MAP2K2

Gene Summary

Gene:MAP2K2; mitogen-activated protein kinase kinase 2
Aliases: CFC4, MEK2, MKK2, MAPKK2, PRKMK2
Location:19p13.3
Summary:The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is known to play a critical role in mitogen growth factor signal transduction. It phosphorylates and thus activates MAPK1/ERK2 and MAPK2/ERK3. The activation of this kinase itself is dependent on the Ser/Thr phosphorylation by MAP kinase kinase kinases. Mutations in this gene cause cardiofaciocutaneous syndrome (CFC syndrome), a disease characterized by heart defects, mental retardation, and distinctive facial features similar to those found in Noonan syndrome. The inhibition or degradation of this kinase is also found to be involved in the pathogenesis of Yersinia and anthrax. A pseudogene, which is located on chromosome 7, has been identified for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:dual specificity mitogen-activated protein kinase kinase 2
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (54)
Pathways:What pathways are this gene/protein implicaed in?
Show (24)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Breast Cancer
  • Extracellular Signal-Regulated MAP Kinases
  • Cell Proliferation
  • Disease-Free Survival
  • Apoptosis
  • Phosphatidylinositol 3-Kinases
  • Chromosome 19
  • Melanoma
  • Mitogen-Activated Protein Kinase 3
  • Enzyme Inhibitors
  • DNA Mutational Analysis
  • Mutation
  • Antineoplastic Agents
  • Pyridones
  • MAP Kinase Kinase 1
  • Protein-Tyrosine Kinases
  • Mitogen-Activated Protein Kinase Kinases
  • Signal Transduction
  • Pyrimidinones
  • siRNA
  • Cancer Gene Expression Regulation
  • ras Proteins
  • Protein Kinase Inhibitors
  • Benzimidazoles
  • Messenger RNA
  • Mitogen-Activated Protein Kinase 1
  • Drug Resistance
  • RTPCR
  • BRAF
  • Down-Regulation
  • IGF1R
  • Enzyme Activation
  • MAP Kinase Kinase 2
  • bcl-X Protein
  • Ribosomal Protein S6 Kinases
  • MAP Kinase Signaling System
  • Neoplasm Invasiveness
  • Phosphorylation
  • Western Blotting
  • Proto-Oncogene Proteins p21(ras)
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAP2K2 (cancer-related)

Feng J, Yan PF, Zhao HY, et al.
Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway.
Biomed Res Int. 2016; 2016:1450843 [PubMed] Free Access to Full Article Related Publications
Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.

Martinelli E, Morgillo F, Troiani T, Ciardiello F
Cancer resistance to therapies against the EGFR-RAS-RAF pathway: The role of MEK.
Cancer Treat Rev. 2017; 53:61-69 [PubMed] Related Publications
The mitogen-activated protein kinases (MAPKs) mediate intracellular signals activated by a wide variety of extracellular stimuli. The activation of the RAS-RAF-MEK-MAPK cascade culminates in the regulation of gene transcription promoting cancer cell proliferation, survival, migration and angiogenesis. MEK (mitogen-activated protein kinase kinase-MAPKK) 1/2 is a transducer of the growth factor receptor-RAS-RAF-MAPK signalling cascade and plays a relevant role in development and progression of human cancers, such as colorectal cancer (CRC), non small cell lung cancer (NSCLC). Direct inhibition of MEK is a promising strategy and several inhibitors are currently under evaluation in clinical trials showing initial clinical activity in different tumours. MEK activation, by different genetic mechanisms, has been described for both intrinsic and acquired resistance to drugs targeting the EGFR (Epidermal Growth Factor Receptor)-RAS-RAF pathway in CRC, NSCLC. Combination therapies with chemotherapy and/or with molecular targeted agents are warranted and biomarkers studies are needed to identify those tumours dependent on MEK signalling.

Sun X, Deng Q, Liang Z, et al.
Cigarette smoke extract induces epithelial-mesenchymal transition of human bladder cancer T24 cells through activation of ERK1/2 pathway.
Biomed Pharmacother. 2017; 86:457-465 [PubMed] Related Publications
Bladder cancer is a common genitourinary malignant disease worldwide. Abundant evidence has shown that cigarette smoke (CS) is a crucial risk factor for bladder cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and bladder cancer remains unclear. In the present study, we investigated the effects of cigarette smoke extract (CSE) on mitogen-activated protein kinase (MAPK) pathway activation and EMT alterations in human bladder cancer T24 cells, and the preventive effect of extracellular regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126 was further examined. Our results illustrated that CSE exposure induced morphological change of human bladder cancer T24 cells, enhanced migratory and invasive capacities, reduced epithelial marker expression and elevated mesenchymal marker expression. Meanwhile, exposure of T24 cells to CSE resulted in activation of ERK1/2 pathway as well as activator protein 1 (AP-1) proteins. Interestingly, treatment with ERK1/2 inhibitor U0126 effectively abrogated CSE-triggered EMT and ERK1/2/AP-1 activation. These findings provide novel insight into the molecular mechanisms of CS-associated bladder cancer and may open up new avenues in the search for potential target of bladder cancer intervention.

