Gene Summary

Gene:SOD1; superoxide dismutase 1
Aliases: ALS, SOD, ALS1, IPOA, hSod1, HEL-S-44, homodimer
Summary:The protein encoded by this gene binds copper and zinc ions and is one of two isozymes responsible for destroying free superoxide radicals in the body. The encoded isozyme is a soluble cytoplasmic protein, acting as a homodimer to convert naturally-occuring but harmful superoxide radicals to molecular oxygen and hydrogen peroxide. The other isozyme is a mitochondrial protein. Mutations in this gene have been implicated as causes of familial amyotrophic lateral sclerosis. Rare transcript variants have been reported for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:superoxide dismutase [Cu-Zn]
Source:NCBIAccessed: 13 March, 2017


What does this gene/protein do?
Show (75)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Risk Factors
  • Polymorphism
  • Prostate Cancer
  • Genetic Variation
  • Superoxide Dismutase
  • Glutathione Peroxidase
  • Antioxidants
  • Cancer RNA
  • Breast Cancer
  • siRNA
  • Mutation
  • Cell Proliferation
  • Messenger RNA
  • bcl-X Protein
  • Glutathione
  • Neuroblastoma
  • United Kingdom
  • Case-Control Studies
  • Enzymologic Gene Expression Regulation
  • Apoptosis
  • Superoxide Dismutase-1
  • Chromosome 21
  • Cell Survival
  • X-Linked Inhibitor of Apoptosis Protein
  • Genotype
  • Response Elements
  • Mitochondria
  • Genetic Predisposition
  • GSTP1
  • Catalase
  • Antineoplastic Agents
  • Western Blotting
  • Gene Expression Profiling
  • Cancer Gene Expression Regulation
  • Amyotrophic Lateral Sclerosis
  • Transfection
  • Gene Expression
  • Oligonucleotide Array Sequence Analysis
  • Single Nucleotide Polymorphism
  • Oxidative Stress
Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SOD1 (cancer-related)

Wieczorek E, Jablonowski Z, Tomasik B, et al.
Different Gene Expression and Activity Pattern of Antioxidant Enzymes in Bladder Cancer.
Anticancer Res. 2017; 37(2):841-848 [PubMed] Related Publications
The aim of this study was to evaluate the possible role in and contribution of antioxidant enzymes to bladder cancer (BC) etiology and recurrence after transurethral resection (TUR). We enrolled 40 patients with BC who underwent TUR and 100 sex- and age-matched healthy controls. The analysis was performed at diagnosis and recurrence, taking into account the time of recurrence. Gene expression of catalase (CAT), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (SOD2) was determined in peripheral blood leukocytes. The activity of glutathione peroxidase 3 (GPX3) was examined in plasma, and GPX1 and copper-zinc containing superoxide dismutase 1 (SOD1) in erythrocytes. SOD2 and GPX1 expression and GPX1 and SOD1 activity were significantly higher in patients at diagnosis of BC in comparison to controls. In patients who had recurrence earlier than 1 year from TUR, CAT and SOD2 expression was lower (at diagnosis p=0.024 and p=0.434, at recurrence p=0.022 and p=0.010), while the GPX1 and GPX3 activity was higher (at diagnosis p=0.242 and p=0.394, at recurrence p=0.019 and p=0.025) compared to patients with recurrence after 1 year from TUR. This study revealed that the gene expression and activity of the antioxidant enzymes are elevated in blood of patients with BC, although a low expression of CAT might contribute to the recurrence of BC, in early prognosis.

Feng J, Yan PF, Zhao HY, et al.
Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway.
Biomed Res Int. 2016; 2016:1450843 [PubMed] Free Access to Full Article Related Publications
Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.

Kimáková P, Solár P, Fecková B, et al.
Photoactivated hypericin increases the expression of SOD-2 and makes MCF-7 cells resistant to photodynamic therapy.
Biomed Pharmacother. 2017; 85:749-755 [PubMed] Related Publications
Photoactivated hypericin increased production of reactive oxygen species in human breast adenocarcinoma MCF-7 as well as in MDA-MB-231 cells 1h after photodynamic therapy. On the other hand, reactive oxygen species dropped 3h after photodynamic therapy with hypericin, but only in MCF-7 cells, whereas in MDA-MB-231 cells remained elevated. The difference in the dynamics of reactive oxygen species after hypericin activation was related to increased activity of SOD-2 in MCF-7 cells compared to MDA-MB-231 cells. Indeed, photodynamic therapy with hypericin significantly increased SOD-2 activity in MCF-7 cells, but only slightly in MDA-MB-231 cells. In this regard, SOD-2 activity correlated well with enhanced both mRNA expression as well as SOD-2 protein level in MCF-7 cells. The role of SOD-2 in the resistance of MCF-7 cells to photodynamic therapy with hypericin was monitored using SOD-2 inhibitor - 2-methoxyestradiol. Interestingly, the combination of photodynamic therapy with hypericin and methoxyestradiol sensitized MCF-7 cells to photodynamic therapy and significantly reduced its clonogenic ability. Furthermore, methoxyestradiol potentiated the activation of caspase 3/7 and apoptosis induced by photodynamic therapy with hypericin.

Guo H, Zhang N, Liu D, et al.
Inhibitory effect on the proliferation of human heptoma induced by cell-permeable manganese superoxide dismutase.
Biomed Pharmacother. 2016; 83:1379-1386 [PubMed] Related Publications
Mitochondrial antioxidant manganese superoxide dismutase (MnSOD) belongs to a group of genes whose expression is generally decreased significantly in patients with hepatoma. The proliferation of cancer cells with low expression of MnSOD exhibit high sensitivity to the elevated expression of MnSOD. However, due to the lack of ability to penetrate the cell membrane, the direct use and study of SOD for cancer treatment are largely hampered. In this work, cell penetrating peptide TAT was fused to the N-terminus of MnSOD to facilitate the penetration of MnSOD through cell membranes. Results showed that TAT-MnSOD wt treatment induced evident inhibitory effect on the proliferation of heptoma, with minimal effect on normal cells. It was further demonstrated that both the penetration of cells and enzymatic activity of MnSOD are essential to its inhibitory function, because only TAT-MnSOD wt, not inactive TAT-MnSOD mutant or MnSOD could successfully inhibit cell proliferation and reduce the intra-celluar reactive oxygen species (ROS). In addition, the lower oxidative stress delayed the cell cycle at G2/M and significantly slowed HepG2 cell growth in association with the dephosphorylation of survivin. Our results help in understanding the regulatory effects of MnSOD on cell viability and redox homestasis of heptoma and promise potential applications of TAT-MnSOD wt for clinical cancer therapy.

