MINA

Gene Summary

Gene:MINA; MYC induced nuclear antigen
Aliases: ROX, MDIG, NO52, MINA53
Location:3q11.2
Summary:MINA is a c-Myc (MYC; MIM 190080) target gene that may play a role in cell proliferation or regulation of cell growth. (Tsuneoka et al., 2002 [PubMed 12091391]; Zhang et al., 2005 [PubMed 15897898]).[supplied by OMIM, May 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:bifunctional lysine-specific demethylase and histidyl-hydroxylase MINA
HPRD
Source:NCBIAccessed: 25 June, 2015

Ontology:

What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MINA (cancer-related)

Wen SY, Li CH, Zhang YL, et al.
Rictor is an independent prognostic factor for endometrial carcinoma.
Int J Clin Exp Pathol. 2014; 7(5):2068-78 [PubMed] Free Access to Full Article Related Publications
Early-stage endometrial carcinoma (EC) patients have a high cure rate; however, those with high-risk factors may have poor prognosis. Thus, there is an urgent need for searching for new prognostic molecules to more accurately predict survival of patients. We detected the Rictor mRNA expression level in 30 fresh EC tissue and 17 normal endometrial tissue samples with real-time quantitative RT-PCR and Rictor protein expression level in 134 (test cohort) and 115 (validation cohort) paraffin tissue samples by immunohistochemistry, analyzed the correlation between variables and overall survival (OS) using Cox proportional hazards regression, compared the prognostic accuracy of Rictor with other clinicopathological risk factors by logistic regression. The results showed that Rictor mRNA expression of EC is higher than that of normal endometrium; Rictor protein expression level was closely correlated with FIGO stage, grade and vascular invasion in both cohorts; a univariate analysis showed that the pathological type, stage, grade, vascular invasion, lymphatic metastasis and Rictor were predictors of OS in both cohorts; furthermore, multivariate Cox proportional hazards regression analysis indicated that vascular invasion and Rictor were independent prognostic factors for EC in both cohorts; an ROX curve comparison showed that the area under the curve (AUC) for Rictor combined with other clinicopathological prognostic factors was higher than any individual factor or other clinicopathological prognostic factors' combination. Based on the above data, we concluded that Rictor is an independent prognostic factor for EC. It combined with other clinicopathological risk factors was a stronger prognostic model than individual risk factor or their combination.

Ben-Hamo R, Gidoni M, Efroni S
PhenoNet: identification of key networks associated with disease phenotype.
Bioinformatics. 2014; 30(17):2399-405 [PubMed] Related Publications
MOTIVATION: At the core of transcriptome analyses of cancer is a challenge to detect molecular differences affiliated with disease phenotypes. This approach has led to remarkable progress in identifying molecular signatures and in stratifying patients into clinical groups. Yet, despite this progress, many of the identified signatures are not robust enough to be clinically used and not consistent enough to provide a follow-up on molecular mechanisms.
RESULTS: To address these issues, we introduce PhenoNet, a novel algorithm for the identification of pathways and networks associated with different phenotypes. PhenoNet uses two types of input data: gene expression data (RMA, RPKM, FPKM, etc.) and phenotypic information, and integrates these data with curated pathways and protein-protein interaction information. Comprehensive iterations across all possible pathways and subnetworks result in the identification of key pathways or subnetworks that distinguish between the two phenotypes.
AVAILABILITY AND IMPLEMENTATION: Matlab code is available upon request.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Yu M, Sun J, Thakur C, et al.
Paradoxical roles of mineral dust induced gene on cell proliferation and migration/invasion.
PLoS One. 2014; 9(2):e87998 [PubMed] Free Access to Full Article Related Publications
Increased expression of mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) has been observed in a number of human cancers. The mechanism of how mdig contribute to the pathogenesis of cancer remains to be fully elucidated. In this report, we demonstrated that overexpression of mdig decreased the nuclear staining signal by 4',6-diamidino-2-phenylindole (DAPI), along with a considerable enhancement in cell proliferation. Silencing mdig by shRNA resulted in a statistically significant decrease of cell proliferation. Intriguingly, mdig overexpression reduced the capacity of the cells in migration and invasion in vitro, whereas silencing mdig by shRNA/siRNA enhanced migration and invasion. Clinically, we found that increased expression of mdig in cancer tissues correlates with poorer overall survival of the lung cancer patients, esp., for those without lymph node metastasis. Taken together, our results suggest that mdig plays opposite roles on cell growth and motility, which possibly indicates the paradoxical effect of mdig at the different stages of carcinogenesis.

Sun J, Yu M, Lu Y, et al.
Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation.
Cancer Lett. 2014; 346(2):257-63 [PubMed] Free Access to Full Article Related Publications
Environmental or occupational exposure to arsenic, a chemical element classified as metalloid, has been associated with cancer of the lung, skin, bladder, liver, etc. Mdig (mineral dust-induced gene) is a newly identified oncogene linked to occupational lung diseases and lung cancer. It is unclear whether mdig is also involved in arsenic-induced malignant transformation of the lung cells. By using human bronchial epithelial cells and human lung cancer cell lines, we showed that arsenic was able to induce expression of mdig. We further demonstrated that this mdig induction by arsenic was partially dependent on the JNK and STAT3 signaling pathways. Disruption of the JNK or STAT3 by either chemical inhibitors or siRNAs diminished arsenic-induced accumulation of mdig mRNA and protein. Furthermore, we also showed that microRNA-21 (miR-21) and Akt were down-stream effectors of the JNK and STAT3 signaling pathways in arsenic-induced mdig expression. Transfection of the cells with anti-miR-21 or pre-treatment of the cells with Akt inhibitor blunted mdig induction by arsenic. Clinically, the levels of mdig can be applied to predict the disease progression, the first progression (FP), in non-small cell lung cancer (NSCLC) patients. Taken together, our data suggest that mdig may play important roles on the pathogenesis of arsenic-induced lung cancer and that JNK and STAT3 signaling pathways are essential in mediating arsenic-induced mdig expression.

