibit cell proliferation and invasion and induce cell apoptosis. To address whether ARHI is regulated by miR-221 in breast cancer cell lines, the results in this study showed that a significant inverse correlation existed between ARHI and miR-221. MiR-221 displayed an upregulation in breast cancer tissues and breast cancer cell lines. The inhibition of miR-221 induced a significant upregulation of ARHI in MCF-7 cells. To prove a direct interaction between miR-221 and ARHI mRNA, ARHI 3'UTR, which includes the potential target site for miR-221, was cloned downstream of the luciferase reporter gene of the pMIR-REPORT vector to generate the pMIR-ARHI-3'UTR vector. The results confirmed a direct interaction of miR-221 with a target site on the 3'UTR of ARHI. In conclusion, ARHI is a tumor suppressor gene that is downregulated in breast cancer. The overexpression of ARHI could inhibit breast cancer cell proliferation and invasion and induce cell apoptosis. This study demonstrated for the first time that the downregulation of ARHI in breast cancer cells could be regulated by miR-221.

Li BX, Li J, Luo CL, et al.
Expression of JMJD2A in infiltrating duct carcinoma was markedly higher than fibroadenoma, and associated with expression of ARHI, p53 and ER in infiltrating duct carcinoma.
Indian J Exp Biol. 2013; 51(3):208-17 [PubMed] Related Publications
Jumonji Domain Containing 2A (JMJD2A) may be a cancer-associated gene involved in human breast cancer. With a view to investigating expression of JMJD2A in human breast cancer and benign lesion tissues as well as relationship between JMJD2A and tumor related proteins, histological and immunohistochemical analysis, Western blot and quantitative real-time PCR in infiltrating duct carcinoma and fibroadenoma for JMJD2A and immunohistochemical analysis and quantitative real-time PCR in infiltrating duct carcinoma for tumor related proteins (ARHI, p53, ER, PR and CerbB-2) were performed. Histological examination validated the clinical diagnosis. The JMJD2A positive rate of infiltrating duct carcinoma was significantly higher than fibroadenoma by immunohistochemical analysis. The mean optical density of JMJD2A in infiltrating duct carcinoma was higher than fibroadenoma by western blot. JMJD2A mRNA level in infiltrating duct carcinoma was higher than fibroadenoma by quantitative real-time PCR. Spearman correlation analysis revealed that the expression of JMJD2A was associated with ARHI, p53 and ER from immunohistochemical results respectively. Pearson correlation analysis revealed that the expression of JMJD2A was associated with ARHI, p53 and ER from quantitative real-time PCR results respectively. Expression of JMJD2A in infiltrating duct carcinoma was higher, and associated with ARHI, p53 and ER. The results may take JMJD2A as a potential diagnostic and therapeutic target in human breast cancer.

Li J, Cui G, Sun L, et al.
STAT3 acetylation-induced promoter methylation is associated with downregulation of the ARHI tumor-suppressor gene in ovarian cancer.
Oncol Rep. 2013; 30(1):165-70 [PubMed] Related Publications
ARHI is a Ras-related imprinted tumor-suppressor gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of ovarian cancer cells, and promoter methylation is considered to be associated with its loss of expression. however, the underlying mechanisms are not well understood. Thus, the present study aimed to investigate the specific functions of ARHI and its methylation in ovarian cancer cell proliferation. Furthermore, we examined the possible role of acetylated STAT3 in modulating the expression of ARHI and its methylation. In accordance with the majority of previous studies, reduced ARHI expression was found in epithelial ovarian cancer tissues and cancer cell lines as indicated by immunohistochemistry and RT-PCR. In addition, CpG islands I and II within ARHI promoter regions were partially methylated or hypermethylated in cancer cell lines (SKOV-3 and HO-8910) as analyzed by pyrosequencing assays, resulting in enhanced proliferation of the cancer cells. This proliferation was reversed by the administration of 5-aza-2'-deoxycytidine. Subsequently, we demonstrated that STAT3 acetylation was increased in HO-8910 cells, and the methylation status of CpG I was altered in response to the acetylation of STAT3 using western blotting. Finally, chromatin immunoprecipitation (ChIP) and IP analysis indicated that acetylated STAT3 bound to the ARHI promoter and recruited DNA methyltransferase 1 for genetic modification. In conclusion, acetylated STAT3-induced promoter gene methylation accounts for the loss of ARHI expression and cancer cell proliferation.