Nass N, Streit S, Wybranski C, et al.
Validation of VX2 as a Hepatocellular Carcinoma Model: Comparison of the Molecular Reaction of VX2 and HepG2 Tumor Cells to Sorafenib In Vitro.
Anticancer Res. 2017; 37(1):87-93 [PubMed] Related Publications
As there is currently no superior hepatocellular carcinoma (HCC) model with percutaneous vascular access for transarterial treatments available, the VX2 rabbit model is frequently used for in vivo investigations on liver carcinoma. However, the VX2 cell line was derived from a virus-induced skin papilloma that can form carcinosarcoma in liver of rabbits and the transferability of obtained results to HCC treatment remains open. Here we compared the most frequently investigated human HCC model cell line, HepG2, with VX2 cells in vitro in terms of sensitivity towards the broad specificity kinase inhibitor sorafenib and responsiveness to the addition of platelet-derived growth factor AB (PDGF-AB), vascular endothelial growth factor (VEGF) and hepatic growth factor (HGF), as well as insulin and interleukin-1β (IL1β). Phosphorylation of protein kinase B (AKT) the mitogen-activated protein kinases (MAPKs) p38 and p42/44 (extracellular signal-regulated kinase, ERK1/2) and inhibitor of kappa light chain gene enhancer alpha (IĸBα) was determined by western blotting as these events are associated with early signaling cascades. Additionally, the inhibition of phosphorylation under sorafenib treatment was investigated. Sorafenib was equally toxic to both cell lines, but only in HepG2 was activation of caspase 3/7 activity, as a sign of apoptosis, observed. VX2 cells exhibited generally more intense phosphorylation signals in response to the growth factors and also serum. In contrast to VX2, HepG2 cells showed no response to PDGF-AB or VEGF as determined by kinase phosphorylation. In both cell lines, sorafenib inhibited growth factor-induced phosphorylation of ERK and p38-MAPK. AKT phosphorylation was only inhibited in VX2 cells and IĸBα phosphorylation was not influenced by this kinase inhibitor in either cell type. Taken together, the two cellular models for HCC share several features related to sorafenib application, but differed in their responsiveness towards growth factors. Therefore, results obtained with the VX2 model cannot be extended to human HCC without appropriate caution.

Gadkar K, Kirouac D, Parrott N, Ramanujan S
Quantitative systems pharmacology: a promising approach for translational pharmacology.
Drug Discov Today Technol. 2016 Sep - Dec; 21-22:57-65 [PubMed] Related Publications
Biopharmaceutical companies have increasingly been exploring Quantitative Systems Pharmacology (QSP) as a potential avenue to address current challenges in drug development. In this paper, we discuss the application of QSP modeling approaches to address challenges in the translational of preclinical findings to the clinic, a high risk area of drug development. Three cases have been highlighted with QSP models utilized to inform different questions in translational pharmacology. In the first, a mechanism based asthma model is used to evaluate efficacy and inform biomarker strategy for a novel bispecific antibody. In the second case study, a mitogen-activated protein kinase (MAPK) pathway signaling model is used to make translational predictions on clinical response and evaluate novel combination therapies. In the third case study, a physiologically based pharmacokinetic (PBPK) model it used to guide administration of oseltamivir in pediatric patients.

Lin ZY, Chuang WL
Contrary influence of clinically applied sorafenib concentrations among hepatocellular carcinoma patients.
Biomed Pharmacother. 2017; 86:27-31 [PubMed] Related Publications
The treatment responses of sorafenib in hepatocellular carcinoma are modest which may be due to different characteristics of cancer cells or insufficient therapeutic concentrations. This study was to clarify this issue. The anti-proliferative effects and differential expressions of 8 genes related to sorafenib anti-cancer mechanisms (tyrosine kinase receptor genes: KDR, PDGFRB; RAF cascade: RAF1, BRAF, MAP2K1, MAP2K2, MAPK1, MAPK3) were investigated in primary cultured hepatocellular carcinoma cells collected from 8 patients using clinically applied sorafenib concentrations (5, 10μg/mL). The anti-proliferative effects of sorafenib at either 5 or 10μg/mL, which were related to down-regulations of KDR, PDGFRB and/or genes in the RAF cascade, were achieved only in one patient (HCC38/KMUH). However, either 5 or 10μg/mL sorafenib promoted proliferation in 4 patients (HCC29/KMUH, HCC62/KMUH, HCC87/KMUH, HCC98/KMUH). Among them, the RAF cascade, PDGFRB and/or KDR were up-regulated in 3 patients but no gene was differentially expressed in the remaining one patient (HCC87/KMUH). Increase the sorafenib concentration to 10μg/mL paradoxically up-regulated and/or obliterated the previously down-regulated genes in the RAF cascade and/or KDR in 4 patients (HCC29/KMUH, HCC76/KMUH, HCC87/KMUH, HCC98/KMUH). Significant down-regulations of the RAF cascade and PDGFRB by sorafenib but without anti-proliferative effects were detected in one patient (HCC54/KMUH). In conclusion, influence of sorafenib on proliferation is not simply through the RAF cascade. The responses of KDR, PDGFRB and the RAF cascade to sorafenib among patients are diverse or even contrary. Increase the sorafenib concentration has potential to up-regulate genes favored angiogenesis and proliferation.