Gill BS, Kumar S, Navgeet
Evaluating anti-oxidant potential of ganoderic acid A in STAT 3 pathway in prostate cancer.
Mol Biol Rep. 2016; 43(12):1411-1422 [PubMed] Related Publications
Evaluating anti-oxidant potential of Ganoderic acid A in STAT 3 pathway in Prostate cancer. Molecular docking and ADMET activities of different isoforms of ganoderic acid on STAT 3 pathway were performed by Maestro 9.6 (Schrödinger Inc). The ganoderic acid A is best-docked among isoforms which analyses the expression level of antioxidant and STAT 3 pathway in PC-3 cells. The receptor-based molecular docking reveals the best binding interaction of SH2 domain of STAT3 and ganoderic acid A with GScore (-6.134), kcal/mol, Lipophilic EvdW (-1.83), Electro (-1.1), Glide emodel (-31.857), H bond (1.98), MM-GBSA (-69.555). The molecular docking QikProp analyzed the absorption, distribution, metabolism, excretion, and toxicity (ADME/T). The ganoderic acid A is best-docked among isoforms which downregulates the expression of STAT 3 in PC-3 cells. Moreover, ganoderic acid A inhibits proliferation, viability, ROS, DPPH, and analyzed the expression of SOD1, SOD2, and SOD3 by Real time PCR in a PC-3 cell in a dose-dependent manner. Molecular docking revealed the mechanistic binding of Ganoderic acid A in STAT3 signaling, which inhibits the proliferation, viability, and ROS in PC-3 cells.

Lim S, Liu H, Madeira da Silva L, et al.
Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α.
Cancer Res. 2016; 76(8):2231-42 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
B7-H3 is a member of B7 family of immunoregulatory transmembrane glycoproteins expressed by T cells. While B7-H3 overexpression is associated with poor outcomes in multiple cancers, it also has immune-independent roles outside T cells and its precise mechanistic contributions to cancer are unclear. In this study, we investigated the role of B7-H3 in metabolic reprogramming of cancer cells in vitro and in vivo We found that B7-H3 promoted the Warburg effect, evidenced by increased glucose uptake and lactate production in B7-H3-expressing cells. B7-H3 also increased the protein levels of HIF1α and its downstream targets, LDHA and PDK1, key enzymes in the glycolytic pathway. Furthermore, B7-H3 promoted reactive oxygen species-dependent stabilization of HIF1α by suppressing the activity of the stress-activated transcription factor Nrf2 and its target genes, including the antioxidants SOD1, SOD2, and PRX3. Metabolic imaging of human breast cancer xenografts in mice confirmed that B7-H3 enhanced tumor glucose uptake and tumor growth. Together, our results illuminate the critical immune-independent contributions of B7-H3 to cancer metabolism, presenting a radically new perspective on B7 family immunoregulatory proteins in malignant progression. Cancer Res; 76(8); 2231-42. ©2016 AACR.

Chaisiriwong L, Wanitphakdeedecha R, Sitthinamsuwan P, et al.
A Case-Control Study of Involvement of Oxidative DNA Damage and Alteration of Antioxidant Defense System in Patients with Basal Cell Carcinoma: Modulation by Tumor Removal.
Oxid Med Cell Longev. 2016; 2016:5934024 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Oxidative damage has been suggested to play a role in the pathogenesis of basal cell carcinoma (BCC). This study illustrated an involvement of oxidative DNA damage and changes in antioxidant defenses in BCC by conducting a case-control study (24 controls and 24 BCC patients) and assessing urinary 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dGuo), plasma antioxidant defenses including catalase (CAT), glutathione peroxidase (GPx), NQO1, and total superoxide dismutase (SOD) activities, and glutathione (GSH) levels before surgery and 1 month after surgery. 8-oxo-dGuo expressions as well as protein and mRNA expressions of DNA repair enzyme hOGG1 and antioxidant defenses (CAT, GCLC, GPx, Nrf2, and MnSOD) in nonneoplastic epidermis of control and BCC tissues were also determined. This study observed induction in urinary 8-oxo-dGuo, increased 8-oxo-dGuo expression, and reduced hOGG1 protein and mRNA in BCC tissues, decreased activities of CAT, GPx, and NQO1, but elevated SOD activities and GSH levels in BCC patients and reduction of all antioxidant proteins and genes studied in BCC tissues. Furthermore, decreased plasma antioxidant activities in BCC patients were restored at 1 month after operation compared with preoperative levels. Herein, we concluded that BCC patients were associated with oxidative DNA damage and depletion of antioxidant defenses and surgical removal of BCC correlated with improved redox status.