Zhang L, Liu P, Li H, Xue F
Effect of histone deacetylase inhibitors on cell apoptosis and expression of the tumor suppressor genes RUNX3 and ARHI in ovarian tumors.
Mol Med Rep. 2013; 7(5):1705-9 [PubMed] Related Publications
The aim of this study was to investigate the expression of Runt box 3 (RUNX3) and aplasia Ras homolog member I (ARHI) in ovarian tumors, and the effects of histone deacetylase inhibitors (HDACIs) on the expression of these genes and the growth of ovarian cancer cells. The mRNA expression of the RUNX3 and ARHI genes in normal ovaries and ovarian tumors was determined using reverse transcription polymerase chain reaction (RT-PCR). The effects of HDACIs on RUNX3 and ARHI expression in four ovarian cancer cell lines (SKOV3, A2780, COC1 and OC3) were determined using RT-PCR and the MTT assay. The expression of RUNX3 and ARHI in normal ovarian cells was 86 and 100%, respectively. Although the two genes were downregulated in ovarian tumors, the extent of downregulation differed. The expression of RUNX3 and ARHI was correlated with the degree of tumor malignancy (P<0.05). ARHI was expressed in all four ovarian cancer cell lines, whereas RUNX3 was expressed only in the OC3 cell line. Treatment with HDACIs upregulated the expression of ARHI and RUNX3 in the SKOV3 cell line only. In A2780 cells, HDACIs upregulated ARHI expression only in the presence of trichostatin A (TSA) plus cisplatin. HDACIs induced significant apoptosis in ovarian cancer cells, which was inversely correlated with the concentration and duration of treatment (P<0.05). In conclusion, RUNX3 and ARHI were shown to be expressed in normal ovarian cells; however, their expression was downregulated or lost in ovarian tumor cells. The combined detection of ARHI and RUNX3 expression may offer improved prediction and monitoring of ovarian malignancies. HDACIs were revealed to inhibit the growth of ovarian tumor cells and may constitute a novel therapeutic option for ovarian tumors.

Hu YQ, Si LJ, Ye ZS, et al.
Inhibitory effect of ARHI on pancreatic cancer cells and NF-κB activity.
Mol Med Rep. 2013; 7(4):1180-4 [PubMed] Related Publications
The aim of this study was to investigate the effect of aplasia ras homolog member I (ARHI) on proliferation, apoptosis and the cell cycle in the pancreatic cancer cell line PANC-1. The study also aimed to examine the effect of ARHI on the activity of the nuclear factor (NF)-κB and to determine whether ARHI acts as a tumor suppressor in the development of pancreatic cancer by inhibiting the activity of NF-κB. A pIRES2‑EGFP‑ARHI vector, constructed by reverse transcrition (RT)‑PCR, was transiently transfected into the PANC-1 cells and analyzed for the expression of the ARHI protein by western blotting. A MTT assay was used to quantify cell proliferation, and apoptosis was analyzed by flow cytometry. The NF‑κB signaling pathway, specifically the pathway using the nuclear phosphorylated p65 isoform, was analyzed by western blotting. Expression of the ARHI protein was detected by western blotting subsequent to the PANC-1 cells being transiently transfected with the pIRES2‑EGFP‑ARHI construct. Cell proliferation was strongly inhibited in the PANC-1 cells transfected with pIRES2‑EGFP‑ARHI. The cell cycle assays indicated an increase in the number of cells at the G0/G1 phase and a decrease in the cells at the S phase, but the difference was not significant (P>0.05). Time course studies also indicated a marked increase in the apoptotic index following transient transfection, as well as a gradual decrease in the expression of the nuclear phosphorylated p65 protein. ARHI acts as a tumor suppressor by downregulating the NF‑κB signaling pathway, which results in the inhibition of cell proliferation, apoptosis and the cell cycle in the pancreatic tumor PANC-1 cell line.