Thakur C, Lu Y, Sun J, et al.
Increased expression of mdig predicts poorer survival of the breast cancer patients.
Gene. 2014; 535(2):218-24 [PubMed] Free Access to Full Article Related Publications
Breast cancer is the most common cancer and the second leading cause of cancer death among women of all races and Hispanic origin populations in the United States. In the present study, we reported that the survival time of the breast cancer patients is influenced by the expression level of mdig, a previously identified lung cancer-associated oncogene encoding a JmjC-domain protein. By checking the expression levels of mRNA and protein of mdig through both RT-PCR and immunohistochemistry in samples from 204 patients, we noticed that about 30% of breast cancer samples showed increased expression of mdig. Correlation of the mdig expression levels with the survival time of the breast cancer patients indicated a clear inverse relationship between mdig expression and patient survival, including poorer overall survival, distant metastasis free survival, relapse free survival, and post-progression survival. Taken together, these data suggest that an increased expression of mdig is an important prognostic factor for poorer survival time of the breast cancer patients.

Ben-Hamo R, Efroni S
MicroRNA-gene association as a prognostic biomarker in cancer exposes disease mechanisms.
PLoS Comput Biol. 2013; 9(11):e1003351 [PubMed] Free Access to Full Article Related Publications
The transcriptional networks that regulate gene expression and modifications to this network are at the core of the cancer phenotype. MicroRNAs, a well-studied species of small non-coding RNA molecules, have been shown to have a central role in regulating gene expression as part of this transcriptional network. Further, microRNA deregulation is associated with cancer development and with tumor progression. Glioblastoma Multiform (GBM) is the most common, aggressive and malignant primary tumor of the brain and is associated with one of the worst 5-year survival rates among all human cancers. To study the transcriptional network and its modifications in GBM, we utilized gene expression, microRNA sequencing, whole genome sequencing and clinical data from hundreds of patients from different datasets. Using these data and a novel microRNA-gene association approach we introduce, we have identified unique microRNAs and their associated genes. This unique behavior is composed of the ability of the quantifiable association of the microRNA and the gene expression levels, which we show stratify patients into clinical subgroups of high statistical significance. Importantly, this stratification goes unobserved by other methods and is not affiliated by other subsets or phenotypes within the data. To investigate the robustness of the introduced approach, we demonstrate, in unrelated datasets, robustness of findings. Among the set of identified microRNA-gene associations, we closely study the example of MAF and hsa-miR-330-3p, and show how their co-behavior stratifies patients into prognosis clinical groups and how whole genome sequences tells us more about a specific genomic variation as a possible basis for patient variances. We argue that these identified associations may indicate previously unexplored specific disease control mechanisms and may be used as basis for further study and for possible therapeutic intervention.

Gertler AA, Cohen HY
SIRT6, a protein with many faces.
Biogerontology. 2013; 14(6):629-39 [PubMed] Related Publications
Sirtuins are NAD(+) dependent deacylases enzymes. There are seven mammalian sirtuins, SIRT1-SIRT7, which are localized to different cellular compartments and are capable of diverse catalytic activities. SIRT6 is a key regulator of healthy ageing. In the past decade our understanding of SIRT6 significantly increased in many different aspects. We know its cellular localization, catalytic activities, substrates and the pathways it is involved in. This review discusses the recent discoveries regarding the SIRT6 enzyme.

Chen B, Yu M, Chang Q, et al.
Mdig de-represses H19 large intergenic non-coding RNA (lincRNA) by down-regulating H3K9me3 and heterochromatin.
Oncotarget. 2013; 4(9):1427-37 [PubMed] Free Access to Full Article Related Publications
Mineral dust-induced gene (mdig) had been linked to the development of human lung cancers associated with environmental exposure to mineral dust, tobacco smoke or other carcinogens. In the present studies, we demonstrated that the overexpression of mdig in A549 adenocarcinomic human alveolar type II epithelial cells decreases the heterochromatin conformation of the cells and de-represses the transcription of genes in the tandemly repeated DNA regions. Although mdig can only cause a marginal decrease of the total histone H3 lysine 9 trimethylation (H3K9me3), a significant reduction of H3K9me3 in the promoter region of H19, the paternally imprinted but maternally expressed gene transcribing a large intergenic non-coding RNA (lincRNA), was observed in the cells with mdig overexpression. Silencing mdig by either shRNA or siRNA not only increased the level of H3K9me3 in the promoter region of H19 but also attenuated the transcription of H19 long non-coding RNA. Demethylation assays using immunoprecipitated mdig and histone H3 peptide substrate suggested that mdig is able to remove the methyl groups from H3K9me3. Clinically, we found that higher levels of mdig and H19 expression correlate with poorer survival of the lung cancer patients. Taken together, our results imply that mdig is involved in the regulation of H3K9me3 to influence the heterochromatin structure of the genome and the expression of genes important for cell growth or transformation.

