Gene Summary

Gene:CA9; carbonic anhydrase 9
Aliases: MN, CAIX
Summary:Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide. They participate in a variety of biological processes, including respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show extensive diversity in tissue distribution and in their subcellular localization. CA IX is a transmembrane protein and is one of only two tumor-associated carbonic anhydrase isoenzymes known. It is expressed in all clear-cell renal cell carcinoma, but is not detected in normal kidney or most other normal tissues. It may be involved in cell proliferation and transformation. This gene was mapped to 17q21.2 by fluorescence in situ hybridization, however, radiation hybrid mapping localized it to 9p13-p12. [provided by RefSeq, Jun 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:carbonic anhydrase 9
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CA9 (cancer-related)

Sinha AA
Electron Microscopic Analysis of Stem Cells in Human Prostate Cancer, Including Inverted Capsule Embedding Methods for Archival Sections and Falcon Films for Prostate Cancer Cell Lines.
Anticancer Res. 2019; 39(8):4171-4177 [PubMed] Related Publications
BACKGROUND/AIM: Identification of prostatic stem cells in primary prostate tissue sections, organ cultures of prostate and cell lines requires a range of techniques that allows characterization of stem cells for their potential use in the treatment of patients. Isolated cells usually round-up and develop changes in shape, size and cellular characteristics. The aim of this study was to provide a range of methods for identifying prostatic stem cells and characterizing them with regard to ultrastructure, nuclear morphology, cytoplasmic organelles, and/or expression stem cell marker CD133.
MATERIALS AND METHODS: Prostate biopsy and prostatectomy specimens were used for studying prostatic stem cells and their known marker CD133 in tissue sections by light and/or electron microscopy. Inverted capsule embedding was used to study archival metastatic prostate in pelvic nodes and Du145 cell line in a monolayer culture.
RESULTS: Staining for CD133 positively identified stem cells that were found in benign prostatic hyperplasia, benign prostate, and prostate cancer cells. Paraffin embedded sections showed a single type of stem cells, whereas methylene blue-stained Epon sections showed both light and dark stem cells. Electron microscopy showed that both basal and stem cells were closely associated with the basement membrane (basal lamina). Stem cells had smooth plasma and nuclear membranes, a prominent nucleolus, small mitochondria, and few ribosomes. Du145 cells were separated by intercellular spaces in monolayer culture.
CONCLUSION: The inverted capsule embedding method allowed the study of metastasized prostate cancer in pelvic lymph nodes. Our approach enabled the assessment of stem cells in tissue sections by light and electron microscopy.

Zhang D, Liao X, Tang Y, et al.
Warthin-like Mucoepidermoid Carcinoma of the Parotid Gland: Unusual Morphology and Diagnostic Pitfalls.
Anticancer Res. 2019; 39(6):3213-3217 [PubMed] Related Publications
BACKGROUND: Warthin-like mucoepidermoid carcinoma is a newly recognized rare entity and could be misdiagnosed as a benign Warthin tumor. We report such a case of a 36-year-old male who presented with a left parotid gland mass.
CASE REPORT: Fine-needle aspiration showed features suggestive of Warthin tumor. Following parotidectomy, grossly there was a 1.6 cm well-circumscribed multilobular mass with focal areas of cystic change. Microscopically, at low magnification it had histological features resembling Warthin tumor, while lining with squamoid cells with scattered mucocytes demonstrating mild cytologic atypia was observed at high magnification. Immunohistochemically, the tumor cells were positive for p40, p63, cytokeratin 5/6, cytokeratin 7, and cancer antigen 125, but negative for discovered on GIST-1 (DOG1). Mucicarmine stain highlighted intracellular mucin within mucocytes. Rearrangement of mastermind like transcriptional coactivator 2 (MAML2) (11q21) gene was shown to be present in tumor cells by fluorescence in situ hybridization, supporting the diagnosis of a low-grade Warthin-like mucoepidermoid carcinoma. The patient was disease-free 12 months after surgery.
CONCLUSION: Warthin-like mucoepidermoid carcinoma has not been widely recognized and can be misdiagnosed as Warthin tumor. Testing for MAML2 rearrangement provides essential support for diagnosis in difficult cases.

