TRAF3

Gene Summary

Gene:TRAF3; TNF receptor associated factor 3
Aliases: CAP1, LAP1, CAP-1, CRAF1, IIAE5, CD40bp, RNF118
Location:14q32.32
Summary:The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from, members of the TNF receptor (TNFR) superfamily. This protein participates in the signal transduction of CD40, a TNFR family member important for the activation of the immune response. This protein is found to be a critical component of the lymphotoxin-beta receptor (LTbetaR) signaling complex, which induces NF-kappaB activation and cell death initiated by LTbeta ligation. Epstein-Barr virus encoded latent infection membrane protein-1 (LMP1) can interact with this and several other members of the TRAF family, which may be essential for the oncogenic effects of LMP1. Several alternatively spliced transcript variants encoding three distinct isoforms have been reported. [provided by RefSeq, Dec 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:TNF receptor-associated factor 3
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Proteins
  • Inhibitor of Apoptosis Proteins
  • Chromosome 14
  • Cell Proliferation
  • Multiple Myeloma
  • Western Blotting
  • Gene Deletion
  • Antineoplastic Agents
  • Transfection
  • TNF Receptor-Associated Factor 6
  • Gene Expression Profiling
  • Proto-Oncogene Proteins
  • Genetic Predisposition
  • B-Lymphocytes
  • Neoplasm Proteins
  • Enzyme Activation
  • Apoptosis
  • Cell Transformation, Viral
  • Signal Transduction
  • B-Cell Lymphoma
  • Tumor Suppressor Proteins
  • Baculoviral IAP Repeat-Containing 3 Protein
  • Cancer Gene Expression Regulation
  • Transcription Factors
  • NF-kappa B
  • Ubiquitin-Protein Ligases
  • Genome, Human
  • siRNA
  • MAP Kinase Signaling System
  • TNF Receptor-Associated Factor 2
  • Tandem Mass Spectrometry
  • Mutation
  • Viral Matrix Proteins
  • Protein-Serine-Threonine Kinases
  • TNF Receptor-Associated Factor 1
  • TNF Receptor-Associated Factor 3
  • CD40 Antigens
  • beta Catenin
  • Single Nucleotide Polymorphism
  • Hodgkin Lymphoma
  • Oligonucleotide Array Sequence Analysis
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TRAF3 (cancer-related)

Gillison ML, Akagi K, Xiao W, et al.
Human papillomavirus and the landscape of secondary genetic alterations in oral cancers.
Genome Res. 2019; 29(1):1-17 [PubMed] Free Access to Full Article Related Publications
Human papillomavirus (HPV) is a necessary but insufficient cause of a subset of oral squamous cell carcinomas (OSCCs) that is increasing markedly in frequency. To identify contributory, secondary genetic alterations in these cancers, we used comprehensive genomics methods to compare 149 HPV-positive and 335 HPV-negative OSCC tumor/normal pairs. Different behavioral risk factors underlying the two OSCC types were reflected in distinctive genomic mutational signatures. In HPV-positive OSCCs, the signatures of APOBEC cytosine deaminase editing, associated with anti-viral immunity, were strongly linked to overall mutational burden. In contrast, in HPV-negative OSCCs, T>C substitutions in the sequence context 5'-ATN-3' correlated with tobacco exposure. Universal expression of HPV

Kakurina GV, Kondakova IV, Spirina LV, et al.
Expression of Genes Encoding Cell Motility Proteins during Progression of Head and Neck Squamous Cell Carcinoma.
Bull Exp Biol Med. 2018; 166(2):250-252 [PubMed] Related Publications
The model of head and neck squamous cell carcinoma (HNSCC) was used to study the expression of genes encoding actin-binding proteins depending on the type of cell motility. The expression of SNAIL1 and CAPN2 mRNA in HNSCC tissue was higher than in specimens of dysplastic epithelium of the larynx and hypopharynx, which can be explained by activation of mesenchymal and amoeboid types of cell motility. In biopsy material of HNSCC patients with T1-2N0M0, expression of genes responsible for actin-binding proteins differed from that of patients with pretumor pathology of the larynx and hypopharynx: expression of FSCN was lower, while expressions of EZR and CAP1 were higher. The data attest that progression of HNSCC is associated with activation of both types of cell motility and with the changes in the expression of mRNA encoding cell motility proteins.