Hall A, Larsen AK, Parhamifar L, et al.
High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
Biochim Biophys Acta. 2013; 1827(10):1213-25 [PubMed] Related Publications
Polyethylenimines (PEIs) are highly efficient non-viral transfectants, but can induce cell death through poorly understood necrotic and apoptotic processes as well as autophagy. Through high resolution respirometry studies in H1299 cells we demonstrate that the 25kDa branched polyethylenimine (25k-PEI-B), in a concentration and time-dependent manner, facilitates mitochondrial proton leak and inhibits the electron transport system. These events were associated with gradual reduction of the mitochondrial membrane potential and mitochondrial ATP synthesis. The intracellular ATP levels further declined as a consequence of PEI-mediated plasma membrane damage and subsequent ATP leakage to the extracellular medium. Studies with freshly isolated mouse liver mitochondria corroborated with bioenergetic findings and demonstrated parallel polycation concentration- and time-dependent changes in state 2 and state 4o oxygen flux as well as lowered ADP phosphorylation (state 3) and mitochondrial ATP synthesis. Polycation-mediated reduction of electron transport system activity was further demonstrated in 'broken mitochondria' (freeze-thawed mitochondrial preparations). Moreover, by using both high-resolution respirometry and spectrophotometry analysis of cytochrome c oxidase activity we were able to identify complex IV (cytochrome c oxidase) as a likely specific site of PEI mediated inhibition within the electron transport system. Unraveling the mechanisms of PEI-mediated mitochondrial energy crisis is central for combinatorial design of safer polymeric non-viral gene delivery systems.

Bier A, Giladi N, Kronfeld N, et al.
MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1.
Oncotarget. 2013; 4(5):665-76 [PubMed] Free Access to Full Article Related Publications
Glioblastomas (GBM), the most common and aggressive malignant astrocytic tumors, contain a small subpopulation of cancer stem cells (GSCs) that are implicated in therapeutic resistance and tumor recurrence. Here, we study the expression and function of miR-137, a putative suppressor miRNA, in GBM and GSCs. We found that the expression of miR-137 was significantly lower in GBM and GSCs compared to normal brains and neural stem cells (NSCs) and that the miR-137 promoter was hypermethylated in the GBM specimens. The expression of miR-137 was increased in differentiated NSCs and GSCs and overexpression of miR-137 promoted the neural differentiation of both cell types. Moreover, pre-miR-137 significantly decreased the self-renewal of GSCs and the stem cell markers Oct4, Nanog, Sox2 and Shh. We identified RTVP-1 as a novel target of miR-137 in GSCs; transfection of the cells with miR-137 decreased the expression of RTVP-1 and the luciferase activity of RTVP-1 3'-UTR reporter plasmid. Furthermore, overexpression of RTVP-1 plasmid lacking its 3'-UTR abrogated the inhibitory effect of miR-137 on the self-renewal of GSCs. Silencing of RTVP-1 decreased the self-renewal of GSCs and the expression of CXCR4 and overexpression of CXCR4 abrogated the inhibitory effect of RTVP-1 silencing on GSC self-renewal. These results demonstrate that miR-137 is downregulated in GBM probably due to promoter hypermethylation. miR-137 inhibits GSC self-renewal and promotes their differentiation by targeting RTVP-1 which downregulates CXCR4. Thus, miR-137 and RTVP-1 are attractive therapeutic targets for the eradication of GSCs and for the treatment of GBM.

Bohn BA, Mina S, Krohn A, et al.
Altered PTEN function caused by deletion or gene disruption is associated with poor prognosis in rectal but not in colon cancer.
Hum Pathol. 2013; 44(8):1524-33 [PubMed] Related Publications
Colorectal cancer is the third most common malignancy worldwide. Anti-epidermal growth factor receptor (EGFR)-targeted therapy shows clinical evidence in this malignancy and improves outcome. The tumor suppressor gene phosphatase and tensin homologue (PTEN) is considered a potential predictor of nonresponse to anti-EGFR agents. The purpose of this study was to assess whether associations between PTEN alterations (PTEN gene deletion or PTEN gene disruption) and clinical outcome could be caused by a prognostic (and not predictive) effect of PTEN inactivation. Therefore, we analyzed 404 colorectal cancers not previously treated with anti-EGFR drugs in a tissue microarray format. PTEN deletion and PTEN gene rearrangements were analyzed by fluorescence in situ hybridization. Heterogeneity analysis of all available large tissue sections was performed in 6 cases with genomic PTEN alteration. Twenty-seven (8.8%) of 307 analyzable colorectal cancer spots showed genomic PTEN alterations including 24 hemizygous and 1 homozygous deletion as well as 2 PTEN gene disruptions. Genomic PTEN alterations were associated with reduced patient survival in rectal cancer in univariate and multivariate analyses (P = .012; hazard ratio, 2.675; 95% confidence interval, 1.242-5.759) but not in colon cancer. Large-section evaluation revealed a homogeneous distribution pattern in all 4 analyzed cases with PTEN deletion and in both cases with a PTEN gene disruption. In conclusion, genomic PTEN gene alterations caused by deletion or gene disruption characterize a fraction of rectal cancers with particularly poor outcome.