Jerez S, Araya H, Hevia D, et al.
Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis.
Gene. 2019; 710:246-257 [PubMed] Article available free on PMC after 20/08/2020 Related Publications
Osteosarcoma is the most common primary bone tumor during childhood and adolescence. Several reports have presented data on serum biomarkers for osteosarcoma, but few reports have analyzed circulating microRNAs (miRNAs). In this study, we used next generation miRNA sequencing to examine miRNAs isolated from microvesicle-depleted extracellular vesicles (EVs) derived from six different human osteosarcoma or osteoblastic cell lines with different degrees of metastatic potential (i.e., SAOS2, MG63, HOS, 143B, U2OS and hFOB1.19). EVs from each cell line contain on average ~300 miRNAs, and ~70 of these miRNAs are present at very high levels (i.e., >1000 reads per million). The most prominent miRNAs are miR-21-5p, miR-143-3p, miR-148a-3p and 181a-5p, which are enriched between 3 and 100 fold and relatively abundant in EVs derived from metastatic SAOS2 cells compared to non-metastatic MG63 cells. Gene ontology analysis of predicted targets reveals that miRNAs present in EVs may regulate the metastatic potential of osteosarcoma cell lines by potentially inhibiting a network of genes (e.g., MAPK1, NRAS, FRS2, PRCKE, BCL2 and QKI) involved in apoptosis and/or cell adhesion. Our data indicate that osteosarcoma cell lines may selectively package miRNAs as molecular cargo of EVs that could function as paracrine agents to modulate the tumor micro-environment.

Dusek J, Skoda J, Holas O, et al.
Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver.
Toxicol Lett. 2019; 313:1-10 [PubMed] Related Publications
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.

Yuan C, Renfro L, Ambadwar PB, et al.
Influence of genetic variation in the vitamin D pathway on plasma 25-hydroxyvitamin D
Cancer Causes Control. 2019; 30(7):757-765 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
PURPOSE: The relationships of genetic variation in the vitamin D pathway with circulating 25-hydroxyvitamin D
METHODS: Among 535 patients participating in a randomized trial of chemotherapy for mCRC, we prospectively measured baseline plasma 25(OH)D and examined 124 tagging single-nucleotide polymorphisms (SNPs) within seven genes in the vitamin D pathway, including five SNPs associated with circulating 25(OH)D levels in previous genome-wide association studies (GWAS). We evaluated whether these SNPs were associated with plasma 25(OH)D levels and patient outcome (overall survival, time to progression, and tumor response), using linear, logistic, and Cox proportional hazards regression.
RESULTS: We observed a significant association between 25(OH)D levels and an additive genetic risk score determined by the five GWAS-identified SNPs (p = 0.0009). We did not observe any direct association between 25(OH)D-associated SNPs, individually or as a genetic risk score, and patient outcome. However, we found a significant interaction between 25(OH)D levels and rs12785878 genotype in DHCR7 on overall survival (p
CONCLUSION: Germline genetic variation in the vitamin D pathway informs baseline 25(OH)D levels among patients with mCRC. The association between 25(OH)D levels and overall survival may vary by DHCR7 genotype. Identifier: NCT00003594 ( ).

Glasgow MA, Argenta P, Abrahante JE, et al.
Biological Insights into Chemotherapy Resistance in Ovarian Cancer.
Int J Mol Sci. 2019; 20(9) [PubMed] Article available free on PMC after 01/07/2020 Related Publications
The majority of patients with high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy; however, most will develop chemotherapy resistance. Gene signatures may change with the development of chemotherapy resistance in this population, which is important as it may lead to tailored therapies. The objective of this study was to compare tumor gene expression profiles in patients before and after treatment with neoadjuvant chemotherapy (NACT). Tumor samples were collected from six patients diagnosed with HGSOC before and after administration of NACT. RNA extraction and whole transcriptome sequencing was performed. Differential gene expression, hierarchical clustering, gene set enrichment analysis, and pathway analysis were examined in all of the samples. Tumor samples clustered based on exposure to chemotherapy as opposed to patient source. Pre-NACT samples were enriched for multiple pathways involving cell cycle growth. Post-NACT samples were enriched for drug transport and peroxisome pathways. Molecular subtypes based on the pre-NACT sample (differentiated, mesenchymal, proliferative and immunoreactive) changed in four patients after administration of NACT. Multiple changes in tumor gene expression profiles after exposure to NACT were identified from this pilot study and warrant further attention as they may indicate early changes in the development of chemotherapy resistance.