Zhang S, Feng XL, Shi L, et al.
Genome-wide analysis of DNA methylation in tongue squamous cell carcinoma.
Oncol Rep. 2013; 29(5):1819-26 [PubMed] Related Publications
Tongue squamous cell carcinoma (TSCC) is one of the most common types of oral cancer; however, its molecular mechanisms remain unclear. In this study, methylated DNA immunoprecipitation (MeDIP) coupled with methylation microarray analysis was performed to screen for aberrantly methylated genes in adjacent normal control and TSCC tissues from 9 patients. Roche NimbleGen Human DNA Methylation 385K Promoter Plus CpG Island Arrays were used to detect 28,226 CpG sites. A total of 1,269 hypermethylated CpG sites covering 330 genes and 1,385 hypomethylated CpG sites covering 321 genes were found in TSCC tissue, compared to the adjacent normal tissue. Furthermore, we chose three candidate genes (FBLN1, ITIH5 and RUNX3) and validated the DNA methylation status by methylation-specific PCR (MS-PCR) and the mRNA expression levels by reverse transcription PCR (RT-PCR). In TSCC tissue, FBLN1 and ITIH5 were shown to be hypermethylated and their expression was found to be decreased, and RUNX3 was shown to be hypomethylated, however, its mRNA expression was found to be increased. In addition, another three genes (BCL2L14, CDCP1 and DIRAS3) were tested by RT-PCR. In TSCC tissue, BCL2L14 and CDCP1 expressions were markedly upregulated, and DIRAS3 expression was significantly downregulated. Our data demonstrated that aberrant DNA methylation is observed in TSCC tissue and plays an important role in the tumorigenesis, development and progression of TSCC.

Wu X, Liang L, Dong L, et al.
Effect of ARHI on lung cancer cell proliferation, apoptosis and invasion in vitro.
Mol Biol Rep. 2013; 40(3):2671-8 [PubMed] Related Publications
The purposes of this study were to elucidate the effects of ARHI (aplysia ras homolog I) on several biological features of lung cancer cells, including growth, proliferation and invasion, to collect experimental evidence for the future biological treatment of human lung cancer. The eukaryotic expression vector, pcDNA3.1-ARHI, was constructed and transfected into the human lung cancer cell line SK-MES-1. The biological properties of the resulting ARHI-expressing lung cancer cell line were evaluated using methyl thiazolyl tetrazolium assay, flow cytometry, and a Transwell invasion assay. Additionally, the influence of ARHI on the gene expression levels of cyclin D1, p27(KIP1), death-associated protein kinase 1 (DAPK1), and matrix metalloproteinases1/2 (MMP-1/2) was determined. Compared to the non-transfected SK-MES-1 cells and the cells transfected with the empty pcDNA3.1 plasmid, the ARHI-transfected cells displayed significantly reduced growth rates and decreased viability (P < 0.05). The ARHI-transfected cells also displayed a significantly higher percentage of cells in G1 phase (P < 0.05) and a lower percentage of cells in S phase (P < 0.05); a higher percentage of apoptosis (P < 0.05); and finally, a notable reduction in the basement membrane-penetration rate in the Transwell invasion assay (P < 0.05). Furthermore, it was determined that ARHI is capable of inhibiting the expression of cyclin D1, MMP-1, and MMP-2; however, ARHI promotes the expression of both p27(KIP1) and DAPK1 in SK-MES-1 cells. In conclusion, overexpression of ARHI gene might be associated with the inhibition of lung cancer cell growth, proliferation and invasion, and the promotion of apoptosis.