Guo H, Liu J, Ben Q, et al.
The aspirin-induced long non-coding RNA OLA1P2 blocks phosphorylated STAT3 homodimer formation.
Genome Biol. 2016; 17:24 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND: Although the chemopreventive effects of aspirin have been extensively investigated, the roles of many cell components, such as long non-coding RNAs, in these effects are still not completely understood.
RESULTS: We identify an aspirin-induced upregulated lncRNA, OLA1P2, in human colorectal cancer. Aspirin induces demethylation of the FOXD3 promoter and promotes expression of the FOXD3 gene. Subsequently, upregulated FOXD3 protein transcriptionally activates lncRNA OLA1P2 expression. OLA1P2 upregulation markedly affects STAT3 signaling pathway activity by inhibiting the nuclear import of phosphorylated STAT3. The phosphorylation of tyrosine-705 of STAT3 is the first step in OLA1P2 binding, and the formation of phosphorylated STAT3 homodimers is subsequently blocked. OLA1P2 interacts directly with STAT3 due to OLA1P2 sharing the same conservative STAT3 transcription response element as STAT3 targets. Regular use of aspirin dramatically decreases the number of metastatic nodules of cancer cells in immunodeficient mouse lungs, and OLA1P2 silencing markedly weakens the anti-metastatic activity of aspirin in the lungs. Additionally, low OLA1P2 levels are associated with malignant transformation and lower overall survival in cancers.
CONCLUSIONS: The present study finds that the aspirin-FOXD3-OLA1P2-STAT3 axis exhibits exciting anticancer effects and provides new insights into the chemopreventive mechanisms underlying aspirin use.

Velmurugan BK, Yang HH, Sung PJ, Weng CF
Excavatolide B inhibits nonsmall cell lung cancer proliferation by altering peroxisome proliferator activated receptor gamma expression and PTEN/AKT/NF-Kβ expression.
Environ Toxicol. 2017; 32(1):290-301 [PubMed] Related Publications
Marine organisms are proven to be rich source of secondary metabolites that can be used to treat various diseases. Excavatolide B (Exc.B), the most abundant metabolite was found in the marine coral Briareum excavatum exhibits cytotoxic effects against lung cancer cell. Treatment of the A549 cells with Exc.B significantly reduced its cell viability and induced cell cycle arrest at subG1 phase in a dose- and time-dependent manner, respectively. Apoptosis induction by Exc.B was further confirmed by decreased pro-caspase 3 expressions and increased proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) expression. Furthermore, Exc.B increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) and also decreased the antioxidant enzymes such as, Catalase, GPx, SOD, GST, and GSH. The proteomic analysis data revealed that total thirty six proteins were altered by Exc.B. STRING database showed that most of the altered proteins have no interaction between each other. Based on these data, KSR1, RuVBL2, PPAR-γ, and Tenascin X proteins were chosen to validate the 2DE data by Western blotting. Additional experiments demonstrated that Exc.B induced PTEN expression and inhibited pAKT and NF-kB expression. These results provide a novel insight into mechanisms underlying the inhibition of A549 cells growth by excavatolide B. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 290-301, 2017.

Naushad SM, Ramaiah MJ, Pavithrakumari M, et al.
Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.
Gene. 2016; 580(2):159-68 [PubMed] Related Publications
In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1.

Cacabelos D, Ramírez-Núñez O, Granado-Serrano AB, et al.
Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS.
Acta Neuropathol Commun. 2016; 4:3 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A.
RESULTS AND CONCLUSIONS: Our results show that overexpression of hSOD1-G93A in transgenic mice decreased efficiency of mitochondrial oxidative phosphorylation, located at complex I, revealing a temporal delay in females with respect to males associated with a parallel increase in selected markers of protein oxidative damage. Further, females exhibit a fatty acid profile with higher levels of docosahexaenoic acid at 30 days. Mechanistic studies showed that hSOD1-G93A overexpression in N2A cells reduced complex I function, a defect prevented by 17β-estradiol pretreatment. In conclusion, ALS-associated SOD1 mutation leads to delayed mitochondrial dysfunction in female mice in comparison with males, in part attributable to the higher oestrogen levels of the former. This study is important in the effort to further understanding of whether different degrees of spinal cord mitochondrial dysfunction could be disease modifiers in ALS.

Codini M, Cataldi S, Lazzarini A, et al.
Why high cholesterol levels help hematological malignancies: role of nuclear lipid microdomains.
Lipids Health Dis. 2016; 15:4 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND: Diet and obesity are recognized in the scientific literature as important risk factors for cancer development and progression. Hypercholesterolemia facilitates lymphoma lymphoblastic cell growth and in time turns in hypocholesterolemia that is a sign of tumour progression. The present study examined how and where the cholesterol acts in cancer cells when you reproduce in vitro an in vivo hypercholesterolemia condition.
METHODS: We used non-Hodgkin's T cell human lymphoblastic lymphoma (SUP-T1 cell line) and we studied cell morphology, aggressiveness, gene expression for antioxidant proteins, polynucleotide kinase/phosphatase and actin, cholesterol and sphingomyelin content and finally sphingomyelinase activity in whole cells, nuclei and nuclear lipid microdomains.
RESULTS: We found that cholesterol changes cancer cell morphology with the appearance of protrusions together to the down expression of β-actin gene and reduction of β-actin protein. The lipid influences SUP-T1 cell aggressiveness since stimulates DNA and RNA synthesis for cell proliferation and increases raf1 and E-cadherin, molecules involved in invasion and migration of cancer cells. Cholesterol does not change GRX2 expression but it overexpresses SOD1, SOD2, CCS, PRDX1, GSR, GSS, CAT and PNKP. We suggest that cholesterol reaches the nucleus and increases the nuclear lipid microdomains known to act as platform for chromatin anchoring and gene expression.
CONCLUSION: The results imply that, in hypercholesterolemia conditions, cholesterol reaches the nuclear lipid microdomains where activates gene expression coding for antioxidant proteins. We propose the cholesterolemia as useful parameter to monitor in patients with cancer.