Yan F, Liao R, Farhan M, et al.
Elucidating the role of the FoxO3a transcription factor in the IGF-1-induced migration and invasion of uveal melanoma cancer cells.
Biomed Pharmacother. 2016; 84:1538-1550 [PubMed] Related Publications
Uveal melanoma (UM) is the most common primary intraocular malignant tumor of adults. It has high mortality rate due to liver metastasis. However, the epidemiology and pathogenesis of liver metastasis in UM are not elucidated and there is no effective therapy available for preventing the development of this disease. IGF-1 is a growth factor involved in cell proliferation, malignant transformation and inhibition of apoptosis. In previous report, IGF-1 receptor was found to be highly expressed in UM and this was related to tumor prognosis. FoxO3a is a Forkhead box O (FOXO) transcription factor and a downstream target of the IGF-1R/PI3K/Akt pathway involved in a number of physiological and pathological processes including cancer. However, the role of FoxO3a in UM is unknown. In the present study, we investigated fundamental mechanisms in the growth, migration and invasion of UM and the involvement of FoxO3a. IGF-1 increased the cell viability, invasion, migration and S-G2/M cell cycle phase accumulation of UM cells. Western blot analysis showed that IGF-1 led to activation of Akt and concomitant phosphorylation of FoxO3a. FoxO3a phosphorylation was associated with its translocation into the cytoplasm from the nucleus and its functional inhibition led to the inhibition of expression of Bim and p27, but an increase in the expression of Cyclin D1. The effects of IGF-1 on UM cells were reversed by LY294002 (a PI3K inhibitor) or Akt siRNA, and the overexpression of FoxO3a also attenuated basal invasion and migration of UM. Taken all together, these results suggest that inhibition of FoxO3a by IGF-1 via the PI3K/Akt pathway has an important role in IGF-1 induced proliferation and invasion of UM cells. These findings also support FoxO3a and IGF signaling may represent a valid target for investigating the development of new strategies for the treatment and prevention of the pathology of UM.

Liu L, Xu Y, Reiter RJ, et al.
Inhibition of ERK1/2 Signaling Pathway is Involved in Melatonin's Antiproliferative Effect on Human MG-63 Osteosarcoma Cells.
Cell Physiol Biochem. 2016; 39(6):2297-2307 [PubMed] Related Publications
BACKGROUND: In a previous study, we found that melatonin inhibits MG-63 osteosarcoma cell proliferation; however, the underlying mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) and Akt signaling pathways play key roles in the anticancer effects of melatonin.
AIMS: The present study investigated whether MAPK and Akt signaling pathways are involved in melatonin's antiproliferative actions on the human MG-63 osteosarcoma cells.
METHODS/RESULTS: Western blot analysis confirmed that melatonin significantly inhibited phosphorylation of ERK1/2 but not p38, JNK, or Akt. The expression of ERK1/2, p38, JNK, and Akt was not altered by melatonin. PD98059 and melatonin alone, and especially in combination, significantly inhibited cell proliferation. The changes included G1 and G2/M phase arrest of the cell cycle, and a downregulation of the expression at both the protein and mRNA levels of cyclin D1 and CDK4 (related to the G1 phase) and of cyclin B1 and CDK1 (related to the G2/M phase) as measured by flow cytometry after propidium iodide staining, and both western blot and real-time PCR, respectively. Furthermore, the combination of PD98059 and melatonin synergistically and markedly augmented the action of either agent alone. Co-immunoprecipitation further confirmed that there was an interaction between p-ERK1/2 and cyclin D1, CDK4, cyclin B1, or CDK1, which was blunted in the presence of melatonin or PD98059.
CONCLUSION: These findings suggest that melatonin's antiproliferative action is mediated by inhibition of the ERK1/2 signaling pathway rather than the p38, JNK, or Akt pathways.

Luo Y, Wu JY, Lu MH, et al.
Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways.
Oxid Med Cell Longev. 2016; 2016:1469693 [PubMed] Free Access to Full Article Related Publications
TRPM7 is a potential therapeutic target for treatment of prostate cancer. In this study, we investigated the effects of nonselective TRPM7 inhibitor carvacrol on cell proliferation, migration, and invasion of prostate cancer PC-3 and DU145 cells. Our results showed that carvacrol blocked TRPM7-like currents in PC-3 and DU145 cells and reduced their proliferation, migration, and invasion. Moreover, carvacrol treatment significantly decreased MMP-2, p-Akt, and p-ERK1/2 protein expression and inhibited F-actin reorganization. Furthermore, consistently, TRPM7 knockdown reduced prostate cancer cell proliferation, migration, and invasion as well. Our study suggests that carvacrol may have therapeutic potential for the treatment of prostate cancer through its inhibition of TRPM7 channels and suppression of PI3K/Akt and MAPK signaling pathways.

Vesely DL
Heart Peptide Hormones: Adjunct and Primary Treatments of Cancer.
Anticancer Res. 2016; 36(11):5693-5700 [PubMed] Related Publications
Four heart hormones, namely atrial natriuretic peptide (ANP), long-acting natriuretic peptide (LANP), vessel dilator and kaliuretic peptide reduce up to 97% of cancer cells in vitro. These four cardiac hormones eliminate up to 80% of human pancreatic adenocarcinomas, two-thirds of human breast carcinomas and up to 86% of human small-cell lung carcinomas growing in athymic mice. ANP given intravenously for 3 hours after 'curative' lung surgery as an adjunct to surgery results in a 2-year relapse-free survival of 91% compared to 75% for those treated with surgery alone. The anticancer mechanisms of action of these peptides involve binding to receptors on the cancer cells, followed by 95% inhibition of the conversion of inactive to active rat sarcoma-bound guanosine triphosphate (RAS)-mitogen-activated protein kinase (MAPK) kinases 1/2 (MEK 1/2) (98% inhibition)-extracellular signal-related kinases 1/2 (ERK1/2) (96% inhibition) cascade in cancer cells. They are dual inhibitors of vascular endothelial growth factor (VEGF) and its VEGF2 receptor (up to 89%). They also inhibit MAPK9, i.e. c-JUN-N-terminal kinase 2. One of the downstream targets of VEGF is β-catenin, which these peptides inhibit by up to 88%. These four peptide hormones inhibit the Wingless-related integration site (WNT) pathway 68% and WNT secreted-Frizzled protein is reduced by up to 84%. Signal transducer and activator of transcription 3 (STAT3), a final 'switch' that activates gene expression that leads to malignancy, is specifically reduced up to 88% by these peptides but they do not affect STAT1. There is crosstalk between the RAS-MEK 1/2-ERK 1/2 kinase cascade, VEGF, β-catenin, JNK, WNT, and STAT pathways and each of these pathways and their crosstalk is inhibited by these peptide hormones. They enter the nucleus of cancer cells where they inhibit the proto-oncogenes c-FOS (by up to 82%) and c-JUN (by up to 61%).
CONCLUSION: These multiple kinase inhibitors have both adjunct and primary anticancer effects.