Mataga MA, Rosenthal S, Heerboth S, et al.
Anti-breast cancer effects of histone deacetylase inhibitors and calpain inhibitor.
Anticancer Res. 2012; 32(7):2523-9 [PubMed] Related Publications
Development of new breast cancer therapies is needed, particularly as cells become refractory or develop increased drug resistance. In an effort to develop such treatments, class I and II histone deacetylases (HDACs), alone and in combination with other cytotoxic agents, are currently in clinical trial. Herein, we discuss the effects of histone deacetylase inhibitors (HDACi) when used in combination with calpeptin, an inhibitor of the regulatory protease, calpain. We present results of study in two breast cancer cells lines with distinct characteristics: MDA-MB-231 and MCF-7. When used in combination with calpeptin, two chemically distinct HDACi significantly inhibited growth and increased cell death by inducing cell-cycle arrest and apoptosis. MCF-7 cells exhibited a greater proportion of arrest at the G(1) phase, whereas triple-negative MDA-MB-231 cells exhibited increased cell cycle arrest at the S phase. Methylation of the imprinted and silenced proapoptoic tumor suppressor gene aplasia Ras homolog member I (ARHI) was reduced in both cell lines after treatment with HDACi. However, it was only re-expressed on such treatment in MDA-MB-231 cells, suggesting that re-expression operates under differential mechanisms in these two cell lines. Collectively, these results showed that the combination of HDACi and calpeptin inhibited the growth of two distinctly different types of breast cancer cells and could have wide clinical applications, though the mechanisms of inhibition are possibly different.

Li Y, Shi L, Han C, et al.
Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells.
Tumour Biol. 2012; 33(5):1403-10 [PubMed] Related Publications
The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27(Kip1), and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p < 0.05) in the ARHI-expressing cells, and the proportions of G1 phase cells and apoptotic cells were significantly higher in the ARHI-expressing cells (p < 0.05). In all groups of SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p < 0.05). The proportion of cells in G1 phase and the number of apoptotic cells in the pcDNA3.1-ARHI-expressing group were significantly higher than that in the empty vector group and the control group (p < 0.05). The growth of pcDNA3.1-ARHI-transfected JIMT-1 cells was significantly decreased (p < 0.05), while the proportion of apoptotic cells was significantly increased (p < 0.05). Cell growth, viability, and the percentage of apoptotic cells were similar between the JIMT-1 empty vector and control groups. ARHI expression inhibited cyclin D1 expression in SK-BR-3 cells and JIMT-1 cells, while it promoted p27(Kip1) and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.

Tang HL, Hu YQ, Qin XP, et al.
Aplasia ras homolog member I is downregulated in gastric cancer and silencing its expression promotes cell growth in vitro.
J Gastroenterol Hepatol. 2012; 27(8):1395-404 [PubMed] Related Publications
BACKGROUND AND AIM: Aplasia ras homolog member I (ARHI) is a maternally imprinted tumor suppressor gene. ARHI protein is widely expressed in many types of human tissues; however, its expression is frequently reduced or absent in various tumors and plays a tumor suppressor role for in vitro study. In this study, we investigated the expression level of ARHI in gastric cancer in order to investigate the function of ARHI and signaling pathways that might be linked during gastric cancer development.
METHODS: ARHI mRNA and protein expression levels were analyzed in primary gastric cancer tissues, adjacent noncancerous gastric tissues and gastric cancer cell lines using semi-quantitative polymerase chain reaction, western blotting and immunohistochemistry, respectively.
RESULTS: Our results showed that both mRNA and protein expression levels of the ARHI gene were significantly downregulated (P < 0.05) in gastric cancer tissues and cell lines compared to the corresponding normal control groups. The protein expression level of ARHI was not associated with age, gender, location of tumor, tumor size or metastasis in patients with gastric cancer. However, a significant correlation between the level of ARHI protein expression and the degree of tumor differentiation and Tumor-Node-Metastasis stage was observed (P < 0.05). Furthermore, results of the methyl thiazolyl tetrazolium and Transwell assays and flow cytometric analysis showed increased cell proliferation, migration and anti-apoptotic capacities in the well-differentiated gastric cancer MKN-28 cell line, which has stably silenced ARHI protein expression.
CONCLUSION: Our data indicate that ARHI expression is downregulated in human gastric cancer and it may be a novel tumor suppressive target for gastric cancer therapy.