Chen SH, Zhang Y, Van Horn RD, et al.
Oncogenic BRAF Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120.
Cancer Discov. 2016; 6(3):300-15 [PubMed] Related Publications
UNLABELLED: We have identified previously undiscovered BRAF in-frame deletions near the αC-helix region of the kinase domain in pancreatic, lung, ovarian, and thyroid cancers. These deletions are mutually exclusive with KRAS mutations and occur in 4.21% of KRAS wild-type pancreatic cancer. siRNA knockdown in cells harboring BRAF deletions showed that the MAPK activity and cell growth are BRAF dependent. Structurally, the BRAF deletions are predicted to shorten the β3/αC-helix loop and hinder its flexibility by locking the helix in the active αC-helix-in conformation that favors dimer formation. Expression of L485-P490-deleted BRAF is able to transform NIH/3T3 cells in a BRAF dimer-dependent manner. BRAF homodimer is confirmed to be the dominant RAF dimer by proximity ligation assays in BRAF deletion cells, which are resistant to the BRAF inhibitor vemurafenib and sensitive to LY3009120, a RAF dimer inhibitor. In tumor models with BRAF deletions, LY3009120 has shown tumor growth regression, whereas vemurafenib is inactive.
SIGNIFICANCE: This study discovered oncogenic BRAF deletions with a distinct activation mechanism dependent on the BRAF dimer formation in tumor cells. LY3009120 is active against these cells and represents a potential treatment option for patients with cancer with these BRAF deletions, or other atypical BRAF mutations where BRAF functions as a dimer.

Furtek SL, Backos DS, Matheson CJ, Reigan P
Strategies and Approaches of Targeting STAT3 for Cancer Treatment.
ACS Chem Biol. 2016; 11(2):308-18 [PubMed] Related Publications
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of genes related to cell cycle, cell survival, and immune response associated with cancer progression and malignancy in a number of cancer types. Once activated, STAT3 forms a homodimer and translocates to the nucleus where it binds DNA promoting the translation of target genes associated with antiapoptosis, angiogenesis, and invasion/migration. In normal cells, levels of activated STAT3 remain transient; however, STAT3 remains constitutively active in approximately 70% of human solid tumors. The pivotal role of STAT3 in tumor progression has promoted a campaign in drug discovery to identify small molecules that disrupt the function of STAT3. A range of approaches have been used to identify novel small molecule inhibitors of STAT3, including high-throughput screening of chemical libraries, computational-based virtual screening, and fragment-based design strategies. The most common approaches in targeting STAT3 activity are either via the inhibition of tyrosine kinases capable of phosphorylating and thereby activating STAT3 or by preventing the formation of functional STAT3 dimers through disruption of the SH2 domains. However, the targeting of the STAT3 DNA-binding domain and disruption of binding of STAT3 to its DNA promoter have not been thoroughly examined, mainly due to the lack of adequate assay systems. This review summarizes the development of STAT3 inhibitors organized by the approach used to inhibit STAT3, the current inhibitors of each class, and the assay systems used to evaluate STAT3 inhibition and offers an insight into future approaches for small molecule STAT3 inhibitor development.

Bhakkiyalakshmi E, Suganya N, Sireesh D, et al.
Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells.
Eur J Pharmacol. 2016; 772:92-8 [PubMed] Related Publications
The aim of the present study was to investigate the effect of carvacrol, a phenolic monoterpenoid on the induction of apoptosis in HL-60 (Human acute promyelocytic leukemia cells) and Jurkat (human T lymphocyte cells) cells. Carvacrol showed a potent cytotoxic effect on both cells with dose-dependent increase in the level of free radical formation as measured by an oxidation sensitive fluorescent dye, 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) levels. The reduction in the level of antioxidants such as catalase (CAT) and superoxide dismutase (SOD) (P<0.05) was observed in carvacrol-treated cells. The major cytotoxic effect appears to be intervened by the induction of apoptotic cell death as assessed by annexin-V labeling assay using flow cytometry. Western blot analysis showed that Bax expression was increased, whereas Bcl-2 expression was significantly decreased in carvacrol exposed HL-60 cells and Jurkat cells. Further studies revealed that the dissipation of mitochondrial membrane potential of intact cells was accompanied by the activation of caspase-3. Our results found that the potential mechanism of cellular apoptosis induced by carvacrol is mediated by caspase-3 and is associated with the collapse of mitochondrial membrane potential, generation of free radicals, and depletion of the intracellular antioxidant pool.

Silvis AM, McCormick ML, Spitz DR, Kiningham KK
Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid.
Redox Biol. 2016; 7:88-96 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal differentiation marker [neurofilament M (NF-M)] in human SK-N-SH neuroblastoma cells treated with 10μM all-trans retinoic acid (ATRA) showed significantly increased expression in accordance with reduced cell number. This was accompanied by an increase in MitoSOX and DCFH2 oxidation that could be indicative of increased steady-state levels of reactive oxygen species (ROS) such as O2(•-) and H2O2, which correlated with increased levels of MnSOD activity and immuno-reactive protein. Furthermore PEG-catalase inhibited the DCFH2 oxidation signal to a greater extent in the ATRA-treated cells (relative to controls) at 96h indicating that as the cells became more differentiated, steady-state levels of H2O2 increased in the absence of increases in peroxide-scavenging antioxidants (i.e., glutathione, glutathione peroxidase, and catalase). In addition, ATRA-induced stimulation of NF-M at 48 and 72h was enhanced by decreasing SOD activity using siRNA directed at MnSOD. Finally, treatment with ATRA for 96h in the presence of MnSOD siRNA or PEG-catalase inhibited ATRA induced increases in NF-M expression. These results provide strong support for the hypothesis that changes in steady-state levels of O2(•-) and H2O2 significantly contribute to the process of ATRA-induced differentiation in neuroblastoma, and suggest that retinoid therapy for neuroblastoma could potentially be enhanced by redox-based manipulations of superoxide metabolism to improve patient outcome.