Feldstein O, Ben-Hamo R, Bashari D, et al.
RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation.
Mol Cancer Res. 2012; 10(9):1169-77 [PubMed] Related Publications
The E2F family of transcription factors plays a pivotal role in the regulation of cell proliferation in higher eukaryotes and is a critical downstream target of the tumor suppressor pRB. The pRB/E2F pathway is defective in most human tumors, resulting in deregulated E2F activity that induces uncontrolled cell proliferation, a hallmark of tumor cells. The RNA-binding protein RBM38, also named RNPC1, induces cell-cycle arrest in G(1), at least in part, via binding to and stabilizing the mRNA of the cyclin-dependent kinase inhibitor p21. RBM38 levels are altered in human cancer. Generally, RBM38 is overexpressed in various tumors; however, RBM38 mRNA levels are reduced in some breast tumors due to increased methylation of its promoter region. We show here that expression of RBM38 is regulated by E2F1. Specifically, RBM38 mRNA and protein levels are elevated upon activation of either exogenous E2F1 or endogenous E2Fs. Moreover, endogenous E2F1 binds the human RBM38 promoter and E2F1 knockdown reduces RBM38 levels. Our data raise the possibility that E2F1 together with E2F1-regulated RBM38 constitute a negative feedback loop that modulates E2F1 activity. In support of this, inhibition of RBM38 expression increases E2F1-mediated cell-cycle progression. Moreover, in human ovarian cancer, high correlation between expression of E2F1 and RBM38 is associated with increased survival. Overall, our data identify RBM38 as novel transcriptional target of E2F1 that restricts E2F1-induced proliferation. Furthermore, this negative feedback loop seems to restrict tumor aggressiveness, thereby promoting survival of patients with cancer.

Mina S, Bohn BA, Simon R, et al.
PTEN deletion is rare but often homogeneous in gastric cancer.
J Clin Pathol. 2012; 65(8):693-8 [PubMed] Related Publications
BACKGROUND AND AIM: Gastric carcinoma is the second most frequent cause of cancer-related death worldwide. As PTEN is a potential modifier of tumour response to trastuzumab, a recently approved therapy in metastatic HER2 positive gastric cancer, the existence of PTEN deletions in primary gastric cancer was investigated.
METHODS: 230 primary gastric cancers were analysed in a tissue microarray format by dual labelling fluorescence in situ hybridisation for PTEN deletion. HER2 analysis was also performed. To study PTEN deletion heterogeneity, all available large tissue sections from primary cancer and corresponding metastases were analysed in seven patients.
RESULTS: Eight of 180 interpretable primary gastric cancer spots showed PTEN deletions (4.4%), including seven hemizygous and one homozygous deletion. PTEN deletion was correlated with nodal (8 of 122 cases (6.6%); p=0.041) and distant metastases (4 of 19 (21.1%); p<0.001). Large section validation showed a homogeneous distribution of PTEN deletion. HER2 positivity was seen in one PTEN deleted case.
CONCLUSION: Genomic PTEN deletion is a rare event in gastric adenocarcinoma but correlates with metastatic disease. The homogeneous distribution pattern indicates that this alteration occurs early in tumour development.

Makovski A, Yaffe E, Shpungin S, Nir U
Down-regulation of Fer induces ROS levels accompanied by ATM and p53 activation in colon carcinoma cells.
Cell Signal. 2012; 24(7):1369-74 [PubMed] Related Publications
Fer is an intracellular tyrosine kinase which resides in both the cytoplasm and nucleus of mammalian cells. This kinase was also found in all malignant cell-lines analyzed and was shown to support cell-cycle progression in cancer cells. Herein we show that knock-down of Fer, both, impairs cell-cycle progression and imposes programmed cell death in colon carcinoma (CC) cells. The cell-cycle arrest and apoptotic death invoked by the depletion of Fer were found to depend on the activity of p53. Accordingly, down regulation of Fer led to the activation of the Ataxia Telangiectasia Mutated protein (ATM) and its down-stream effector-p53. Knock-down of Fer also increased the level of Reactive-Oxygen Species (ROS) in CC cells, and subjection of Fer depleted cells to ROS neutralizing scavengers significantly decreased the induced phosphorylation and activation of ATM and p53. Notably, over-expression of Fer opposed the Doxorubicin driven activation of ATM and p53, which can be mediated by ROS. Collectively, our findings imply that Fer sustains low ROS levels in CC cells, thereby restraining the activation of ATM and p53 in these cells.