Liu F, Cheng L, Xu J, et al.
miR-17-92 functions as an oncogene and modulates NF-κB signaling by targeting TRAF3 in MGC-803 human gastric cancer cells.
Int J Oncol. 2018; 53(5):2241-2257 [PubMed] Related Publications
The miR-17-92 cluster plays either an oncogenic or anti-oncogenic role in cancer progression in diverse human cancers. However, the underlying mechanisms of the miR-17-92 cluster in gastric cancer have not yet been fully elucidated. In this study, the function of the miR-17-92 cluster in diverse aspects of MGC-803 gastric cancer cells was systematically elucidated. The enforced introduction of the miR-17-92 cluster into the MGC-803 cells significantly promoted cell growth due to the increased cellular proliferation and decreased cellular apoptosis, which were detected by CCK-8, cell viability and TUNEL assays. Moreover, the results of western blot analyses revealed that the activated protein kinase B (AKT), extracellular-signal-regulated kinase (ERK) and nuclear factor (NF-κB) signaling pathways were activated in these processes. Moreover, the overexpression of the miR-17-92 cluster markedly enhanced the migratory and invasive abilities of the MGC-803 cells, which was associated with the occurrence of epithelial-mesenchymal transition (EMT). Tumor necrosis factor receptor associated factor 3 (TRAF3), which negatively regulates the NF-κB signaling pathway, was identified as a direct target of miR-17-92. Furthermore, TRAF3 silencing enhanced the oncogenic functions of the miR-17-92 cluster in the MGC-803 cells, including the increased cellular proliferation, migration and invasion. Moreover, immunohistochemical staining and survival analyses of a gastric cancer tissue microarray revealed that TRAF3 functioned as a tumor suppressor in gastric cancer. Taken together, the findings of this study provide new insight into the specific biological functions of the miR-17-92 cluster in gastric cancer progression by directly targeting TRAF3.

Lu CH, Yeh DW, Lai CY, et al.
USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation.
Oncogene. 2018; 37(49):6327-6340 [PubMed] Free Access to Full Article Related Publications
Macrophage accumulation and inflammation in the lung owing to stresses and diseases is a cause of lung cancer development. However, molecular mechanisms underlying the interaction between macrophages and cancer cells, which drive inflammation and stemness in cancers, are poorly understood. In this study, we investigated the expression of ubiquitin-specific peptidase 17 (USP17) in lung cancers, and role of elevated USP17 in the interaction between macrophages and lung cancer cells. USP17 expression in lung cancers was associated with poor prognosis, macrophage, and inflammatory marker expressions. Macrophages promoted USP17 expression in cancer cells. TNFR-associated factor (TRAF) 2-binding and TRAF3-binding motifs were identified in USP17, through which it interacted with and disrupted the TRAF2/TRAF3 complex. This stabilized its client proteins, enhanced inflammation and stemness in cancer cells, and promoted macrophage recruitment. In different animal studies, co-injection of macrophages with cancer cells promoted USP17 expression in tumors and tumor growth. Conversely, depletion of macrophages in host animals by clodronate liposomes reduced USP17 expression and tumor growth. In addition, overexpression of USP17 in cancer cells promoted tumor growth and inflammation-associated and stemness-associated gene expressions in tumors. These results suggested that USP17 drives a positive-feedback interaction between macrophages and cancer cells to enhance inflammation and stemness in cancer cells, and promotes lung cancer growth.

Islam F, Chaousis S, Wahab R, et al.
Protein interactions of FAM134B with EB1 and APC/beta-catenin in vitro in colon carcinoma.
Mol Carcinog. 2018; 57(11):1480-1491 [PubMed] Related Publications
FAM134B is an autophagy regulator of endoplasmic reticulum and acts as a cancer suppressor in colon cancer. However, the molecular signaling pathways by which FAM134B interacts within colon carcinogenesis is still unknown. Herein, this study aims to determine the interacting partners of FAM134B for the first time in colon cancer and to explore the precise location of FAM134B in cancer signalling pathways. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) followed by anti-FAM134B co-immune precipitation of FAM134B interacting complex was used to identify the potential interactors of FAM134B in colon cancer cells. Western blot and confocal microscopic analysis were used to validate the physical interactions of FAM134B with the interactors. Lentiviral shRNA mediated silencing of FAM134B was used to examine the modulation of FAM134B interactors in cells. We have identified 29 novel binding partners, including CAP1, RPS28, FTH1, KDELR2, MAP4, EB1, PSMD6, PPIB/CYPB etc. Subsequent immunoassays confirmed the direct physical interactions of FAM134B with CAP1, EB1, CYPB, and KDELR2 in colon cancer cells. Exogenous suppression of FAM134B has led to significant upregulation of EB1 as well as reduction of KDELR2 expression. It was noted that overexpression of EB1 promotes WNT/β-catenin signaling pathways via inactivating tumor suppressor APC followed by activating β-catenin in colorectal carcinogenesis. This study has first time reported the gene signaling networks with which FAM134B interacts and noted that FAM134B is involved in the regulation of WNT/β-catenin pathway by EB1-mediated modulating of APC in colon cancer cells.