Wang C, Gao F, Giannakis GB, et al.
Efficient proximal gradient algorithm for inference of differential gene networks.
BMC Bioinformatics. 2019; 20(1):224 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
BACKGROUND: Gene networks in living cells can change depending on various conditions such as caused by different environments, tissue types, disease states, and development stages. Identifying the differential changes in gene networks is very important to understand molecular basis of various biological process. While existing algorithms can be used to infer two gene networks separately from gene expression data under two different conditions, and then to identify network changes, such an approach does not exploit the similarity between two gene networks, and it is thus suboptimal. A desirable approach would be clearly to infer two gene networks jointly, which can yield improved estimates of network changes.
RESULTS: In this paper, we developed a proximal gradient algorithm for differential network (ProGAdNet) inference, that jointly infers two gene networks under different conditions and then identifies changes in the network structure. Computer simulations demonstrated that our ProGAdNet outperformed existing algorithms in terms of inference accuracy, and was much faster than a similar approach for joint inference of gene networks. Gene expression data of breast tumors and normal tissues in the TCGA database were analyzed with our ProGAdNet, and revealed that 268 genes were involved in the changed network edges. Gene set enrichment analysis identified a significant number of gene sets related to breast cancer or other types of cancer that are enriched in this set of 268 genes. Network analysis of the kidney cancer data in the TCGA database with ProGAdNet also identified a set of genes involved in network changes, and the majority of the top genes identified have been reported in the literature to be implicated in kidney cancer. These results corroborated that the gene sets identified by ProGAdNet were very informative about the cancer disease status. A software package implementing the ProGAdNet, computer simulations, and real data analysis is available as Additional file 1.
CONCLUSION: With its superior performance over existing algorithms, ProGAdNet provides a valuable tool for finding changes in gene networks, which may aid the discovery of gene-gene interactions changed under different conditions.

Yoo SM, Lee CJ, An HJ, et al.
RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity.
Int J Mol Sci. 2019; 20(8) [PubMed] Article available free on PMC after 01/07/2020 Related Publications
Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced

Ferreira MA, Gamazon ER, Al-Ejeh F, et al.
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.
Nat Commun. 2019; 10(1):1741 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.

Chen W, Liu H, Wang T, et al.
Downregulation of AIF-2 Inhibits Proliferation, Migration, and Invasion of Human Glioma Cells via Mitochondrial Dysfunction.
J Mol Neurosci. 2019; 68(2):304-310 [PubMed] Related Publications
Glioma remains the leading cause of brain tumor-related death worldwide. Apoptosis inducing factor (AIF) is a family of mitochondrial oxidoreductases that play important roles in mitochondrial metabolism and redox control. AIF-1 has been demonstrated to exert cell-killing effect via apoptosis in cancer cells, whereas the role of AIF-2 in cancer cells has not been determined. This study aimed to investigate the role of AIF-2 in human glioma cells. We found that AIF-2 was upregulated in human glioma tissues and cell lines, especially in U251 cells. Downregulation of AIF-2 using specific siRNA (Si-AIF-2) significantly reduced cell proliferation, induced G1 cell cycle arrest and differently regulated the expression of cell cycle regulator proteins in U251 cells. In addition, the results of Matrigel invasion assay and live-cell tracking assay showed that knockdown of AIF-2 inhibited cell invasion and migration. The results of immunocytochemistry indicated that knockdown of AIF-2 significantly attenuated the nuclear translocation of AIF-1, which was confirmed by western blot analysis. Furthermore, downregulation of AIF-2 resulted in mitochondrial dysfunction in U251 cells, as evidenced by reduced mitochondrial membrane potential (MMP), mitochondrial complex I activity, and mitochondrial Ca

Gao G, Wang J, Kasperbauer JL, et al.
Whole genome sequencing reveals complexity in both HPV sequences present and HPV integrations in HPV-positive oropharyngeal squamous cell carcinomas.
BMC Cancer. 2019; 19(1):352 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
BACKGROUND: High risk human papillomaviruses (HPV) plays important roles in the development of cervical cancer, a number of other anogenital cancer and they are increasingly found in oropharyngeal squamous cell carcinoma (OPSCC), however there has not been comprehensive analysis about the role how these viruses play in the development of OPSCC.
METHODS: To characterize the physical status of HPV within OPSCC and to determine the effect this has throughout the host genome, we have performed 30-40X whole genome sequencing (WGS) on the BGI sequencing platform on 34 OPSCCs: 28 of which were HPV positive. We then examined the sequencing data to characterize the HPV copy number and HPV physical status to determine what effect they have on both HPV and human genome structural changes.
RESULTS: WGS determined the HPV copy number across the viral genome. HPV copy number ranged from 1 copy to as high as 150 copies in each individual OPSCC. Independent of HPV copy number, most tumors had either a small or a very large deletion in the viral genome. We discovered that these deletions were the result of either HPV integration into the human genome or HPV-HPV sequence junctions. WGS revealed that ~ 70% of these tumors had HPV integrations within the human genome and HPV integration occurred independent of HPV copy number. Individual HPV integrations were found to be highly disruptive resulting in structural variations and copy number changes at or around the integration sites.
CONCLUSIONS: WGS reveals that there is a great complexity in both HPV sequences present and the HPV integrations events in HPV positive OPSCCs tumors. Thus HPV may be playing different roles in the development of different OPSCCs and this further challenge the HPV-driven carcinogenesis model first proposed for cervical cancer.