Azzolin VF, Cadoná FC, Machado AK, et al.
Superoxide-hydrogen peroxide imbalance interferes with colorectal cancer cells viability, proliferation and oxaliplatin response.
Toxicol In Vitro. 2016; 32:8-15 [PubMed] Related Publications
The role of superoxide dismutase manganese dependent enzyme (SOD2) in colorectal cancer is presently insufficiently understood. Some studies suggest that high SOD2 levels found in cancer tissues are associated with cancer progression. However, thus far, the role of colorectal cancer superoxide-hydrogen peroxide imbalance has not yet been studied. Thus, in order to address this gap in extant literature, we performed an in vitro analysis using HT-29 colorectal cell line exposed to paraquat, which generates high superoxide levels, and porphyrin, a SOD2 mimic molecule. The effect of these drugs on colorectal cancer cell response to oxaliplatin was evaluated. At 0.1 μM concentration, both drugs exhibited cytotoxic and antiproliferative effect on colorectal cancer cells. However, this effect was more pronounced in cells exposed to paraquat. Paraquat also augmented the oxaliplatin cytotoxic and antiproliferative effects by increasing the number of apoptosis events, thus causing the cell cycle arrest in the S and M/G2 phases. The treatments were also able to differentially modulate genes related to apoptosis, cell proliferation and antioxidant enzyme system. However, the effects were highly variable and the results obtained were inconclusive. Nonetheless, our findings support the hypothesis that imbalance caused by increased hydrogen peroxide levels could be beneficial to cancer cell biology. Therefore, the use of therapeutic strategies to decrease hydrogen peroxide levels mainly during oxaliplatin chemotherapy could be clinically important to the outcomes of colorectal cancer treatment.

Polgárová K, Vášková M, Froňková E, et al.
Quantitative expression of regulatory and differentiation-related genes in the key steps of human hematopoiesis: The LeukoStage Database.
Differentiation. 2016 Jan-Mar; 91(1-3):19-28 [PubMed] Related Publications
Differentiation during hematopoiesis leads to the generation of many cell types with specific functions. At various stages of maturation, the cells may change pathologically, leading to diseases including acute leukemias (ALs). Expression levels of regulatory molecules (such as the IKZF, GATA, HOX, FOX, NOTCH and CEBP families, as well as SPI-1/PU1 and PAX5) and lineage-specific molecules (including CD2, CD14, CD79A, and BLNK) may be compared between pathological and physiological cells. Although the key steps of differentiation are known, the available databases focus mainly on fully differentiated cells as a reference. Precursor cells may be a more appropriate reference point for diseases that evolve at immature stages. Therefore, we developed a quantitative real-time polymerase chain reaction (qPCR) array to investigate 90 genes that are characteristic of the lymphoid or myeloid lineages and/or are thought to be involved in their regulation. Using this array, sorted cells of granulocytic, monocytic, T and B lineages were analyzed. For each of these lineages, 3-5 differentiation stages were selected (17 stages total), and cells were sorted from 3 different donors per stage. The qPCR results were compared to similarly processed AL cells of lymphoblastic (n=18) or myeloid (n=6) origins and biphenotypic AL cells of B cell origin with myeloid involvement (n=5). Molecules characteristic of each lineage were found. In addition, cells of a newly discovered switching lymphoblastic AL (swALL) were sorted at various phases during the supposed transdifferentiation from an immature B cell to a monocytic phenotype. As demonstrated previously, gene expression changed along with the immunophenotype. The qPCR data are publicly available in the LeukoStage Database in which gene expression in malignant and non-malignant cells of different lineages can be explored graphically and differentially expressed genes can be identified. In addition, the LeukoStage Database can aid the functional analyses of next-generation sequencing data.

Latocha M, Zięba A, Polaniak R, et al.
Acta Pol Pharm. 2015 Sep-Oct; 72(5):909-15 [PubMed] Related Publications
Cancer therapy is challenging for scientists because of low effectiveness of so far existing therapies (especially in case of great invasiveness and advanced tumor stage). Such need for new drug development and search for more efficient new findings in therapeutical applications is therefore still valid. There are also conducted studies on modifying so far existing drugs and their new methods of usage in oncology practice. One of them is phenothiazine and its derivatives which are used in psychiatric treatment for years. They also exhibit antiprion, antiviral, antibacterial and antiprotozoal properties. Cytotoxic activity, influence on proliferation, ability to induce apoptosis suggest also a possibility of phenothiazine derivatives usage in cancer cells termination. The aim of our the study was to evaluate the influence of two amine derivatives of phenothiazine on cancer cells in vitro. Amelanotic melanoma C-32 cell line (ATCC) and glioma SNB-19 cells (DSMZ) were used in this study and two derivatives were analyzed. In view of examined substances tumor potential toxicity cells proliferation and viability exposed to phenothiazine derivatives were established. Cell cycle regulatory genes expression (TP53 and CDKN1A), S-phase marker--H3 gene and intracellular apoptosis pathway genes (BAX, BCL-2) were analyzed using RT-QPCR method. The influence of examined derivatives on total cell oxidative status (TOS), total antioxidative status (TAS), malondialdehyde concentration (MDA) and superoxide dismutase activity (SOD) were analyzed. As a result, examined phenothiazine derivatives cytotoxic action on C-32 and SNB-19 and also cells proliferation inhibition were determined. Cell cycle regulatory genes (TP53, CDKN1A) expression and protein products of genes involved in mitochondial apoptosis pathway (BAX, BCL-2) expression are changed by the presence of phenothiazine derivatives during culturing. There were also noted small changes in redox potential in cells exposed to two mentioned phenothiazine derivatives.