Lu KH, Chen PN, Hsieh YH, et al.
3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo.
Food Chem Toxicol. 2016; 97:177-186 [PubMed] Related Publications
Many natural flavonoids have cytostatic and apoptotic properties; however, we little know whether the effect of synthetic 3-hydroxyflavone on metastasis and tumor growth of human osteosarcoma. Here, we tested the hypothesis that 3-hydroxyflavone suppresses human osteosarcoma cells metastasis and tumor growth. 3-hydroxyflavone, up to 50 μM without cytotoxicity, inhibited U2OS and 143B cells motility, invasiveness and migration by reducing matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (u-PA) and also impaired cell adhesion to gelatin. 3-hydroxyflavone significantly reduced p-focal adhesion kinase (FAK) Tyr397, p-FAK Tyr925, p-steroid receptor coactivator (Src), p-mitogen/extracellular signal-regulated kinase (MEK)1/2, p-myosin light chain (MLC)2 Ser19, epithelial cell adhesion molecule, Ras homolog gene family (Rho)A and fibronectin expressions. 3-hydroxyflavone also affected the epithelial-mesenchymal transition (EMT) by down-regulating expressions of Vimentin and α-catenin with activation of the transcription factor Slug. In nude mice xenograft model and tail vein injection model showed that 3-hydroxyflavone reduced 143B tumor growth and lung metastasis. 3-hydroxyflavone possesses the anti-metastatic activity of U2OS and 143B cells by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and suppresses 143B tumor growth in vivo. This may lead to clinical trials of osteosarcoma chemotherapy to confirm the promising result in the future.

Shen KH, Li CF, Chien LH, et al.
Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway.
Cancer Sci. 2016; 107(10):1390-1398 [PubMed] Free Access to Full Article Related Publications
Human galectin-1 is a member of the galectin family, proteins with conserved carbohydrate-recognition domains that bind galactoside. Galectin-1 is highly expressed in various tumors and participates in various oncogenic processes. However, detailed descriptions of the function of galectin-1 in urinary bladder urothelial carcinoma have not been reported. Our previous cohort investigation showed that galectin-1 is associated with tumor invasiveness and is a possible independent prognostic marker of urinary bladder urothelial carcinoma. The present study aimed to clarify the relevance of galectin-1 expression level to tumor progression and invasion. In order to decipher a mechanism for the contribution of galectin-1 to the malignant behavior of urinary bladder urothelial carcinoma, two bladder cancer cell lines (T24 and J82) were established with knockdown of galectin-1 expression by shRNA. Bladder cancer cells with LGALS1 gene silencing showed reduced cell proliferation, lower invasive capability, and lower clonogenicity. Extensive signaling pathway studies indicated that galectin-1 participated in bladder cancer cell invasion by mediating the activity of MMP9 through the Ras-Rac1-MEKK4-JNK-AP1 signaling pathway. Our functional analyses of galectin-1 in urinary bladder urothelial carcinoma provided novel insights into the critical role of galectin-1 in tumor progression and invasion. These results revealed that silencing the galectin-1-mediated MAPK signaling pathway presented a novel strategy for bladder cancer therapy.

Li W, Wu J, Li Z, et al.
Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-κB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer.
Oncol Rep. 2016; 36(5):2861-2867 [PubMed] Related Publications
Melatonin is synthesized by the pineal gland and is released into the blood. In the last several years, some studies have shown that melatonin has anticancer properties; however, the mechanisms behind the antitumour traits are unclear, especially in pancreatic cancer. Therefore, in the present study, we investigated the antitumour effects of melatonin on the human pancreatic carcinoma cell line MIA PaCa‑2 and explored its biological mechanisms. MIA PaCa‑2 cells were treated with melatonin, and we used a CCK‑8 assay to evaluate the cell viability. We also used flow cytometry to observe cell apoptosis and western blot analysis to assess the protein expression. Our study found that melatonin inhibited cell viability, suppressed colony formation and reduced cell migration and invasion and induced cell apoptosis in MIA PaCa‑2 cells. Our results showed that melatonin treatment inhibited NF‑κB p65 activation. Moreover, melatonin treatment activated the mitogen‑activated protein kinase pathways (c‑jun N‑terminal kinase and extracellular‑regulated kinase 1/2), which increased Bax protein expression and caspase‑3 cleavage and decreased Bcl‑2 protein expression. These new developments demonstrate that melatonin plays a potential role in anticancer treatment and may act as an effective therapeutic agent in the future.