Komuta M, Govaere O, Vandecaveye V, et al.
Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes.
Hepatology. 2012; 55(6):1876-88 [PubMed] Related Publications
UNLABELLED: Cholangiocellular carcinoma (CC) originates from topographically heterogeneous cholangiocytes. The cylindrical mucin-producing cholangiocytes are located in large bile ducts and the cuboidal non-mucin-producing cholangiocytes are located in ductules containing bipotential hepatic progenitor cells (HPCs). We investigated the clinicopathological and molecular features of 85 resected CCs (14 hilar CCs [so-called Klatskin tumor], 71 intrahepatic CCs [ICCs] including 20 cholangiolocellular carcinomas [CLCs], which are thought to originate from HPCs]) and compared these with the different cholangiocyte phenotypes, including HPCs. Immunohistochemistry was performed with biliary/HPC and hepatocytic markers. Gene expression profiling was performed in different tumors and compared with nonneoplastic different cholangiocyte phenotypes obtained by laser microdissection. Invasion and cell proliferation assay were assessed using different types of CC cell lines: KMC-1, KMCH-1, and KMCH-2. Among 51 ICCs, 31 (60.8%) contained only mucin-producing CC features (muc-ICCs), whereas 39.2% displayed histological diversity: focal hepatocytic differentiation and ductular areas (mixed-ICCs). Clinicopathologically, muc-ICCs and hilar CCs showed a predominantly (peri-)hilar location, smaller tumor size, and more lymphatic and perineural invasion compared with mixed-ICCs and CLCs (predominantly peripheral location, larger tumor size, and less lymphatic and perineural invasion). Immunoreactivity was similar in muc-ICCs and hilar CCs and in mixed-ICCs and CLCs. S100P and MUC1 were significantly up-regulated in hilar CCs and muc-ICCs compared with mixed-ICCs and CLCs, whereas NCAM1 and ALB tended to be up-regulated in mixed-ICCs and CLCs compared with other tumors. KMC-1 showed significantly higher invasiveness than KMCH-1 and KMCH-2.
CONCLUSION: Muc-ICCs had a clinicopathological, immunohistochemical, and molecular profile similar to that of hilar CCs (from mucin-producing cholangiocytes), whereas mixed-ICCs had a profile similar to that of CLCs (thought to be of HPC origin), possibly reflecting their respective cells of origin.

Makovski A, Yaffe E, Shpungin S, Nir U
Intronic promoter drives the BORIS-regulated expression of FerT in colon carcinoma cells.
J Biol Chem. 2012; 287(9):6100-12 [PubMed] Free Access to Full Article Related Publications
Fer is an intracellular tyrosine kinase that accumulates in most mammalian tissues. A truncated variant of Fer, FerT, is uniquely detected in spermatogenic cells and is absent from normal somatic tissues. Here, we show that in addition to Fer, FerT also accumulates in CC cells and in metastases derived from colorectal tumors, but not in normal human cells. Thus, FerT is a new member of the CTA protein family. Transcription of the ferT gene in CC cells was found to be driven by an intronic promoter residing in intron 10 of the fer gene and to be regulated by another CTA, the Brother of the Regulator of Imprinted Sites (BORIS) transcription factor. BORIS binds to the ferT promoter and down-regulation of BORIS significantly decreases the expression of ferT in CC cells. Accumulation of the ferT RNA was also regulated by the DNA methylation status and paralleled the expression profile of the boris transcript. Accordingly, the intronic ferT promoter was found to be hypomethylated in cancer cells expressing the FerT protein, by comparison with non-expressers. Collectively, we show here that FerT is a new CTA whose accumulation in CC cells, commonly considered low CTA expressers, is controlled by a novel transcription regulatory mechanism.

Merhavi-Shoham E, Haga-Friedman A, Cohen CJ
Genetically modulating T-cell function to target cancer.
Semin Cancer Biol. 2012; 22(1):14-22 [PubMed] Related Publications
The adoptive transfer of tumor-specific T-lymphocytes holds promise for the treatment of metastatic cancer. Genetic modulation of T-lymphocytes using TCR transfer with tumor-specific TCR genes is an attractive strategy to generate anti-tumor response, especially against large solid tumors. Recently, several clinical trials have demonstrated the therapeutic potential of this approach which lead to impressive tumor regression in cancer patients. Still, several factors may hinder the clinical benefit of this approach, such as the type of cells to modulate, the vector configuration or the safety of the procedure. In the present review we will aim at giving an overview of the recent developments related to the immune modulation of the anti-tumor adaptive response using genetically engineered lymphocytes and will also elaborate the development of other genetic modifications to enhance their anti-tumor immune response.

Appaiah HN, Goswami CP, Mina LA, et al.
Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients.
Breast Cancer Res. 2011; 13(5):R86 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Serum microRNAs have the potential to be valuable biomarkers of cancer. This investigation addresses two issues that impact their utility: a) appropriate normalization controls and b) whether their altered levels persist in patients who are clinically free of the disease.
METHODS: Sera from 40 age-matched healthy women and 39 breast cancer patients without clinical disease at the time of serum collection were analyzed for microRNAs let-7f, miR-16, miR-21 and miR-155 using quantitative real-time PCR. U6 and 5S, which are transcribed by RNA polymerase III (RNAP-III) and the small nucleolar RNU44 (SNORD44), were also analyzed for normalization. Significant results from the initial study were verified using a second set of sera from 15 healthy patients, 15 breast cancer patients without clinical disease and 15 with metastatic disease, and a third set of 12 healthy and 18 patients with metastatic disease. U6 was further verified in the extended second cohort of 75 healthy and 68 breast cancer patients without clinical disease.
RESULTS: U6:SNORD44 ratio was consistently higher in breast cancer patients with or without active disease (fold change range 1.5-6.6, p value range 0.0003 to 0.05). This increase in U6:SNORD44 ratio was observed in the sera of both estrogen receptor-positive (ER+) and ER-negative breast cancer patients. MiR-16 and 5S, which are often used as normalization controls for microRNAs, showed remarkable experimental variability and thus are not ideal for normalization.
CONCLUSIONS: Elevated serum U6 levels in breast cancer patients irrespective of disease activity at the time of serum collection suggest a new paradigm in cancer; persistent systemic changes during cancer progression, which result in elevated activity of RNAP-III and/or the stability/release pathways of U6 in non-cancer tissues. Additionally, these results highlight the need for developing standards for normalization between samples in microRNA-related studies for healthy versus cancer and for inter-laboratory reproducibility. Our studies rule out the utility of miR-16, U6 and 5S RNAs for this purpose.