Duarte FV, Palmeira CM, Rolo AP
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.
Adv Exp Med Biol. 2015; 888:123-54 [PubMed] Related Publications
microRNAs (miRNAs) are small, single-stranded noncoding RNA molecules involved in posttranscriptional control of gene expression of a wide number of genes. miRNAs align and bind especially to 3'UTR sequences of their target genes and initiate either mRNA degradation or translational repression, resulting in reduced protein levels. miRNAs are now recognized as major players in virtually every biological process. In recent years, the discovery of miRNAs has revolutionized the traditional view of gene expression and our understanding of miRNA biogenesis and function has thereby expanded. The discovery of mitochondrial-located miRNAs raises the issue of the molecular mechanism underlying their translocation from the nucleus to the mitochondria. Studies in different species indicate that it may exist a number of import pathways of nucleus-encoded RNAs to mitochondria, being the most of them largely ATP-dependent. Not only pre-miRNAs, but also mature miRNAs, are present in the mitochondria; these findings have also raised the possibility of mitochondrial miRNA synthesis. Some pre-miRNAs sequences seem to be processed in the mitochondria, giving origin to mature miRNAs, which could be immediately active on the mitochondrial transcripts or exported to the cytosol in order to interfere with genomic-derived mRNA. Thus, the mitochondrial-processed miRNAs are likely to contribute to some posttranscriptional regulation of gene expression related to the mitochondrial functions. Coming from their location, the mitochondria, some miRNAs are currently named as mitomiRs; it refers to those miRNAs that can localize in mitochondria, whether transcribed from the nuclear or, potentially, the mitochondrial genome. When their genomics was analyzed, a number of mitomiRs mapped the nuclear genome at loci relevant to mitochondrial functions or diseases. Current computational analyses, using different algorithms, drive scientists to argue that the mitochondrial genome can harbor sequences that could be a target for several mitomiRs. However, perhaps a more challenging topic concerning mitomiRs is whether the mitochondrial DNA can harbor miRNA sequences, indicating an involvement of mitochondria in small RNA-generating pathways. The identification of populations of miRNAs in the mitochondria pushed scientists in the field to question its biological functions. It is established that miRNAs, originated in the nuclear genome, are exported to cytosol where they are processed and exert their function by inhibiting nuclear genome-derived mRNA. Actually it is also known that some miRNAs are imported into mitochondria where they interact with some mitochondrial genome-derived mRNA molecules. More strikingly, it has also come to light that mitochondrial genome (mtDNA) can originate some miRNA molecules that exert their function directly on mitochondrial transcripts. The links between miRNA deregulation and human disease have been reported in almost all medicine fields. Currently, great efforts are being invested in understanding the involvement of miRNA deregulation in disease and unlocking the mechanisms by which they act. This new field of investigation has revealed the tremendous potential of miRNAs as diagnostic or even as valuable therapeutic tools. miRNAs have recently emerged as key regulators of metabolism. Metabolic syndrome is a systemic disorder that includes a spectrum of abnormalities associated with obesity and type II diabetes. Defects in mitochondrial function, namely related to oxidation of fatty acids, have been linked to diet-induced obesity and the development of insulin resistance in adipose tissue and skeletal muscle. Consistently, obese individuals have mitochondria with compromised bioenergetic capacity. Therefore, increasing interest is being given to the role of miRNAs on metabolic regulation, with relevance on mitochondria and the mechanisms purported for miRNA actions, particularly acting in mitochondria or in mitochondria-related pathways. The involvement of miRNAs in mitochondrial metabolism, mitochondrial oxidative phosphorylation (OXPHOS), electron transport chain (ETC) components, lipid metabolism, and metabolic disorders is becoming more and more comprehended, as well as miRNAs contribution for processes such as mitochondrial dynamics or apoptosis regulation and cancer.

Bodduluru LN, Kasala ER, Madhana RM, et al.
Naringenin ameliorates inflammation and cell proliferation in benzo(a)pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFκB and PCNA expression.
Int Immunopharmacol. 2016; 30:102-10 [PubMed] Related Publications
Lung cancer is the major cause of cancer-related mortality and is a growing economic burden worldwide. Chemoprevention has emerged as a very effective preventive measure against carcinogenesis and several bioactive compounds in diet have shown their cancer curative potential on lung cancer. Naringenin (NRG), a predominant flavanone found in citrus fruits has been reported to possess anti-oxidative, anti-inflammatory and anti-proliferative activity in a wide variety of cancer. The aim of the present study is to divulge the chemopreventive nature of NRG against benzo(a)pyrene (B[a]P) induced lung carcinogenesis in Swiss albino mice. Administration of B[a]P (50mg/kg, p.o.) to mice resulted in increased lipid peroxidation (LPO), proinflammatory cytokines (TNF-α, IL-6 and IL-1β) with subsequent decrease in activities of tissue enzymic antioxidants (SOD, CAT, GPx, GR, GST) and non-enzymic antioxidants (GSH and Vit-C). Treatment with NRG (50mg/kg body weight) significantly counteracted all these alterations thereby showing potent anti-cancer effect in lung cancer. Moreover, assessment of protein expression by immunoblotting and mRNA expression by RT-PCR revealed that NRG treatment effectively negates B[a]P-induced upregulated expression of CYP1A1, PCNA and NF-κB. Further, the antiproliferative effect of NRG was confirmed by histopathological analysis and PCNA immunostaining in B[a]P induced mice which showed increased PCNA expression that was restored upon NRG administration. Overall, these findings substantiate the chemopreventive potential of NRG against chemically induced lung cancer in mice.

Yu W, Denu RA, Krautkramer KA, et al.
Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies.
J Biol Chem. 2016; 291(7):3268-79 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
B cell malignancies comprise a diverse group of cancers that proliferate in lymph nodes, bone marrow, and peripheral blood. SIRT3 (sirtuin 3) is the major deacetylase within the mitochondrial matrix that promotes aerobic metabolism and controls reactive oxygen species (ROS) by deacetylating and activating isocitrate dehydrogenase 2 (IDH2) and superoxide dismutase 2 (SOD2). There is controversy as to whether SIRT3 acts as an oncogene or a tumor suppressor, and here we investigated its role in B cell malignancies. In mantle cell lymphoma patient samples, we found that lower SIRT3 protein expression was associated with worse overall survival. Further, SIRT3 protein expression was reduced in chronic lymphocytic leukemia primary samples and malignant B cell lines compared to primary B cells from healthy donors. This lower level of expression correlated with hyperacetylation of IDH2 and SOD2 mitochondrial proteins, lowered enzymatic activities, and higher ROS levels. Overexpression of SIRT3 decreased proliferation and diminished the Warburg-like phenotype in SIRT3-deficient cell lines, and this effect is largely dependent on deacetylation of IDH2 and SOD2. Lastly, depletion of SIRT3 from malignant B cell lines resulted in greater susceptibility to treatment with an ROS scavenger but did not result in greater sensitivity to inhibition of the hypoxia-inducible factor-1α pathway, suggesting that loss of SIRT3 increases proliferation via ROS-dependent but hypoxia-inducible factor-1α-independent mechanisms. Our study suggests that SIRT3 acts as a tumor suppressor in B cell malignancies, and activating the SIRT3 pathway might represent a novel therapeutic approach for treating B cell malignancies.