Gladitz J, Klink B, Seifert M
Network-based analysis of oligodendrogliomas predicts novel cancer gene candidates within the region of the 1p/19q co-deletion.
Acta Neuropathol Commun. 2018; 6(1):49 [PubMed] Free Access to Full Article Related Publications
Oligodendrogliomas are primary human brain tumors with a characteristic 1p/19q co-deletion of important prognostic relevance, but little is known about the pathology of this chromosomal mutation. We developed a network-based approach to identify novel cancer gene candidates in the region of the 1p/19q co-deletion. Gene regulatory networks were learned from gene expression and copy number data of 178 oligodendrogliomas and further used to quantify putative impacts of differentially expressed genes of the 1p/19q region on cancer-relevant pathways. We predicted 8 genes with strong impact on signaling pathways and 14 genes with strong impact on metabolic pathways widespread across the region of the 1p/19 co-deletion. Many of these candidates (e.g. ELTD1, SDHB, SEPW1, SLC17A7, SZRD1, THAP3, ZBTB17) are likely to push, whereas others (e.g. CAP1, HBXIP, KLK6, PARK7, PTAFR) might counteract oligodendroglioma development. For example, ELTD1, a functionally validated glioblastoma oncogene located on 1p, was overexpressed. Further, the known glioblastoma tumor suppressor SLC17A7 located on 19q was underexpressed. Moreover, known epigenetic alterations triggered by mutated SDHB in paragangliomas suggest that underexpressed SDHB in oligodendrogliomas may support and possibly enhance the epigenetic reprogramming induced by the IDH-mutation. We further analyzed rarely observed deletions and duplications of chromosomal arms within oligodendroglioma subcohorts identifying putative oncogenes and tumor suppressors that possibly influence the development of oligodendroglioma subgroups. Our in-depth computational study contributes to a better understanding of the pathology of the 1p/19q co-deletion and other chromosomal arm mutations. This might open opportunities for functional validations and new therapeutic strategies.

Hyeon J, Lee B, Shin SH, et al.
Targeted deep sequencing of gastric marginal zone lymphoma identified alterations of TRAF3 and TNFAIP3 that were mutually exclusive for MALT1 rearrangement.
Mod Pathol. 2018; 31(9):1418-1428 [PubMed] Related Publications
Gastric extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue is a distinct entity in that Helicobacter pylori infection plays the most important causative role in the development of the disease. To investigate the genomic alteration in gastric marginal zone lymphoma that was resistant to the H. pylori eradication therapy, we analyzed 19 cases of the gastric marginal zone lymphoma using fluorescence in situ hybridization for MALT1, BCL10 rearrangement, and targeted sequencing using an Illumina platform. Major genetic alterations affected genes involved in nuclear factor (NF)-κB pathway activation and included MALT1 rearrangement (39%), and somatic mutations of TRAF3 (21%), TNFAIP3 (16%), and NOTCH1 (16%). In the MALT1 rearrangement-negative group, disruptive somatic mutations of TRAF3 were the most common alterations (4/12, 33%), followed by somatic mutations of TNFAIP3 (3/12, 25%), and NOTCH1 (3/12, 25%). The present study confirms that genes involved in activation of NF-κB-signaling pathways are a major driver in oncogenesis of H. pylori eradication-resistant gastric marginal zone lymphoma and revealed that TRAF3 mutation is a major contributor in MALT1 rearrangement-negative gastric marginal zone lymphoma.

Cai X, Yang Y, Xia W, et al.
RIP2 promotes glioma cell growth by regulating TRAF3 and activating the NF‑κB and p38 signaling pathways.
Oncol Rep. 2018; 39(6):2915-2923 [PubMed] Related Publications
Receptor‑interacting protein 2 (RIP2) has recently been reported to be involved in tumor infiltration and cancer metastasis. However, the function of RIP2 in human astrocytoma remains unclear. In the present study, we showed that the expressions of RIP2 and Bcl‑xL were positively correlated with the malignant grade in 28 cases of astrocytoma of various grades and 6 cases of normal human tissues. In addition, increased activity of the NF‑κB and p38 signaling pathways in astrocytoma tissue was observed. Cytological experiments indicated that RIP2 promoted human glioblastoma cell proliferation by inducing expression of Bcl‑xL, and knockdown of endogenous RIP2 promoted cell apoptosis. Mechanistically, knockdown of RIP2 suppressed downstream events including the canonical and alternative NF‑κB pathway as well as the mitogen‑activated protein kinase (p38) pathway. In addition, the present study also demonstrated that tumor necrosis factor receptor‑associated factor 3 (TRAF3), as a novel RIP2 binding partner, was downregulated in glioma tissues and functionally was a negative regulator involved in RIP2‑induced glioma cell growth. Taken together, the present study established a negative link between RIP2 and TRAF3 proteins and identifies a new pathway for regulating astrocytoma progression.