Ziv-Av A, Taller D, Attia M, et al.
RTVP-1 expression is regulated by SRF downstream of protein kinase C and contributes to the effect of SRF on glioma cell migration.
Cell Signal. 2011; 23(12):1936-43 [PubMed] Related Publications
Gliomas are characterized by increased infiltration into the surrounding normal brain tissue. We recently reported that RTVP-1 is highly expressed in gliomas and plays a role in the migration of these cells, however the regulation of RTVP-1 expression in these cells is not yet described. In this study we examined the role of PKC in the regulation of RTVP-1 expression and found that PMA and overexpression of PKCα and PKCε increased the expression of RTVP-1, whereas PKCδ exerted an opposite effect. Using the MatInspector software, we identified a SRF binding site on the RTVP-1 promoter. Chromatin immunoprecipitation (ChIP) assay revealed that SRF binds to the RTVP-1 promoter in U87 cells, and that this binding was significantly increased in response to serum addition. Moreover, silencing of SRF blocked the induction of RTVP-1 expression in response to serum. We found that overexpression of PKCα and PKCε increased the activity of the RTVP-1 promoter and the binding of SRF to the promoter. In contrast, overexpression of PKCδ blocked the increase in RTVP-1 expression in response to serum and the inhibitory effect of PKCδ was abrogated in cells expressing a SRFT160A mutant. SRF regulated the migration of glioma cells and its effect was partially mediated by RTVP-1. We conclude that RTVP-1 is a PKC-regulated gene and that this regulation is at least partly mediated by SRF. Moreover, RTVP-1 plays a role in the effect of SRF on glioma cell migration.

Brown J, Bothma H, Veale R, Willem P
Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.
World J Gastroenterol. 2011; 17(24):2909-23 [PubMed] Free Access to Full Article Related Publications
AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis.
METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software.
RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC.
CONCLUSION: The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

Ciravolo V, Huber V, Ghedini GC, et al.
Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy.
J Cell Physiol. 2012; 227(2):658-67 [PubMed] Related Publications
Exosomes are endosome-derived nanovesicles actively released into the extracellular environment and biological fluids, both under physiological and pathological conditions, by different cell types. We characterized exosomes constitutively secreted by HER2-overexpressing breast carcinoma cell lines and analyzed in vitro and in vivo their potential role in interfering with the therapeutic activity of the humanized antibody Trastuzumab and the dual tyrosine kinase inhibitor (TKI) Lapatinib anti-HER2 biodrugs. We show that exosomes released by the HER2-overexpressing tumor cell lines SKBR3 and BT474 express a full-length HER2 molecule that is also activated, although to a lesser extent than in the originating cells. Release of these exosomes was significantly modulated by the growth factors EGF and heregulin, two of the known HER2 receptor-activating ligands and naturally present in the surrounding tumor microenvironment. Exosomes secreted either in HER2-positive tumor cell-conditioned supernatants or in breast cancer patients' serum bound to Trastuzumab. Functional assays revealed that both xenogeneic and autologous HER2-positive nanovesicles, but not HER2-negative ones, inhibited Trastuzumab activity on SKBR3 cell proliferation. By contrast, Lapatinib activity on SKBR3 cell proliferation was unaffected by the presence of autologous exosomes. Together, these findings point to the role of HER2-positive exosomes in modulating sensitivity to Trastuzumab, and, consequently, to HER2-driven tumor aggressiveness.

Ofir M, Hacohen D, Ginsberg D
MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E.
Mol Cancer Res. 2011; 9(4):440-7 [PubMed] Related Publications
MicroRNAs (miR) are small noncoding RNA molecules that have recently emerged as critical regulators of gene expression and are often deregulated in cancer. In particular, miRs encoded by the miR-15a, miR-16-1 cluster seem to act as tumor suppressors. Here, we evidence that the miR-15a, miR-16-1 cluster and related miR-15b, miR-16-2 cluster comprise miRs regulated by E2F1, a pivotal transcription factor that can induce both proliferation and cell death. E2F1 is a critical downstream target of the tumor suppressor retinoblastoma (RB). The RB pathway is often inactivated in human tumors resulting in deregulated E2F activity. We show that expression levels of the 4 mature miRs, miR-15a, miR-16-1 and miR-15b, miR-16-2, as well as their precursor pri-miRNAs, are elevated upon activation of ectopic E2F1. Moreover, activation of endogenous E2Fs upregulates expression of these miRs and endogenous E2F1 binds their respective promoters. Importantly, we corroborate that miR-15a/b inhibits expression of cyclin E, the latter a key direct transcriptional target of E2F pivotal for the G(1)/S transition, raising the possibility that E2F1, miR-15, and cyclin E constitute a feed-forward loop that modulates E2F activity and cell-cycle progression. In support of this, ectopic expression of miR-15 inhibits the G(1)/S transition, and, conversely, inhibition of miR-15 expression enhances E2F1-induced upregulation of cyclin E1 levels. Furthermore, inhibition of both miR-15 and miR-16 enhances E2F1-induced G(1)/S transition. In summary, our data identify the miR-15 and miR-16 families as novel transcriptional targets of E2F, which, in turn, modulates E2F activity.