Salim EI, Abd El-Magid AD, Farara KM, Maria DS
Antitumoral and Antioxidant Potential of Egyptian Propolis Against the PC3 Prostate Cancer Cell Line.
Asian Pac J Cancer Prev. 2015; 16(17):7641-51 [PubMed] Related Publications
It has been shown previously that nutritional supplements rich in polyphenolic compounds play a significant role in prostate cancer chemoprevention. Propolis is a natural, resinous hive product that has several pharmacological activities including antimicrobial, antioxidant, anti-inflammatory, and antitumoral activities. The aim of this study was to compare the cytotoxic, antioxidant and antitumoral activities of an ethanolic extract of Egyptian propolis (EEP) in vitro with an established chemotherapeutic drug such as doxorubicin (DOX), and the effects of their combination against the PC3 human prostate cancer cell line. Cellular viability and IC50 levels with EEP, DOX and their (v/v) combination were detected by sulphorhodamine-B (SRB) assay after incubation of PC3 cells for 72 h with different doses (0, 0.01, 0.1, 1, 10 and 100 μg/ml). Two selected doses of IC50 and IC25 were applied to cells for 24h for antitumor evaluation assay of treatment compounds. EEP and its (v/v) combination with DOX showed significant antitumor potential besides high antioxidant properties of superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), nitric oxide (NO) and reduced glutathione (GSH) levels when compared with the control untreated cells. DNA fragmentation assay and semi quantitative RT-PCR analyses for p53 and Bax genes showed that EEP activated cellular apoptosis and increased the mRNA expression levels more than other treatment. In conclusion, EEP alone or in combination with DOX at both doses used here showed greater antioxidant, antiproliferative and apoptotic effects against the PC3 cell lines as compared to treatment with DOX alone. Therefore, EEP could be considered as a promising candidate for prostate cancer chemotherapy.

Al-Henhena N, Khalifa SA, Ying RP, et al.
Evaluation of chemopreventive potential of Strobilanthes crispus against colon cancer formation in vitro and in vivo.
BMC Complement Altern Med. 2015; 15(1):419 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND: With cancer being one of the major causes of death around the world, studies are ongoing to find new chemotherapeutic leads. There are common mechanisms for colorectal cancer (CRC) formation. Several are connected with oxidative stress-induced cell apoptosis and others are related to imbalanced homeostasis or intake of drugs/toxins. Plants that have been used for decades in folk and traditional medicine have been accepted as one of the commonest sources of discovered natural agents of cancer chemotherapy and chemoprevention. The aim was to study the antioxidant and chemopreventive effects of Strobilanthes crispus on colorectal cancer formation.
METHODS: Five groups of rats were injected subcutaneously with AOM, 15 mg/kg body weight, each once weekly for 2 weeks. The cancer group was continued on 10 % Tween-20 feeding for 8 weeks. The standard drug group was continued on 35 mg/kg 5-fluorouracil intraperitoneal injection twice a week for 8 weeks, and the experimental groups were continued on 250 and 500 mg/kg S. crispus extract oral feeding for 8 weeks, respectively. The normal group was injected subcutaneously with normal saline once a week for 2 weeks, followed by oral administration of 10 % Tween-20 for 8 weeks. All the rats were sacrificed after 10 weeks. The colons were evaluated grossly and histopathologically for aberrant crypt foci (ACF). Gene expression was performed for Bax, Bcl2, Defa24, Slc24a3, and APC genes by real-time PCR. S. crispus and its fractions were evaluated for their chemopreventive effects against human colorectal adenocarcinoma cell line HT29 and cytotoxicity for normal human colon epithelial cell line CCD 841, and the active fraction was assessed for its components.
RESULTS: We observed significant decrease in total colonic ACF formation, malonaldehyde (MDA) and lactate dehydrogenase (LDH), increase in superoxide dismutase (SOD), up-regulation of APC, Bax and Slc24a3, and down-regulation of Defa24 and Bcl-2 in rats treated with Strobilanthes crispus.
CONCLUSION: Our results support the in vivo protection of S. crispus against CRC formation (azoxymethane-induced aberrant crypt foci) and suggest that the mechanism is highly specific to protect from oxidative insults and the following apoptotic cascade.

Nordström T, Van Blarigan EL, Ngo V, et al.
Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer.
Prostate. 2016; 76(4):339-48 [PubMed] Related Publications
BACKGROUND: Carotenoids are a class of nutrients with antioxidant properties that have been purported to protect against cancer. However, the reported associations between carotenoids and prostate cancer have been heterogeneous and lacking data on interactions with nucleotide sequence variations and genomic biomarkers.
OBJECTIVE: To examine the associations between carotenoid levels and the risk of high-grade prostate cancer, also considering antioxidant-related genes and tumor instability.
METHODS: We measured plasma levels of carotenoids and genotyped 20 single nucleotide polymorphisms (SNP) in SOD1, SOD2, SOD3, XRCC1, and OGG1 among 559 men with non-metastatic prostate cancer undergoing radical prostatectomy. We performed copy number analysis in a subset of these men (n = 67) to study tumor instability assessed as Fraction of the Genome Altered (FGA). We examined associations between carotenoids, genotypes, tumor instability and risk of high-grade prostate cancer (Gleason grade ≥ 4 + 3) using logistic and linear regression.
RESULTS: Circulating carotenoid levels were inversely associated with the risk of high-grade prostate cancer; odds ratios (OR) and 95% confidence intervals (CI) comparing highest versus lowest quartiles were: 0.34 (95% CI: 0.18-0.66) for α-carotene, 0.31 (95% CI: 0.15-0.63) for β-carotene, 0.55 (0.28-1.08) for lycopene and 0.37 (0.18-0.75) for total carotenoids. SNPs rs25489 in XRCC1, rs699473 in SOD3 and rs1052133 in OGG1 modified these associations for α-carotene, β-carotene and lycopene, respectively (P ≤ 0.05). The proportion of men with a high degree of FGA increased with Gleason Score (P < 0.001). Among men with Gleason score ≤ 3 + 4, higher lycopene levels were associated with lower FGA (P = 0.04).
CONCLUSION: Circulating carotenoids at diagnosis, particularly among men carrying specific somatic variations, were inversely associated with risk of high-grade prostate cancer. In exploratory analyses, higher lycopene level was associated with less genomic instability among men with low-grade disease which is novel and supports the hypothesis that lycopene may inhibit progression of prostate cancer early in its natural history.