Muñoz-Palomeque A, Guerrero-Ramirez MA, Rubio-Chavez LA, et al.
Association of RETN and CAP1 SNPs, Expression and Serum Resistin Levels with Breast Cancer in Mexican Women.
Genet Test Mol Biomarkers. 2018; 22(4):209-217 [PubMed] Related Publications
BACKGROUND: Breast cancer is the most common cancer in women worldwide. Approximately 70% of female breast cancer patients have a body mass index (BMI) >25. In obesity, adipose tissue secretes additional resistin, which prompts a proinflammatory effect through its action on adenylate cyclase-associated protein 1 (CAP1). Several studies have associated the RETN gene single nucleotide polymorphism (SNP) rs1862513 (-420CMATERIALS AND METHODS: This study included 308 controls and 100 female patients with breast cancer. SNPs were detected by PCR-RFLP from DNA isolated from peripheral blood. Gene expression was performed with hydrolysis probes in tumor tissue. Resistin levels were quantified from serum samples by ELISA.
RESULTS: The RETN rs1862513CG/GG and CAP1 rs35749351GA/AA genotypes were associated with 1.61 and 2.193-fold increased risks of breast cancer, respectively, compared with the CC and GG genotypes. Similarly, carriers of the G allele of rs1862513 and the A allele of rs35749351, had 1.51 and 2.217-fold increased risks of breast cancer compared with the C and G alleles, respectively. The rs1862513GG/rs35749351AA genotype combination increased breast cancer risk by twofold. Serum resistin levels in postmenopausal breast cancer women were higher compared with postmenopausal controls. Tissue CAP1 expression showed differences with regard to molecular subtypes and metastases.
CONCLUSION: The RETN and CAP1 polymorphisms and gene expression may be potential biomarkers for breast cancer risk.

Gralewski JH, Post GR, van Rhee F, Yuan Y
Myeloid transformation of plasma cell myeloma: molecular evidence of clonal evolution revealed by next generation sequencing.
Diagn Pathol. 2018; 13(1):15 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Plasma cell myeloma (PCM) is a neoplasm of terminally differentiated B lymphocytes with molecular heterogeneity. Although therapy-related myeloid neoplasms are common in plasma cell myeloma patients after chemotherapy, transdifferentiation of plasma cell myeloma into myeloid neoplasms has not been reported in literature. Here we report a very rare case of myeloid neoplasm transformed from plasma cell myeloma.
CASE PRESENTATION: A 60-year-old man with a history of plasma cell myeloma with IGH-MAF gene rearrangement and RAS/RAF mutations developed multiple soft tissue lesions one year following melphalan-based chemotherapy and autologous stem cell transplant. Morphological and immunohistochemical characterization of the extramedullary disease demonstrated that the tumor cells were derived from the monocyte-macrophage lineage. Next generation sequencing (NGS) studies detected similar clonal aberrations in the diagnostic plasma cell population and post-therapy neoplastic cells, including IGH-MAF rearrangement, multiple genetic mutations in RAS signaling pathway proteins, and loss of tumor suppressor genes. Molecular genetic analysis also revealed unique genomic alterations in the transformed tumor cells, including gain of NF1 and loss of TRAF3.
CONCLUSION: To our knowledge, this is the first case of myeloid sarcoma transdifferentiated from plasma cell neoplasm. Our findings in this unique case suggest clonal evolution of plasma cell myeloma to myeloma neoplasm and the potential roles of abnormal RAS/RAF signaling pathway in lineage switch or transdifferentiation.

Maity G, Haque I, Ghosh A, et al.
The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling.
J Biol Chem. 2018; 293(12):4334-4349 [PubMed] Free Access to Full Article Related Publications
Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.

Newman AC, Kemp AJ, Drabsch Y, et al.
Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins.
Nat Commun. 2017; 8(1):1537 [PubMed] Free Access to Full Article Related Publications
Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5 is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to identify selective degradation of the signalling scaffold TRAF3. TRAF3 autophagy is driven by RAS and results in activation of the NF-κB family member RELB. We show that RELB represses TGFβ target promoters independently of DNA binding at NF-κB recognition sequences, instead binding with SMAD family member(s) at SMAD-response elements. Thus, autophagy antagonises TGFβ gene expression. Finally, autophagy-deficient A549 cells regain tumorigenicity upon SMAD4 knockdown. Thus, at least in this setting, a physiologic function for autophagic regulation of gene expression is tumour growth.

Varettoni M, Zibellini S, Defrancesco I, et al.
Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance.
Haematologica. 2017; 102(12):2077-2085 [PubMed] Free Access to Full Article Related Publications
We analyzed

Kumari P, Saha I, Narayanan A, et al.
Essential role of HCMV deubiquitinase in promoting oncogenesis by targeting anti-viral innate immune signaling pathways.
Cell Death Dis. 2017; 8(10):e3078 [PubMed] Free Access to Full Article Related Publications
Cancer is a multifactorial disease and virus-mediated carcinogenesis is one of the crucial factors, which is poorly understood. Human cytomegalovirus (HCMV) is a herpesvirus and its components have been evidenced to be associated with cancer of different tissue origin. However, its role in cancer remains unknown. Here, we identified a conserved herpesviral tegument protein known as pUL48 of HCMV, encoding deubiquitinase enzyme, as having a key role in carcinogenesis. We show using deubiquitinase sufficient- and deficient-HCMV that HCMV deubiquitinase is a key in inducing enhanced cellular metabolic activity through upregulation of several anti-apoptotic genes and downregulation of several pro-apoptotic genes expression. Furthermore, HCMV deubiquitinase acquires pro-tumor functions by inhibiting PRR-mediated type I interferon via deubiquitination of TRAF6, TRAF3, IRAK1, IRF7 and STING. Taken together, our results suggest that HCMV infection may promote oncogenesis by inhibiting innate immunity of the host.