Wang W, Bu XM, Wang J, et al.
The expression of ARHI in pT2a and pT2b stage gastric cancer and its clinical significance.
Oncol Rep. 2012; 27(6):1953-9 [PubMed] Related Publications
ARHI is a novel tumor suppressor gene located on chromosome 1p31. Downregulation of ARHI expression has been detected in many types of cancer. However, the effects of ARHI in gastric cancer remain unclear. The aim of this study was to identify the relationship between ARHI expression and gastric cancer clinicopathological features. In this study, 81 pT2 stage gastric cancer specimens were subclassified by pT2a and pT2b stage. ARHI mRNA and protein levels were evaluated by real-time PCR and western blot analysis, respectively. Methylation plays an important role in suppressor gene silencing. We utilized methylation-specific PCR to identify the status of CpG islands in the ARHI gene. We used immunohistochemistry to determine the expression of the protein and analyzed clinicopathological features. The levels of ARHI mRNA in gastric cancer were lower compared to normal tissues (P<0.01). Similarly, the levels of ARHI protein in the cancer specimens were lower (P<0.05). DNA hypermethylation was identified in 79.1% of gastric cancer specimens without ARHI expression. Immunohistochemistry results were significantly correlated with the pT2 category (P<0.05). The cumulative survival rate of patients with ARHI expression was significantly higher compared to those without ARHI expression (P<0.05). ARHI as a suppressor is not only an important factor in the pathogenesis of gastric cancer, but also a potential factor for tumor aggravation. ARHI expression in gastric cancer can be employed to indicate favorable prognosis for the disease.

Urbanucci A, Marttila S, Jänne OA, Visakorpi T
Androgen receptor overexpression alters binding dynamics of the receptor to chromatin and chromatin structure.
Prostate. 2012; 72(11):1223-32 [PubMed] Related Publications
BACKGROUND: Castration-resistant prostate cancers (CRPCs) overexpress often androgen receptor (AR). Here, we investigated the effect of AR overexpression on the dynamics of AR loading and RNA polymerase II (RNA Pol II) recruitment to chromatin. Acetylation of histone 3 (AcH3) on lysines 9 and 14 (K9 and K14) was also studied.
METHODS: We used an LNCaP-based AR overexpression cell line model that includes a control line and two sublines, LNCaP-ARmo and LNCaP-ARhi, which overexpress AR twofold to threefold and fourfold to fivefold, respectively. Cells were exposed to 1 or 100 nM of dihydrotestosterone (DHT). Chromatin immunoprecipitation (ChIP) on the promoters and enhancers of prostate specific antigen (PSA) and transmembrane protease, serine 2 (TMPRSS2) genes was performed. qRT-PCR was used to measure the levels of PSA and TMPRSS2 transcripts.
RESULTS: Upon stimulation with 1 nM DHT, AR and RNA Pol II were recruited onto PSA and TMPRSS2 enhancer regions to a greater extent (P < 0.05) in AR-overexpressing cells compared to control cells. The difference in AR loading between the control and AR-overexpressing cells was abolished by a higher DHT concentration. The ratio of AcH3/H3 was increased in AR-overexpressing cells. The induction of transcription of PSA and TMPRSS2 occurred earlier in the AR-overexpressing cells.
CONCLUSIONS: Our findings suggest that the levels of AR potentiate the recruitment of the AR, as well as components of the basic transcription machinery, to chromatin and affect the acetylation of histones in the presence of low levels of androgens. These changes result in enhanced gene transcription of AR target genes.