Shi L, Weng XQ, Sheng Y, et al.
Staurosporine enhances ATRA-induced granulocytic differentiation in human leukemia U937 cells via the MEK/ERK signaling pathway.
Oncol Rep. 2016; 36(5):3072-3080 [PubMed] Related Publications
Although all-trans retinoic acid (ATRA) is regarded as a prominent example of differentiation therapy, it is not effective for the treatment of other subtypes of acute myeloid leukemia (AML) beyond acute promyelocytic leukemia (APL). Therefore, new strategies need to be explored to extend the efficacy of ATRA-based therapy to non-APL AML patients. In the present study, staurosporine, a protein kinase C (PKC) pan-inhibitor, exhibited synergism with ATRA to promote granulocytic differentiation in poorly ATRA-sensitive U937 cells but not in ATRA unresponsive K562 and Kasumi cells. Staurosporine or the combined treatment did not affect PKC activity in U937 cells. Moreover, other selective PKC inhibitors, UCN-01, Go6976 or rottlerin failed to enhance ATRA‑induced granulocytic differentiation in U937 cells. Therefore, staurosporine-enhanced ATRA-induced granulocytic differentiation in U937 cells may be independent of PKC. Staurosporine activated mitogen‑activated protein kinase kinase (MEK) and extracellular signal‑regulated kinase (ERK). Meanwhile, staurosporine also enhanced ATRA-promoted upregulation of the protein level of CCAAT/enhancer‑binding protein β (C/EBPβ) and C/EBPε in U937 cells. Furthermore, blockade of MEK activation suppressed staurosporine‑enhanced differentiation as well as the elevated protein level of C/EBPs. Taken together, we concluded that staurosporine enhanced ATRA‑induced granulocytic differentiation in U937 cells via MEK/ERK-mediated modulation of the protein level of C/EBPs.

Zhang H, Gao B, Shi B
Identification of Differentially Expressed Kinase and Screening Potential Anticancer Drugs in Papillary Thyroid Carcinoma.
Dis Markers. 2016; 2016:2832980 [PubMed] Free Access to Full Article Related Publications
Aim. We aim to identify protein kinases involved in the pathophysiology of papillary thyroid carcinoma (PTC) in order to provide potential therapeutic targets for kinase inhibitors and unfold possible molecular mechanisms. Materials and Methods. The gene expression profile of GSE27155 was analyzed to identify differentially expressed genes and mapped onto human protein kinases database. Correlation of kinases with PTC was addressed by systematic literature search, GO and KEGG pathway analysis. Results. The functional enrichment analysis indicated that "mitogen-activated protein kinases pathway" expression was extremely enriched, followed by "neurotrophin signaling pathway," "focal adhesion," and "GnRH signaling pathway." MAPK, SRC, PDGFRa, ErbB, and EGFR were significantly regulated to correct these pathways. Kinases investigated by the literature on carcinoma were considered to be potential novel molecular therapeutic target in PTC and application of corresponding kinase inhibitors could be possible therapeutic tool. Conclusion. SRC, MAPK, and EGFR were the most important differentially expressed kinases in PTC. Combined inhibitors may have high efficacy in PTC treatment by targeting these kinases.

Tanaka R, Tomosugi M, Sakai T, Sowa Y
MEK Inhibitor Suppresses Expression of the miR-17-92 Cluster with G1-Phase Arrest in HT-29 Human Colon Cancer Cells and MIA PaCa-2 Pancreatic Cancer Cells.
Anticancer Res. 2016; 36(9):4537-43 [PubMed] Related Publications
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs, and the deregulated expression of miRNAs is associated with tumor development. Among these, the miR-17-92 cluster, including six mature miRNAs, is known as an oncogenic miRNA cluster because expression of the miR-17-92 cluster is frequently elevated in a variety of malignant tumors.
MATERIALS AND METHODS: We investigated whether a mitogen-activated protein kinase kinase (MEK) inhibitor, PD0325901, suppresses expression of the miR-17-92 cluster in HT-29 human colon cancer cells and MIA PaCa-2 pancreatic cancer cells.
RESULTS: PD0325901 inhibited cell growth with G1-phase arrest and suppressed expression of the miR-17-92 cluster. Furthermore, phosphatase and tensin homolog (PTEN), which is a target molecule of the miR-17-92 cluster, was up-regulated by PD0325901. The exogenous expression of miR-17 slightly, but significantly reduced G1-phase arrest by PD0325901.
CONCLUSION: These results raise the possibility that a MEK inhibitor causes G1-phase arrest, at least partially, through suppression of the miR-17-92 cluster.