Paiva C, Rowland TA, Sreekantham B, et al.
SYK inhibition thwarts the BAFF - B-cell receptor crosstalk and thereby antagonizes Mcl-1 in chronic lymphocytic leukemia.
Haematologica. 2017; 102(11):1890-1900 [PubMed] Free Access to Full Article Related Publications
Although small molecule inhibitors of B-cell receptor-associated kinases have revolutionized therapy in chronic lymphocytic leukemia (CLL), responses are incomplete. Pro-survival signaling emanating from the microenvironment may foster therapeutic resistance of the malignant B cells resident in the protective lymphoid niches. B-cell activating factor (BAFF) is critical to the survival of both healthy and neoplastic B cells. However, the pro-survival pathways triggered by BAFF have not been fully characterized. Here we show that BAFF elicited resistance to spontaneous and drug-induced apoptosis in stromal co-cultures, induced activation of both canonical and non-canonical NFκB signaling pathways, and triggered B-cell receptor signaling in CLL cells, independently of

Moody S, Escudero-Ibarz L, Wang M, et al.
Significant association between TNFAIP3 inactivation and biased immunoglobulin heavy chain variable region 4-34 usage in mucosa-associated lymphoid tissue lymphoma.
J Pathol. 2017; 243(1):3-8 [PubMed] Related Publications
Both antigenic drive and genetic change play critical roles in the development of mucosa-associated lymphoid tissue (MALT) lymphoma, but neither alone is sufficient for malignant transformation, and lymphoma development critically depends on their cooperation. However, which of these different events concur and how they cooperate in MALT lymphomagenesis is totally unknown. To explore this, we investigated somatic mutations of 17 genes and immunoglobulin heavy chain variable region (IGHV) usage in 179 MALT lymphomas from various sites. We showed that: (1) there was a significant association between the biased usage of IGHV4-34 (binds to the carbohydrate I/i antigens) and inactivating mutation of TNFAIP3 [encoding a global negative regulator of the canonical nuclear factor-κB (NF-κB) pathway] in ocular adnexal MALT lymphoma; (2) IGHV1-69 was significantly overrepresented (54%) in MALT lymphoma of the salivary gland, but was not associated with mutation in any of the 17 genes investigated; and (3) MALT lymphoma lacked mutations that are frequently seen in other B-cell lymphomas characterized by constitutive NF-κB activities, including mutations in CD79B, CARD11, MYD88, TNFRSF11A, and TRAF3. Our findings show, for the first time, a significant association between biased usage of autoreactive IGHV and somatic mutation of NF-κB regulators in MALT lymphoma, arguing for their cooperation in sustaining chronic B-cell receptor signalling and driving oncogenesis in lymphoma development. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Gentilini LD, Jaworski FM, Tiraboschi C, et al.
Stable and high expression of Galectin-8 tightly controls metastatic progression of prostate cancer.
Oncotarget. 2017; 8(27):44654-44668 [PubMed] Free Access to Full Article Related Publications
Two decades ago, Galectin-8 was described as a prostate carcinoma biomarker since it is only expressed in the neoplastic prostate, but not in the healthy tissue. To date, no biological function has been attributed to Galectin-8 that could explain this differential expression. In this study we silenced Galectin-8 in two human prostate cancer cell lines, PC3 and IGR-CaP1, and designed a pre-clinical experimental model that allows monitoring the pathology from its early steps to the long-term metastatic stages. We show for the first time that the natural and conserved expression of Gal-8 in tumour cells is responsible for the metastatic evolution of prostate cancer. In fact, Gal-8 controls the rearrangement of the cytoskeleton and E-Cadherin expression, with a major impact on anoikis and homotypic aggregation of tumour cells, both being essential processes for the survival of circulating tumour cells during metastasis. While localized prostate cancer can be cured, metastatic and advanced disease remains a significant therapeutic challenge, urging for the identification of prognostic markers of the metastatic process. Collectively, our results highlight Galectin-8 as a potential target for anti-metastatic therapy against prostate cancer.