Lin D, Cui F, Bu Q, Yan C
The expression and clinical significance of GTP-binding RAS-like 3 (ARHI) and microRNA 221 and 222 in prostate cancer.
J Int Med Res. 2011; 39(5):1870-5 [PubMed] Related Publications
Globally, prostate cancer is the most common malignancy among men and there is no biomarker for defining tumour invasion and progression. Guanosine-5'-triphosphate (GTP)-binding RAS-like 3 (ARHI) is a tumour suppressor gene that has been found to be downregulated in the prostate cancer cell line PC-3. MicroRNA 221 and 222 have been shown to regulate ARHI expression negatively. This study evaluated tissue samples from patients with prostate cancer (n = 35) that were designated as aggressive or non-aggressive according to their Gleason grade. Expression of ARHI and microRNA 221 and 222 was measured by real-time reverse transcription-polymerase chain reaction. The level of ARHI mRNA was significantly lower in aggressive compared with non-aggressive prostate cancer tissue samples. In contrast, microRNA 221 and 222 levels were significantly higher in aggressive compared with non-aggressive prostate cancer tissue samples. Whether ARHI and microRNA 221 and 222 could be considered as biomarkers for disease progression in prostate cancer requires further investigation.

Pei XH, Yang Z, Liu HX, Qiao SS
Aplasia Ras homologue member I overexpression induces apoptosis through inhibition of survival pathways in human hepatocellular carcinoma cells in culture and in xenograft.
Cell Biol Int. 2011; 35(10):1019-24 [PubMed] Related Publications
The aim of the present study was to determine the effects of ARHI (aplasia Ras homologue member I; also known as DIRAS3), a member of the Ras superfamily, on HCC (hepatocellular carcinoma) cells and to define the molecular pathways involved. Stable transfection of ARHI into the HCC cell line Hep3B that lacks expression of this gene reduced cell proliferation significantly as compared with the transfection of empty vector (P<0.01). Moreover, the re-expression of ARHI induced significant apoptosis, whereas a few vector transfectants or non-transfected cells displayed apoptosis. Mechanistically, ARHI restoration impeded the activation of both Akt (also called protein kinase B) and NF-κB (nuclear factor κB). In vivo, restoring ARHI also exerted suppressive effects on xenograft tumour growth, which was coupled with increased apoptosis. Together, these results indicate that ARHI has pro-apoptotic effects on HCC cells, which is associated with the inactivation of both Akt and NF-κB survival pathways.

Kalac M, Scotto L, Marchi E, et al.
HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL.
Blood. 2011; 118(20):5506-16 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
Interactions between histone deacetylase inhibitors (HDACIs) and decitabine were investigated in models of diffuse large B-cell lymphoma (DLBCL). A number of cell lines representing both germinal center B-like and activated B-cell like DLBCL, patient-derived tumor cells and a murine xenograft model were used to study the effects of HDACIs and decitabine in this system. All explored HDACIs in combination with decitabine produced a synergistic effect in growth inhibition and induction of apoptosis in DLBCL cells. This effect was time dependent, mediated via caspase-3 activation, and resulted in increased levels of acetylated histones. Synergy in inducing apoptosis was confirmed in patient-derived primary tumor cells treated with panobinostat and decitabine. Xenografting experiments confirmed the in vitro activity and tolerability of the combination. We analyzed the molecular basis for this synergistic effect by evaluating gene-expression and methylation patterns using microarrays, with validation by bisulfite sequencing. These analyses revealed differentially expressed genes and networks identified by each of the single treatment conditions and by the combination therapy to be unique with few overlapping genes. Among the genes uniquely altered by the combination of panobinostat and decitabine were VHL, TCEB1, WT1, and DIRAS3.