Sharma ND, Nickl CK, Kang H, et al.
Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia.
Cancer Sci. 2019; 110(6):1931-1946 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
Activating mutations in cytokine receptors and transcriptional regulators govern aberrant signal transduction in T-cell lineage acute lymphoblastic leukemia (T-ALL). However, the roles played by suppressors of cytokine signaling remain incompletely understood. We examined the regulatory roles of suppressor of cytokine signaling 5 (SOCS5) in T-ALL cellular signaling networks and leukemia progression. We found that SOCS5 was differentially expressed in primary T-ALL and its expression levels were lowered in HOXA-deregulated leukemia harboring KMT2A gene rearrangements. Here, we report that SOCS5 expression is epigenetically regulated by DNA methyltransferase-3A-mediated DNA methylation and methyl CpG binding protein-2-mediated histone deacetylation. We show that SOCS5 negatively regulates T-ALL cell growth and cell cycle progression but has no effect on apoptotic cell death. Mechanistically, SOCS5 silencing induces activation of JAK-STAT signaling, and negatively regulates interleukin-7 and interleukin-4 receptors. Using a human T-ALL murine xenograft model, we show that genetic inactivation of SOCS5 accelerates leukemia engraftment and progression, and leukemia burden. We postulate that SOCS5 is epigenetically deregulated in T-ALL and serves as an important regulator of T-ALL cell proliferation and leukemic progression. Our results link aberrant downregulation of SOCS5 expression to the enhanced activation of the JAK-STAT and cytokine receptor-signaling cascade in T-ALL.

Jenkinson G, Abante J, Koldobskiy MA, et al.
Ranking genomic features using an information-theoretic measure of epigenetic discordance.
BMC Bioinformatics. 2019; 20(1):175 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
BACKGROUND: Establishment and maintenance of DNA methylation throughout the genome is an important epigenetic mechanism that regulates gene expression whose disruption has been implicated in human diseases like cancer. It is therefore crucial to know which genes, or other genomic features of interest, exhibit significant discordance in DNA methylation between two phenotypes. We have previously proposed an approach for ranking genes based on methylation discordance within their promoter regions, determined by centering a window of fixed size at their transcription start sites. However, we cannot use this method to identify statistically significant genomic features and handle features of variable length and with missing data.
RESULTS: We present a new approach for computing the statistical significance of methylation discordance within genomic features of interest in single and multiple test/reference studies. We base the proposed method on a well-articulated hypothesis testing problem that produces p- and q-values for each genomic feature, which we then use to identify and rank features based on the statistical significance of their epigenetic dysregulation. We employ the information-theoretic concept of mutual information to derive a novel test statistic, which we can evaluate by computing Jensen-Shannon distances between the probability distributions of methylation in a test and a reference sample. We design the proposed methodology to simultaneously handle biological, statistical, and technical variability in the data, as well as variable feature lengths and missing data, thus enabling its wide-spread use on any list of genomic features. This is accomplished by estimating, from reference data, the null distribution of the test statistic as a function of feature length using generalized additive regression models. Differential assessment, using normal/cancer data from healthy fetal tissue and pediatric high-grade glioma patients, illustrates the potential of our approach to greatly facilitate the exploratory phases of clinically and biologically relevant methylation studies.
CONCLUSIONS: The proposed approach provides the first computational tool for statistically testing and ranking genomic features of interest based on observed DNA methylation discordance in comparative studies that accounts, in a rigorous manner, for biological, statistical, and technical variability in methylation data, as well as for variability in feature length and for missing data.