Xie S, Shen C, Tan M, et al.
Systematic analysis of gene expression alterations and clinical outcomes of adenylate cyclase-associated protein in cancer.
Oncotarget. 2017; 8(16):27216-27239 [PubMed] Free Access to Full Article Related Publications
Adenylate Cyclase-associated protein (CAP) is an evolutionarily conserved protein that regulates actin dynamics. Our previous study indicates that CAP1 is overexpressed in NSCLC tissues and correlated with poor clinical outcomes, but CAP1 in HeLa cells actually inhibited migration and invasion, the role of CAP was discrepancy in different cancer types. The present study aims to determine whether CAP can serve as a prognostic marker in human cancers. The CAP expression was assessed using Oncomine database to determine the gene alteration during carcinogenesis, the copy number alteration, or mutations of CAP using cBioPortal, International Cancer Genome Consortium, and Tumorscape database investigated, and the association between CAP expression and the survival of cancer patient using Kaplan-Meier plotter and PrognoScan database evaluated. Therefore, the functional correlation between CAP expression and cancer phenotypes can be established; wherein CAP might serve as a diagnostic marker or therapeutic target for certain types of cancers.

Yurugi H, Marini F, Weber C, et al.
Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours.
Oncogene. 2017; 36(33):4778-4789 [PubMed] Related Publications
KRAS is one of the most frequently mutated oncogenes in human non-small cell lung cancers (NSCLCs). RAS proteins trigger multiple effector signalling pathways including the highly conserved RAF-MAPK pathway. CRAF, a direct RAS effector protein, is required for KRAS-mediated tumourigenesis. Thus, the molecular mechanisms driving the activation of CRAF are intensively studied. Prohibitin 1 (PHB1) is an evolutionarily conserved adaptor protein and interaction of CRAF with PHB1 at the plasma membrane is essential for CRAF activation. Here, we demonstrate that PHB1 is highly expressed in NSCLC patients and correlates with poor survival. Targeting of PHB1 with two chemical ligands (rocaglamide and fluorizoline) inhibits epidermal growth factor (EGF)/RAS-induced CRAF activation. Consistently, treatment with rocaglamide inhibited proliferation, migration and anchorage-independent growth of KRAS-mutated lung carcinoma cell lines. Surprisingly, rocaglamide treatment inhibited Ras-GTP loading in KRAS-mutated cells as well as in EGF-stimulated cells. Rocaglamide treatment further prevented the oncogenic growth of KRAS-driven lung cancer allografts and xenografts in mouse models. Our results suggest rocaglamide as a RAS inhibitor and that targeting plasma membrane-associated PHB1 with chemical ligands would be a viable therapeutic strategy to combat KRAS-mediated NSCLCs.

Hajek M, Sewell A, Kaech S, et al.
TRAF3/CYLD mutations identify a distinct subset of human papillomavirus-associated head and neck squamous cell carcinoma.
Cancer. 2017; 123(10):1778-1790 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The incidence of human papillomavirus (HPV)-associated (HPV-positive) head and neck squamous cell carcinoma (HNSCC) of the oropharynx has dramatically increased over the last decade and continues to rise. Newly diagnosed HPV-positive HNSCCs in the United States currently outnumber any other HPV-associated cancers, including cervical cancer. Despite introduction of the HPV vaccine, the epidemic of HPV-positive HNSCC is expected to continue for approximately 60 years. Compared with patients who have tobacco-associated HNSCC, those who have HPV-positive HNSCC have better overall survival and response to treatment. Current treatment, including chemotherapy and radiation therapy, is associated with lifelong morbidity, and there are limited treatments and no curative options for patients who develop recurrent metastatic disease. Therapeutic de-escalation (decreased radiation dose) is being tested through clinical trials; however, those studies select patients based solely on tumor and patient smoking characteristics. Mechanisms of HPV-driven carcinogenesis in HNSCC are not well understood, which limits new therapeutic strategies and hinders the appropriate selection of patients for de-escalation therapy.
METHODS: The authors analyzed HNSCC data from The Cancer Genome Atlas to identify molecular characteristics that correlate with outcomes and integration status of the HPV genome.
RESULTS: The current investigations identified a subset of HPV-positive HNSCCs with mutations in the genes TRAF3 (tumor necrosis factor receptor-associated factor 3) and CYLD (cylindromatosis lysine 63 deubiquitinase). Defects in TRAF3 and CYLD correlated with the activation of transcriptional factor nuclear factor κB, episomal HPV status of tumors, and improved patient survival.
CONCLUSIONS: Defects in TRAF3/CYLD were accompanied with the activation of nuclear factor κB signaling and maintenance of episomal HPV in tumors, suggesting that these mutations may support an alternative mechanism of HPV tumorigenesis in head and neck tumors. Cancer 2017;123:1778-1790. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Chavan SS, He J, Tytarenko R, et al.
Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker.
Blood Cancer J. 2017; 7(2):e535 [PubMed] Free Access to Full Article Related Publications
The purpose of this study is to identify prognostic markers and treatment targets using a clinically certified sequencing panel in multiple myeloma. We performed targeted sequencing of 578 individuals with plasma cell neoplasms using the FoundationOne Heme panel and identified clinically relevant abnormalities and novel prognostic markers. Mutational burden was associated with maf and proliferation gene expression groups, and a high-mutational burden was associated with a poor prognosis. We identified homozygous deletions that were present in multiple myeloma within key genes, including CDKN2C, RB1, TRAF3, BIRC3 and TP53, and that bi-allelic inactivation was significantly enriched at relapse. Alterations in CDKN2C, TP53, RB1 and the t(4;14) were associated with poor prognosis. Alterations in RB1 were predominantly homozygous deletions and were associated with relapse and a poor prognosis which was independent of other genetic markers, including t(4;14), after multivariate analysis. Bi-allelic inactivation of key tumor suppressor genes in myeloma was enriched at relapse, especially in RB1, CDKN2C and TP53 where they have prognostic significance.