Reiter J, Pérez-Vilaró G, Scheller N, et al.
Hepatitis C virus RNA recombination in cell culture.
J Hepatol. 2011; 55(4):777-83 [PubMed] Related Publications
BACKGROUND & AIMS: The Hepatitis C virus (HCV) exhibits large genetic diversity, both on a global scale and at the level of the infected individual. A major underlying mechanism of the observed sequence differences is error-prone virus replication by the viral RNA polymerase NS5B. In addition, based on phylogenetic comparisons of patient-derived HCV sequences, there is evidence of HCV recombination. However, to date little is known about the frequency by which recombination events occur in HCV and under what conditions recombination may become important in HCV evolution. We, therefore, aimed to set up an experimental model system that would allow us to analyze and to characterize recombination events during HCV replication.
METHODS: A neomycin-selectable, HCV replicon-based recombination detection system was established. HCV replicons were mutated within either the neomycin-phosphotransferase gene or the NS5B polymerase. Upon co-transfection of hepatic cells lines, recombination between the mutated sites is necessary to restore the selectable phenotype.
RESULTS: Recombinants were readily detected with frequencies correlating to the distance between the mutations. The recombinant frequency normalized to a crossover range of one nucleotide was around 4 × 10(-8).
CONCLUSIONS: An experimental system to select for HCV recombinants in cell culture was successfully established. It allowed deriving first estimates of recombinant frequencies. Based on these, recombination in HCV seems rare. However, due to the rapid virus turnover and the large number of HCV-infected liver cells in vivo, it is expected that recombination will be of biological importance when strong selection pressures are operative.

Efroni S, Ben-Hamo R, Edmonson M, et al.
Detecting cancer gene networks characterized by recurrent genomic alterations in a population.
PLoS One. 2011; 6(1):e14437 [PubMed] Free Access to Full Article Related Publications
High resolution, system-wide characterizations have demonstrated the capacity to identify genomic regions that undergo genomic aberrations. Such research efforts often aim at associating these regions with disease etiology and outcome. Identifying the corresponding biologic processes that are responsible for disease and its outcome remains challenging. Using novel analytic methods that utilize the structure of biologic networks, we are able to identify the specific networks that are highly significantly, nonrandomly altered by regions of copy number amplification observed in a systems-wide analysis. We demonstrate this method in breast cancer, where the state of a subset of the pathways identified through these regions is shown to be highly associated with disease survival and recurrence.

de Sousa M
An outsider's perspective--ecotaxis revisited: an integrative review of cancer environment, iron and immune system cells.
Integr Biol (Camb). 2011; 3(4):343-9 [PubMed] Related Publications
Lymphoid cell and tumor cell migration share similarities: 1. migration to specific microenvironments; 2. increased microvasculature with increased growth; 3. cell division. At the same time, contrasting aspects between the two merit attention: 1. failure of tumors to return to microvasculature quiescence; 2. failure of malignant cells to stop dividing; 3. failure of tumor cells to re-enter the circulation after returning to a non-activated phenotype. Analysis of these contrasting aspects leads to the reviewing of unexpected roles of immune cells in the tumor environment, recent work on ferroportin expression with lack of iron export by tumor cells, iron export by M2 macrophages, and deficient dendritic cells (DCs) in the tumor environment. DCs in lymph nodes have recently been found to bring lymph node vasculature to quiescence after antigen stimulation. Contrary to current dogma, the evidence is that some immune system cells in the tumor environment may be favoring regulators instead of diminishing tumor growth. In addition, recent data herein reviewed will make it difficult not to consider iron and iron gene expression as relevant components of the tumor environment. Finally, I conclude with wondering how much longer what I call the 'Hunter Paradigm' will dominate cancer research and immunology and how timely it is to acknowledge in the first decade of a new century, Mina Bissell as a pioneer in the change of that paradigm in Cancer Research. "Suppose he'd listened to the erudite committee; He would have only found where not to look" WH Auden.

Zuckerman NS, McCann KJ, Ottensmeier CH, et al.
Ig gene diversification and selection in follicular lymphoma, diffuse large B cell lymphoma and primary central nervous system lymphoma revealed by lineage tree and mutation analyses.
Int Immunol. 2010; 22(11):875-87 [PubMed] Related Publications
Follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL) and primary central nervous system lymphoma are B cell malignancies. FL and DLBCL have a germinal center origin. We have applied mutational analyses and a novel algorithm for quantifying shape properties of mutational lineage trees to investigate the nature of the diversification, somatic hypermutation and selection processes that affect B cell clones in these malignancies and reveal whether they differ from normal responses. Lineage tree analysis demonstrated higher diversification and mutations per cell in the lymphoma clones. This was caused solely by the longer diversification times of the malignant clones, as their recent diversification processes were similar to those of normal responses, implying similar mutation frequencies. Since previous analyses of antigen-driven selection were shown to yield false positives, we performed a corrected analysis of replacement and silent mutation patterns, which revealed selection against replacement mutations in the framework regions, responsible for the structural integrity of the B cell receptor, but not for positive selection for replacements in the complementary determining regions. Most replacements, however, were neutral or conservative, suggesting that if at all selection operates in these malignancies it is for structural B cell receptor integrity but not for antigen binding.