Chen GY, Shu YC, Chuang DY, Wang YC
Inflammatory and Apoptotic Regulatory Activity of Tanshinone IIA in Helicobacter pylori-Infected Cells.
Am J Chin Med. 2016; 44(6):1187-1206 [PubMed] Related Publications
Helicobacter pylori infections induce host cell inflammation and apoptosis, however, they are conflicting. Tanshinone IIA is an active compound of Salvia miltiorrhiza Bge. In this study, we investigated the regulatory effects of tanshinone IIA on H. pylori-induced inflammation and apoptosis in vitro. Tanshinone IIA treatments (13.6-54.4[Formula: see text][Formula: see text]M) significantly decreased nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) [p-38 and C-terminal Jun-kinase 1/2 (JNK1/2)] protein expressions and inflammatory substance [cyclooxygenase-2 (COX-2), 5-lipooxygenase (5-LOX), intercellular adhesion molecule-1 (ICAM-1), reactive oxygen species (ROS), nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1[Formula: see text] (IL-1[Formula: see text], IL-6, and IL-8] production in the H. pylori-infected cells. In contrast, tanshinone IIA treatments significantly increased apoptotic relevant protein [Bcl-2-associated X protein (Bax) and caspase 9] expressions and increased mitochondrial transmembrane potential ([Formula: see text] disruption, mitochondrial cytochrome [Formula: see text] (cyt [Formula: see text] release, and caspase cascades. Tanshinone IIA treatments effectively decreased H. pylori-induced inflammation and significantly promoted H. pylori-induced intrinsic apoptosis through NF-kB and MAPK (p-38 and JNK) pathways. Tanshinone IIA has great potential as a candidate to protect host cells from H. pylori-induced severe inflammation and gastric cancer.

Luo F, Shi J, Shi Q, et al.
Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy.
Cell Physiol Biochem. 2016; 39(3):1051-67 [PubMed] Related Publications
Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs) are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2), the c-Jun N-terminal kinases (JNK), p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1). Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

Demiroglu-Zergeroglu A, Ergene E, Ayvali N, et al.
Quercetin and Cisplatin combined treatment altered cell cycle and mitogen activated protein kinase expressions in malignant mesotelioma cells.
BMC Complement Altern Med. 2016; 16(1):281 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Malignant mesothelioma is a locally aggressive and highly lethal neoplasm of pleural, peritoneal and pericardial mesothelial cells without successful therapy. Previously, we reported that Quercetin in combination with Cisplatin inhibits cell proliferation and activates caspase-9 and -3 enzymes in different malignant mesothelioma cell lines. Moreover, Quercetin + Cisplatin lead to accumulation of both SPC111 and SPC212 cell lines in S phase.
METHODS: In present work, 84 genes involved in cell growth and proliferation have analysed by using RT(2)-PCR array system and protein profile of mitogen activated protein kinase (MAPK) family proteins investigated by western blots.
RESULTS: Our results showed that Quercetin and Quercetin + Cisplatin modulated gene expression of cyclins, cyclin dependent kinases and cyclin dependent kinases inhibitors. In addition genes involved in JNK, p38 and MAPK/ERK pathways were up regulated. Moreover, while p38 and JNK phosphorylations were increased, ERK phosphorylations were decreased after using Quercetin + Cisplatin.
CONCLUSION: This research has clarified our previous results and detailed mechanism of anti-carcinogenic potential of Quercetin alone and incombination with Cisplatin on malignant mesothelioma cells.

Iqbal B, Masood A, Lone MM, et al.
Polymorphism of Metastasis Suppressor Genes MKK4 and NME1 in Kashmiri Patients with Breast Cancer.
Breast J. 2016; 22(6):673-677 [PubMed] Related Publications
Genetic polymorphisms in metastatic suppressor genes like MKK4 and NME1 are not well studied in breast cancer. Hence, we analyzed the relationship between MKK4 and NME1 polymorphisms and breast cancer risk in Kashmir, India. The different genotypes of NME1 and MKK4 genes were analyzed by polymerase chain reaction and restriction fragment length polymorphism in 130 breast cancer cases and 200 age- and sex-matched controls. Conditional logistic regression models were used to assess the association of various genotypes with breast cancer. In this study, we found an inverse association between MKK4 promoter polymorphism and breast cancer risk. As compared to TT (wild) genotype, individuals with TG (heterozygous) (OR = 0.32; 95% CI = (0.17-0.58) and GG (mutant) (OR = 0.13; CI = 0.04-0.40) genotypes showed decreased risk of breast cancer. When participants were classified on the basis of lymph node involvement, a strong association between NME1 heterozygous genotype (OR = 3.82; CI = (1.54-9.44) and breast cancer was found.

Li J, Liu C, Sato T
Novel Antitumor Invasive Actions of p-Cymene by Decreasing MMP-9/TIMP-1 Expression Ratio in Human Fibrosarcoma HT-1080 Cells.
Biol Pharm Bull. 2016; 39(8):1247-53 [PubMed] Related Publications
p-Cymene (4-isopropyltoluene) has been reported to have beneficial actions such as anti-inflammatory and antinociceptive activities. To evaluate whether p-cymene exhibits antitumor invasive actions, we examined the effects of p-cymene on the production of matrix metalloproteinase 9 (MMP-9)/gelatinase B and tissue inhibitor of metalloproteinases-1 (TIMP-1) in human fibrosarcoma HT-1080 cells. p-Cymene was found to dose-dependently inhibit the 12-O-tetradecanoylphorbol 13-acetate (TPA)-augmented production and gene expression of MMP-9 in HT-1080 cells. In contrast, p-cymene enhanced the TPA-augmented production and gene expression of TIMP-1 in HT-1080 cells. However, there was no change in the constitutive level of MMP-9 and TIMP-1 mRNAs and TIMP-1 protein in p-cymene-treated cells. In addition, we found that the in-vitro TPA-augmented invasiveness of HT-1080 cells was inhibited by p-cymene in a dose-dependent manner. Furthermore, p-cymene was found to suppress the constitutive and/or TPA-augmented phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) in HT-1080 cells. Thus, these results provide novel evidence that p-cymene is an effective candidate for the prevention of tumor invasion and metastasis through mechanisms that include the inhibition of MMP-9 expression and the augmentation of TIMP-1 production along with the suppression of ERK1/2 and p38 MAPK signal pathways in tumor cells.