Krishnappa P, Kong HM, Mohamad IB, et al.
CD40 polymorphism in cervical carcinoma in a subset of Malaysian population.
J Obstet Gynaecol Res. 2017; 43(5):923-928 [PubMed] Related Publications
AIM: The aim of this study was to determine the allelic frequency of single nucleotide polymorphisms (SNPs) in the human CD40 gene in cervical cancer.
METHODS: A total of 200 cases were selected from the records of the Department of Pathology, Hospital Tuanku Jaafar, Seremban, Malaysia. The samples were collected in three separate groups: cervicitis (n = 61), cervical intraepithelial neoplasia (n = 69), and cervical carcinoma (n = 70). The patients' demographic data and the respective paraffin-embedded tissue samples from Hospital Tuanku Jaafar, Seremban were obtained upon consent. The sample tissues were submitted for DNA extraction using G-spin Total DNA Extraction Kit. DNA obtained was then submitted for nested PCR before restriction enzyme digestion.
RESULTS: SNP rs1883832 showed higher prevalence of T alleles in the cervical carcinoma group compared to the control groups and in rs3765459, a higher prevalence of G alleles in the cervical carcinoma group was noted. The results of rs1800686 and rs4810485 were insignificant.
CONCLUSION: The data from our study indicates a potential association between the rs1883832 and rs3765459 CD40 gene polymorphism and susceptibility to cervical cancer.

Hansberg-Pastor V, González-Arenas A, Camacho-Arroyo I
CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells.
Mol Cell Endocrinol. 2017; 439:317-327 [PubMed] Related Publications
Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.

Fan YC, Cui CC, Zhu YS, et al.
Overexpression of CAP1 and its significance in tumor cell proliferation, migration and invasion in glioma.
Oncol Rep. 2016; 36(3):1619-25 [PubMed] Related Publications
Adenylate cyclase-associated protein 1 (CAP1), a protein related to the regulation of actin filaments and the Ras/cAMP pathway, is associated with tumor progression. Nevertheless, the expression level and effects of CAP1 in regards to glioma have not been reported. In the present study, we examined the expression of CAP1 in glioma and tumor adjacent normal brain tissues by tissue microarray and immunohistochemistry. Our results showed that CAP1 was overexpressed in glioma tissues in comparison with that noted in the tumor adjacent normal brain tissues and increased staining of CAP1 was found to be correlated with WHO stage. In addition, we discovered that knockdown of CAP1 by specific RNA interference markedly inhibited cell growth and caused downregulation of the proliferation markers, PCNA and cyclin A. We further demonstrated that knockdown of CAP1 inhibited cell metastatic abilities by downregulating N-cadherin and vimentin and upregulating E-cadherin. These findings revealed that CAP1 expression is markedly increased in human glioma and that downregulation of CAP1 in tumors may serve as a treatment for glioma patients.

Bracalente C, Salguero N, Notcovich C, et al.
Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis.
Oncotarget. 2016; 7(27):41142-41153 [PubMed] Free Access to Full Article Related Publications
Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.

McCann KJ, Mander A, Cazaly A, et al.
Targeting Carcinoembryonic Antigen with DNA Vaccination: On-Target Adverse Events Link with Immunologic and Clinical Outcomes.
Clin Cancer Res. 2016; 22(19):4827-4836 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We have clinically evaluated a DNA fusion vaccine to target the HLA-A*0201-binding peptide CAP-1 from carcinoembryonic antigen (CEA
EXPERIMENTAL DESIGN: Twenty-seven patients with CEA-expressing carcinomas were recruited: 15 patients with measurable disease (arm-I) and 12 patients without radiological evidence of disease (arm-II). Six intramuscular vaccinations of naked DNA (1 mg/dose) were administered up to week 12. Clinical and immunologic follow-up was up to week 64 or clinical/radiological disease.
RESULTS: DOM-specific immune responses demonstrated successful vaccine delivery. All patients without measurable disease compared with 60% with advanced disease responded immunologically, while 58% and 20% expanded anti-CAP-1 CD8
CONCLUSIONS: Our data suggest that DNA vaccination is able to overcome peripheral tolerance in normal and tumor tissue and warrants testing in combination studies, for example, by vaccinating in parallel to treatment with an anti-PD1 antibody. Clin Cancer Res; 22(19); 4827-36. ©2016 AACR.