Brown J, Bothma H, Veale R, Willem P
Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.
World J Gastroenterol. 2011; 17(24):2909-23 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis.
METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software.
RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC.
CONCLUSION: The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

Badgwell DB, Lu Z, Le K, et al.
The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways.
Oncogene. 2012; 31(1):68-79 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
Ovarian cancers migrate and metastasize over the surface of the peritoneal cavity. Consequently, dysregulation of mechanisms that limit cell migration may be particularly important in the pathogenesis of the disease. ARHI is an imprinted tumor-suppressor gene that is downregulated in >60% of ovarian cancers, and its loss is associated with decreased progression-free survival. ARHI encodes a 26-kDa GTPase with homology to Ras. In contrast to Ras, ARHI inhibits cell growth, but whether it also regulates cell motility has not been studied previously. Here we report that re-expression of ARHI decreases the motility of IL-6- and epidermal growth factor (EGF)-stimulated SKOv3 and Hey ovarian cancer cells, inhibiting both chemotaxis and haptotaxis. ARHI binds to and sequesters Stat3 in the cytoplasm, preventing its translocation to the nucleus and localization in focal adhesion complexes. Stat3 siRNA or the JAK2 inhibitor AG490 produced similar inhibition of motility. However, the combination of ARHI expression with Stat3 knockdown or inhibition produced greatest inhibition in ovarian cancer cell migration, consistent with Stat3-dependent and Stat3-independent mechanisms. Consistent with two distinct signaling pathways, knockdown of Stat3 selectively inhibited IL-6-stimulated migration, whereas knockdown of focal adhesion kinase (FAK) preferentially inhibited EGF-stimulated migration. In EGF-stimulated ovarian cancer cells, re-expression of ARHI inhibited FAK(Y397) and Src(Y416) phosphorylation, disrupted focal adhesions, and blocked FAK-mediated RhoA signaling, resulting in decreased levels of GTP-RhoA. Re-expression of ARHI also disrupted the formation of actin stress fibers in a FAK- and RhoA-dependent manner. Thus, ARHI has a critical and previously uncharacterized role in the regulation of ovarian cancer cell migration, exerting inhibitory effects on two distinct signaling pathways.

Chen MY, Liao WS, Lu Z, et al.
Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy.
Cancer. 2011; 117(19):4424-38 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
BACKGROUND: Epigenetic therapy has had a significant impact on the management of hematologic malignancies, but its role in the treatment of ovarian cancer remains to be defined. The authors previously demonstrated that treatment of ovarian and breast cancer cells with DNA methyltransferase and histone deacetylase (HDAC) inhibitors can up-regulate the expression of imprinted tumor suppressors. In this study, demethylating agents and HDAC inhibitors were tested for their ability to induce re-expression of tumor suppressor genes, inhibiting growth of ovarian cancer cells in culture and in xenografts.
METHODS: Ovarian cancer cells (Hey and SKOv3) were treated with demethylating agents (5-aza-20-deoxycytidine [DAC] or 5-azacitidine [AZA]) or with HDAC inhibitors (suberoylanilide hydroxamicacid [SAHA] or trichostatin A [TSA]) to determine their impact on cellular proliferation, cell cycle regulation, apoptosis, autophagy, and re-expression of 2 growth inhibitory imprinted tumor suppressor genes: guanosine triphosphate-binding Di-RAS-like 3 (ARHI) and paternally expressed 3 (PEG3). The in vivo activities of DAC and SAHA were assessed in a Hey xenograft model.
RESULTS: The combination of DAC and SAHA produced synergistic inhibition of Hey and SKOv3 cell growth by apoptosis and cell cycle arrest. DAC induced autophagy in Hey cells that was enhanced by SAHA. Treatment with both agents induced re-expression of ARHI and PEG3 in cultured cells and in xenografts, correlating with growth inhibition. Knockdown of ARHI decreased DAC-induced autophagy. DAC and SAHA inhibited the growth of Hey xenografts and induced autophagy in vivo.
CONCLUSIONS: A combination of DAC and SAHA inhibited ovarian cancer growth while inducing apoptosis, G2/M arrest, autophagy, and re-expression of imprinted tumor suppressor genes.

Zou CF, Jia L, Jin H, et al.
Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel.
BMC Cancer. 2011; 11:22 [PubMed] Article available free on PMC after 01/08/2016 Related Publications
BACKGROUND: ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel.
METHODS: Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts.
RESULTS: ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest.
CONCLUSIONS: ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DIRAS3, Cancer Genetics Web: http://www.cancer-genetics.org/DIRAS3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999