Resta N, Giorda R, Bagnulo R, et al.
Breakpoint determination of 15 large deletions in Peutz-Jeghers subjects.
Hum Genet. 2010; 128(4):373-82 [PubMed] Related Publications
The Peutz-Jeghers Syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers. STK11/LKB1 (hereafter named STK11) germline mutations account for the large majority of PJS cases whereas large deletions account for about 30% of the cases. We report here the first thorough molecular characterization of 15 large deletions identified in a cohort of 51 clinically well-characterized PJS patients. The deletions were identified by MLPA analysis and characterized by custom CGH-array and quantitative PCR to define their boundaries. The deletions, ranging from 2.9 to 180 kb, removed one or more loci contiguous to the STK11 gene in six patients, while partial STK11 gene deletions were present in the remaining nine cases. By means of DNA sequencing, we were able to precisely characterize the breakpoints in each case. Of the 30 breakpoints, 16 were located in Alu elements, revealing non-allelic homologous recombination (NAHR) as the putative mechanism for the deletions of the STK11 gene, which lays in a region with high Alu density. In the remaining cases, other mechanisms could be hypothesized, such as microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). In conclusion we here demonstrated the non-random occurrence of large deletions associated with PJS. All our patients had a classical PJS phenotype, which shows that haploinsufficiency for SBNO2, C19orf26, ATP5D, MIDN, C19orf23, CIRBP, C19orf24,and EFNA2, does not apparently affect their clinical phenotype.

Bialer G, Horovitz-Fried M, Ya'acobi S, et al.
Selected murine residues endow human TCR with enhanced tumor recognition.
J Immunol. 2010; 184(11):6232-41 [PubMed] Related Publications
TCR-gene transfer can mediate tumor regression in terminally ill melanoma patients. However, the formation of mix dimers between endogenous and transduced TCR chains may result in the surface dilution of the introduced TCR, which translates in poorer cellular avidity. Recently, we reported that murinization of human TCRs (i.e., the replacement of human C regions by murine ones) can improve TCR function. However, because xenogenic sequences may trigger immunogenicity, we sought to identify the essential murine residues that mediate this enhanced functional effect. We constructed murine/human chimeras of alpha- and beta-chains and assessed for their surface expression and function. We identified an evolutionary-unique lysine residue in Cbeta, central to murine TCR function. The mapping of Calpha revealed that a few short stretches of amino acids play a role in enhancing TCR function, one of the most important ones being the SDVP sequence. This information led us to design improved and minimally murinized human TCR C regions that mediate increased tumor recognition. This also enabled us to suggest a structural model that could explain the role of the aforementioned residues in promoting the preferential pairing and stability of murinized TCRs. Overall, these findings could have implications for the treatment of malignant diseases using TCR-gene transfer.

Ben Shachar B, Feldstein O, Hacohen D, Ginsberg D
The tumor suppressor maspin mediates E2F1-induced sensitivity of cancer cells to chemotherapy.
Mol Cancer Res. 2010; 8(3):363-72 [PubMed] Related Publications
The E2F1 transcription factor is a critical downstream target of the tumor suppressor RB. When activated, E2F1 can induce cell proliferation and/or apoptosis. In addition, E2F1 overexpression sensitizes cancer cells to chemotherapeutic drugs. In a screen for genes that are regulated synergistically by E2F1 and chemotherapy in cancer cells, we identified the proapoptotic tumor suppressor gene maspin (mammary serine protease inhibitor) as a novel E2F1-regulated gene. In line with being an E2F-regulated gene, maspin expression is inhibited by short hairpin RNA directed against E2F1 and increases upon activation of endogenous E2F. Furthermore, maspin mRNA and protein levels are elevated upon activation of exogenous E2F1. Importantly, we show that E2F1-mediated upregulation of maspin is enhanced by chemotherapeutic drugs, and inhibition of maspin expression significantly impairs the ability of E2F1 to promote chemotherapy-induced apoptosis. Summarily, our data indicate that maspin is an important effector of E2F1-induced chemosensitization.

Komiya K, Sueoka-Aragane N, Sato A, et al.
Expression of Mina53, a novel c-Myc target gene, is a favorable prognostic marker in early stage lung cancer.
Lung Cancer. 2010; 69(2):232-8 [PubMed] Related Publications
Mina53, a novel target gene product of c-Myc, is overexpressed in various malignancies. We previously demonstrated that Mina53 is overexpressed in lung cancer patients from the early clinical stages. In this paper, the association between disease prognosis and Mina53 expression in lung cancer patients is analyzed; we found that overexpression of Mina53 in lung cancer patients is associated with favorable prognosis. Statistical analysis using the Kaplan-Meier method showed that patients with negative staining for Mina53 had significantly shorter survival than patients with positive staining for Mina53, especially in stage I or with squamous cell carcinoma. Because the major cause of death in lung cancer patients after surgery is distant metastasis, the effect on cancer cell invasiveness was analyzed for the mechanisms involved in the association with favorable outcome. Overexpression of Mina53 in H226B, a lung squamous cell carcinoma cell line, inhibited cancer cell invasion. Transfection with mina53 shRNA increased the number of invading cells. These results suggest that Mina53 immunostaining is a useful prognostic marker--especially in the early stage of lung cancer--and that Mina53 negative patients should be managed particularly carefully after surgery.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MINA, Cancer Genetics Web: http://www.cancer-genetics.org/MINA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999