Rohani L, Fabian C, Holland H, et al.
Generation of human induced pluripotent stem cells using non-synthetic mRNA.
Stem Cell Res. 2016; 16(3):662-72 [PubMed] Related Publications
Here we describe some of the crucial steps to generate induced pluripotent stem cells (iPSCs) using mRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribed mRNA. V. virus' 2'-O-Methyltransferase enzyme creates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach.

Zhao X, Xu L, Zheng L, et al.
Potent effects of dioscin against gastric cancer in vitro and in vivo.
Phytomedicine. 2016; 23(3):274-82 [PubMed] Related Publications
BACKGROUND: We previously reported the effect of dioscin on human gastric carcinoma SGC-7901 cells, but its effects on other gastric cancers are still unknown.
PURPOSE: The present paper aimed to demonstrate the activity of dioscin against human gastric carcinoma MGC-803 and MKN-45.
STUDY DESIGN: In our study, MGC-803 and MKN-45 cells were used to examine the effects of dioscin on human gastric carcinoma in vitro. The effects of dioscin against human gastric carcinoma in vivo were accomplished by the xenografts of MGC-803 cells in BALB/c nude mice.
METHODS: AO/EB and DAPI staining, TEM, single cell gel electrophoresis and flow cytometry assays were used in cell experiments. Then, an iTRAQ-based proteomics approach, DNA and siRNA transfection experiments were carried out for mechanism investigation.
RESULTS: In MGC-803 cells, dioscin caused DNA damage and mitochondrial change, induced ROS generation, Ca(2+) release and cell apoptosis, and blocked cell cycle at S phase. In vivo results showed that dioscin significantly suppressed the tumor growth of MGC-803 cell xenografts in nude mice. In addition, dioscin markedly inhibited cell migration, caused Cytochrome c release and adjusted mitochondrial signal pathway. Then, an iTRAQ-based proteomics approach was carried out and 121 differentially expressed proteins were found, in which five biomarkers associated with cell cycle, apoptosis and migration were evaluated. Dioscin significantly up-regulated the levels of GALR-2 and RBM-3, and down-regulated CAP-1, Tribbles-2 and CliC-3. Furthermore, overexpressed DNA transfection of CAP-1 enhanced cell migration and invasion, which was decreased by dioscin. SiRNA to Tribbles-2 affected the protein levels of Bcl-2, Bax and MAPKs, suggesting that dioscin decreased Tribbles-2 level leading to cell apoptosis.
CONCLUSION: Our works confirmed the activity of dioscin against gastric cancer. In addition, this work also provided that dioscin is a new potent candidate for treating gastric cancer in the future.

Rybka J, Gębura K, Wróbel T, et al.
Variations in genes involved in regulation of the nuclear factor - κB pathway and the risk of acute myeloid leukaemia.
Int J Immunogenet. 2016; 43(2):101-6 [PubMed] Related Publications
Genes involved in regulation of the nuclear factor - kappa B (NF-κB) pathway are suggested to play a role in the pathogenesis of acute myeloid leukaemia (AML). The present study aimed to assess the association between the NF-κB1, TRAF3 and TLRs genes single nucleotide polymorphisms (SNPs) and disease susceptibility as well as progression in patients with AML. For this purpose 62 patients and 126 healthy individuals were genotyped for NF-κB1 (rs28362491), TRAF3 (rs11160707; rs12147254), TLR2 (rs201786064), TLR4 (rs4986790; rs4986791) and TLR9 (rs5743836; rs187084) alleles. Three SNPs were found to be associated with the risk for the AML development. The TRAF3 (rs12147254) AA homozygosity (RR = 2.770, P = 0.0392), TLR9 (rs5743836) C wild-type allele (RR = 2.542, P = 0.0096) as well as TLR9 (rs187084) T allele (RR = 13.396, P < 0.0001) and its homozygosity (RR = 11.805, P < 0.0001) were more frequent among patients with AML than healthy individuals. The associations of the rs187084 SNP were significant for both sexes. Moreover, patients who relapsed were more frequently characterized with the presence of the rs187084 TLR9 TT genotype (P = 0.045) or the rs12147254 TRAF3 A variant (P = 0.066). In conclusion, polymorphisms within the TLR9 and TRAF3 genes are associated with predisposition to AML and may affect the progression of the disease in the Polish population.

Bao Z, Qiu X, Wang D, et al.
High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells.
Pathol Res Pract. 2016; 212(4):264-73 [PubMed] Related Publications
Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TRAF3, Cancer Genetics Web: http://www.cancer-genetics.org/TRAF3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999