Colombrita C, Onesto E, Buratti E, et al.
From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models.
Biochim Biophys Acta. 2015; 1849(12):1398-410 [PubMed] Related Publications
The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.

Simon PS, Sharman SK, Lu C, et al.
The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription.
BMC Cancer. 2015; 15:770 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND: Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined.
METHODS: iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter.
RESULTS: We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50 heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells.
CONCLUSIONS: IFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50 homodimers.

Yulyana Y, Tovmasyan A, Ho IA, et al.
Redox-Active Mn Porphyrin-based Potent SOD Mimic, MnTnBuOE-2-PyP(5+), Enhances Carbenoxolone-Mediated TRAIL-Induced Apoptosis in Glioblastoma Multiforme.
Stem Cell Rev. 2016; 12(1):140-55 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Glioblastoma multiforme is the most malignant tumor of the brain and is challenging to treat due to its highly invasive nature and heterogeneity. Malignant brain tumor displays high metabolic activity which perturbs its redox environment and in turn translates to high oxidative stress. Thus, pushing the oxidative stress level to achieve the maximum tolerable threshold that induces cell death is a potential strategy for cancer therapy. Previously, we have shown that gap junction inhibitor, carbenoxolone (CBX), is capable of enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in glioma cells. Since CBX is known to induce oxidative stress, we hypothesized that the addition of another potent mediator of oxidative stress, powerful SOD mimic MnTnBuOE-2-PyP(5+) (MnBuOE), could further enhance TRAIL-driven therapeutic efficacy in glioma cells. Our results showed that combining TRAIL + CBX with MnBuOE significantly enhances cell death of glioma cell lines and this enhancement could be further potentiated by CBX pretreatment. MnBuOE-driven cytotoxicity is due to its ability to take advantage of oxidative stress imposed by CBX + TRAIL system, and enhance it in the presence of endogenous reductants, ascorbate and thiol, thereby producing cytotoxic H2O2, and in turn inducing death of glioma cells but not normal astrocytes. Most importantly, combination treatment significantly reduces viability of TRAIL-resistant Asian patient-derived glioma cells, thus demonstrating the potential clinical use of our therapeutic system. It was reported that H2O2 is involved in membrane depolarization-based sensitization of cancer cells toward TRAIL. MnBuOE is entering Clinical Trials as a normal brain radioprotector in glioma patients at Duke University increasing Clinical relevance of our studies.

Jablonska E, Gromadzinska J, Peplonska B, et al.
Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1.
BMC Cancer. 2015; 15:657 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
BACKGROUND: Since targeting oxidative stress markers has been recently recognized as a novel therapeutic target in cancer, it is interesting to investigate whether genetic susceptibility may modify oxidative stress response in cancer. The aim of this study was to elucidate whether genetic polymorphism in the antioxidant enzymes is associated with lipid peroxidation in breast cancer.
METHODS: We conducted a study among Polish women, including 136 breast cancer cases and 183 healthy controls. The analysis included genetic polymorphisms in five redox related genes: GPX1 (rs1050450), GPX4 (rs713041), SOD2 (rs4880), SEPP1 (rs3877899) and SEP15 (rs5859), lipid peroxidation, the activities of antioxidant enzymes determined in blood compartments as well as plasma concentration of selenium - an antioxidant trace element involved in cancer. Genotyping was performed using the Real Time PCR. Lipid peroxidation was expressed as plasma concentration of thiobarbituric acid reactive substances (TBARS) and measured with the spectrofluorometric method. Glutathione peroxidase activity was spectrophotometrically determined in erythrocytes (GPx1) and plasma (GPx3) by the use of Paglia and Valentine method. Spectrophotometric methods were employed to measure activity of cytosolic superoxide dismutase (SOD1) in erythrocytes (Beauchamp and Fridovich method) and ceruloplasmin (Cp) in plasma (Sunderman and Nomoto method). Plasma selenium concentration was determined using graphite furnace atomic absorption spectrophotometry.
RESULTS: Breast cancer risk was significantly associated with GPX1 rs1050450 (Pro198Leu) polymorphism, showing a protective effect of variant (Leu) allele. As compared to the control subjects, lipid peroxidation and GPx1 activity were significantly higher in the breast cancer cases, whereas ceruloplasmin activity was decreased. After genotype stratification, both GPx1 activity and TBARS concentration were the highest in GPX1 Pro/Pro homozygotes affected by breast cancer. At the same time, there was a significant correlation between the level of lipid peroxidation and GPx1 activity among the cancer subjects possessing GPX1 Pro/Pro genotype (r = 0.3043; p = 0.0089), whereas such a correlation was completely absent in the cases carrying at least one GPX1 Leu allele as well as in the controls (regardless of GPX1 genotype).
CONCLUSIONS: GPX1 polymorphism may be an important factor modifying oxidative stress response in breast cancer subjects. Further studies are needed to elucidate its potential clinical significance.

Sajesh BV, McManus KJ
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.
Oncotarget. 2015; 6(29):27907-22 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SOD1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999