Yang A, Fan H, Zhao Y, et al.
Huaier aqueous extract inhibits proliferation and metastasis of tuberous sclerosis complex cell models through downregulation of JAK2/STAT3 and MAPK signaling pathways.
Oncol Rep. 2016; 36(3):1491-8 [PubMed] Related Publications
Tuberous sclerosis complex (TSC) is a genetic disorder with formation of benign tumors in many different organs. It has attracted increasing attention from researchers to search for therapeutic drugs for TSC patients. Traditional Chinese medicine (TCM) has become an important source for finding antitumor drugs. Trametes robiniophila Μurr. (Huaier) is a kind of officinal fungi in China and has been applied in TCM for approximately 1,600 years. A large number of clinical applications have revealed that Huaier has good antitumor effect. In this study, we have investigated the effects of Huaier aqueous extract on two TSC cell models, including inhibition of proliferation, induction of apoptosis, cell cycle arrest, and anti-metastasis. We demonstrated that Huaier aqueous extract inhibited JAK2/STAT3 and MAPK signaling pathways in a dose-dependent manner. Therefore, based on the low toxicity and the multi-targets of Huaier treatment, Huaier may be a promising therapeutic drug for TSC.

Starska K, Forma E, Jóźwiak P, et al.
Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer.
Tumour Biol. 2016; 37(10):13185-13203 [PubMed] Related Publications
Recent evidence indicates the involvement of calpains (CAPNs), a family of cysteine proteases, in cancer development and progression, as well as the insufficient response to cancer therapies. The contribution of CAPNs and regulatory calpastatin (CAST) and ERK1/2 kinases to aggressiveness, disease course, and outcome in laryngeal cancer remains elusive. This study was aimed to evaluate the CAPN1/2-CAST-ERK1/2 enzyme system mRNA/protein level and to investigate whether they can promote the dynamic of tumor growth and prognosis. The mRNA expression of marker genes was determined in 106 laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent mucosa (NCLM) controls using quantitative real-time PCR. The level of corresponding proteins was analyzed by Western Blot. SLUG expression, as indicator of pathological advancement was determined using IHC staining. Significant increases of CAPN1/2-CAST-ERK1/2 levels of mRNA/protein were noted in SCLC compared to NCLM (p < 0.05). As a result, a higher level of CAPN1 and ERK1 genes was related to larger tumor size, more aggressive and deeper growth according to TFG scale and SLUG level (p < 0.05). There were also relationships of CAPN1/2 and ERK1 with incidences of local/nodal recurrences (p < 0.05). An inverse association for CAPN1/2, CAST, and ERK1/2 transcripts was determined with regard to overall survival (p < 0.05). In addition, a higher CAPN1 and phospho-ERK1 protein level was related to higher grade and stage (p < 0.05) and was found to promote worse prognosis. This is the first study to show that activity of CAPN1/2- CAST-ERK1/2 axis may be an indicator of tumor phenotype and unfavorable outcome in SCLC.

Grellety T, Gros A, Pedeutour F, et al.
Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.
Virchows Arch. 2016; 469(4):459-64 [PubMed] Related Publications
Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

Aherne ST, Smyth P, Freeley M, et al.
Altered expression of mir-222 and mir-25 influences diverse gene expression changes in transformed normal and anaplastic thyroid cells, and impacts on MEK and TRAIL protein expression.
Int J Mol Med. 2016; 38(2):433-45 [PubMed] Free Access to Full Article Related Publications
Thyroid cancer is the most common endocrine malignancy and accounts for the majority of endocrine cancer-related deaths each year. Our group and others have previously demonstrated dysfunctional microRNA (miRNA or miR) expression in the context of thyroid cancer. The objective of the present study was to investigate the impact of synthetic manipulation of expression of miR-25 and miR-222 in benign and malignant thyroid cells. miR-25 and miR-222 expression was upregulated in 8505C (an anaplastic thyroid cell line) and Nthy-ori (a SV40-immortalised thyroid cell line) cells, respectively. A transcriptomics-based approach was utilised to identify targets of the two miRNAs and real-time PCR and western blotting were used to validate a subset of the targets. Almost 100 mRNAs of diverse functions were found to be either directly or indirectly targeted by both miR-222 and miR-25 [fold change ≥2, false discovery rate (FDR) ≤0.05]. Gene ontology analysis showed the miR-25 gene target list to be significantly enriched for genes involved in cell adhesion. Fluidigm real-time PCR technologies were used to validate the downregulation of 23 and 22 genes in response to miR-25 and miR-222 overexpression, respectively. The reduction of the expression of two miR-25 protein targets, TNF-related apoptosis‑inducing ligand (TRAIL) and mitogen-activated protein kinase kinase 4 (MEK4), was also validated. Manipulating the expression of both miR-222 and miR-25 influenced diverse gene expression changes in thyroid cells. Increased expression of miR-25 reduced MEK4 and TRAIL protein expression, and cell adhesion and apoptosis are important aspects of miR-25 functioning in thyroid cells.

Dienstmann R, Tabernero J
Spectrum of Gene Mutations in Colorectal Cancer: Implications for Treatment.
Cancer J. 2016 May-Jun; 22(3):149-55 [PubMed] Related Publications
Gene mutations acquired during colorectal carcinogenesis remain drivers of cancer progression in the metastatic setting. KRAS and NRAS mutations define a population refractory to anti-epidermal growth factor receptor (EGFR) antibodies, either as single agents or in combination with standard chemotherapy. High-sensitivity extended RAS testing is currently a requirement to select anti-EGFR therapy irrespective of treatment line, thus limiting unnecessary exposure and expense in patients unlikely to respond. Multiple genetic alterations driving resistance to anti-EGFR monoclonal antibodies have been described, with significant overlap in primary and acquired resistance mechanisms, in line with a clonal selection process. Some of them have been validated as targets for therapeutic intervention in clinical trials, such as ERBB2 amplifications. With advances in drug development and better understanding of the dynamics of target inhibition, additional gene alterations are now promising positive predictive markers for matched targeted therapies in CRC, including BRAF V600E and RNF43 mutations. Furthermore, the microsatellite instable hypermutated colorectal cancer population is particularly sensitive to immune checkpoint inhibitors. In this article, we review the expanding landscape of druggable gene alterations in metastatic colorectal cancer.

Pohl M, Schmiegel W
Therapeutic Strategies in Diseases of the Digestive Tract - 2015 and Beyond Targeted Therapies in Colon Cancer Today and Tomorrow.
Dig Dis. 2016; 34(5):574-9 [PubMed] Related Publications
BACKGROUND: Colorectal cancer (CRC) is the third most common cancer type in Western countries. Significant progress has been made in the last decade in the therapy of metastatic CRC (mCRC) with a median overall survival (OS) of patients exceeding 30 months. The integration of biologic targeted therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MABs) in the treatment of patients with genomically selected all-RAS wild-type mCRC leads to a significant progress in advanced incurable disease state. After the introduction of the anti-VEGF MAB bevacizumab, the FDA approved with ramucirumab the second antiangiogenic MAB for the mCRC treatment. Further new drugs are on the horizon and new diagnostic tools will be introduced soon.
KEY MESSAGES: Molecular heterogeneity of mCRC has been recognized as pivotal in the evolution of clonal populations during anti-EGFR therapies. Mutations in RAS genes predict a lack of response to anti-EGFR MABs. Mutations in the mitogen-activated protein kinase-phosphoinositide 3-kinase pathways like BRAF or PIK3CA mutations or HER2/ERBB2 or MET amplifications bypass EGFR signaling and also may confer resistance to anti-EGFR MABs. HER2/ERBB2 amplification is a further driver of resistance to anti-EGFR MABs in mCRC. The phase II study of HER2 Amplification for Colo-Rectal Cancer Enhanced Stratification (HERACLES) discovers that a dual HER2-targeted therapy may be an option for HER2-amplified mCRC. The mismatch repair deficiency predicts responsiveness to an immune checkpoint blockade with the anti-PD-1 immune checkpoint inhibitor pembrolizumab.
CONCLUSIONS: The understanding of primary (de novo) and secondary (acquired) resistance to anti-EGFR therapies, new targeted therapies, immuno-oncology and about predictive biomarkers in mCRC is guiding the development of rational therapeutic strategies. Combinations of targeted therapies are necessary to effectively treat drug-resistant cancers. Liquid biopsy is an upcoming new tool in the primary diagnosis and follow-up analysis of mutations in circulating tumor DNA.

Qian H, Xuan J, Liu Y, Shi G
Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors.
J Immunol Res. 2016; 2016:7128702 [PubMed] Free Access to Full Article Related Publications
The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers.

Wang Z, Wang W, Xu S, et al.
The role of MAPK signaling pathway in the Her-2-positive meningiomas.
Oncol Rep. 2016; 36(2):685-95 [PubMed] Free Access to Full Article Related Publications
Meningiomas are common types of adult nerve system tumors. Although most cases are considered benign, due to its high rate of recurrence and easy malignant progression to anaplastic meningioma they present a puzzle for the current treatment. The HER-2 oncogene has important value for meningioma cells development and progression. So far, little is known about the effect on the exact underlying signal pathway and molecular mechanisms of HER-2-positive meningioma cells. The goal of the present study was to determine the effects of HER-2 gene and possible involvement of MAPK signal pathway in human malignant meningioma. We applied q-PCR analysis, immunofluorescence (IF) staining, western blot analysis, animal model, MAPK inhibition, MTT assay and cell invasion analysis for the investigation. The results demonstrated that the downregulation of the expression of HER-2 significantly inhibited cell motility and proliferation of human meningioma cells in vivo. Accordingly, in the HER-2-overexpression meningioma cells with the inhibition of ERK1/2, ERK5, JNK, in the cells with the ERK1/2, ERK5 inhibition, protein expression was markedly suppressed as well as the cell proliferation resistance. No difference was observed in the HER-2-overexpression meningioma cells with the inhibition of JNK. These findings suggest that HER-2 gene can affect the proliferation ability of human meningioma cells in vivo and MAPK signal pathway may contribute to the carcinogenesis and development of human meningiomas combinating with HER-2.

Chantana C, Yenjai C, Reubroycharoen P, Waiwut P
Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up- regulation.
Asian Pac J Cancer Prev. 2016; 17(5):2637-41 [PubMed] Related Publications
Tumor necrosis factor (TNF-α), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of TNF-α are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on TNF-α-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (<0.01), a concentration of 10 μM significantly inducing cell death (<0.01). In combination with TNF-α, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized TNF-α-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance TNF-α-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAP2K2, Cancer Genetics Web: http://www.cancer-genetics.org/MAP2K2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999