Campbell EJ, Dachs GU, Morrin HR, et al.
Activation of the hypoxia pathway in breast cancer tissue and patient survival are inversely associated with tumor ascorbate levels.
BMC Cancer. 2019; 19(1):307 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
BACKGROUND: The transcription factor hypoxia inducible factor (HIF) -1 drives tumor growth and metastasis and is associated with poor prognosis in breast cancer. Ascorbate can moderate HIF-1 activity in vitro and is associated with HIF pathway activation in a number of cancer types, but whether tissue ascorbate levels influence the HIF pathway in breast cancer is unknown. In this study we investigated the association between tumor ascorbate levels and HIF-1 activation and patient survival in human breast cancer.
METHODS: In a retrospective analysis of human breast cancer tissue, we analysed primary tumor and adjacent uninvolved tissue from 52 women with invasive ductal carcinoma. We measured HIF-1α, HIF-1 gene targets CAIX, BNIP-3 and VEGF, and ascorbate content. Patient clinical outcomes were evaluated against these parameters.
RESULTS: HIF-1 pathway proteins were upregulated in tumor tissue and increased HIF-1 activation was associated with higher tumor grade and stage, with increased vascular invasion and necrosis, and with decreased disease-free and disease-specific survival. Grade 1 tumors had higher ascorbate levels than did grade 2 or 3 tumors. Higher ascorbate levels were associated with less tumor necrosis, with lower HIF-1 pathway activity and with increased disease-free and disease-specific survival.
CONCLUSIONS: Our findings indicate that there is a direct correlation between intracellular ascorbate levels, activation of the HIF-1 pathway and patient survival in breast cancer. This is consistent with the known capacity of ascorbate to stimulate the activity of the regulatory HIF hydroxylases and suggests that optimisation of tumor ascorbate could have clinical benefit via modulation of the hypoxic response.

Decmann A, Bancos I, Khanna A, et al.
Comparison of plasma and urinary microRNA-483-5p for the diagnosis of adrenocortical malignancy.
J Biotechnol. 2019; 297:49-53 [PubMed] Related Publications
INTRODUCTION: Minimally invasive circulating microRNAs might be used for the preoperative differentiation of adrenocortical carcinoma (ACC) and adrenocortical adenoma (ACA). So far, the best blood-borne microRNA biomarker of ACC is circulating hsa-miR-483-5p. The expression of urinary hsa-miR-483-5p as a non-invasive marker of malignancy and its correlation with plasma hsa-miR-483-5p, has not been investigated, yet.
AIM: Our aim was to investigate the expression of urinary hsa-miR-483-5p and its correlation with its plasma counterpart.
METHODS: Plasma and urinary samples from 23 ACC and 23 ACA patients were analysed using real-time RT-qPCR. To evaluate the diagnostic applicability of hsa-miR-483-5p, ROC-analysis was performed.
RESULTS: Significant overexpression of hsa-miR-483-5p was observed in carcinoma patients' plasma samples compared to adenoma patients' (p < 0.0001, sensitivity: 87%, specificity: 78.3%). In urinary samples, however, no significant difference could be detected between ACC and ACA patients.
CONCLUSIONS: Plasma hsa-miR-483-5p has been confirmed as significantly overexpressed in adrenocortical cancer patients and thus might be exploited as a minimally invasive preoperative marker of malignancy. The applicability of urinary hsa-miR-483-5p for the diagnosis of adrenocortical malignancy could not be confirmed.

Chai Y, Liu W, Wang C, et al.
Prognostic Role of Chicken Ovalbumin Upstream Promoter Transcription Factor II in Isocitrate Dehydrogenase-Mutant Glioma with 1p19q Co-Deletion.
J Mol Neurosci. 2019; 68(2):234-242 [PubMed] Related Publications
BACKGROUND: Chicken ovalbumin upstream promoter transcription factor II is known to play a crucial role in the tumor microenvironment. However, the role of NR2F2 in gliomas is unknown.
METHODS: The genomic and clinical data of 530 cases of lower grade gliomas (LGGs) patients and 167 cases of glioblastoma (GBM) patients in The Cancer Genome Atlas (TCGA) were extracted for analysis. R2 and UCSC Xena browser were used for Kaplan-Meier survival in the GSE16011 dataset and TCGA dataset, respectively. GraphPad Prism 7 was used to compare the differences in NR2F2 expression between various groups and subtypes.
RESULTS: LGG patients with low NR2F2 expression had a significantly favorable outcome compared with those with high NR2F2 expression (p < 0.05). By matching histological subtypes and gene expression profiles of LGG patients, grade II glioma group showed lowest levels of NR2F2 expression compared with grade III gliomas and GBM. Patients diagnosed with astrocytoma have highest expression of NR2F2 but lowest OS (p < 0.05). In LGGs, NR2F2 expression was significantly downregulated in patient group with IDH mutation and 1p19q co-deletion (p < 0.05).
CONCLUSION: Our study suggests that NR2F2 can be used as a prognostic marker in LGG patients with IDH mutation and 1p19 co-deletion.

Minlikeeva AN, Cannioto R, Jensen A, et al.
Joint exposure to smoking, excessive weight, and physical inactivity and survival of ovarian cancer patients, evidence from the Ovarian Cancer Association Consortium.
Cancer Causes Control. 2019; 30(5):537-547 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
PURPOSE: Previous epidemiologic studies have shown that smoking, obesity, and physical inactivity are associated with poor survival following a diagnosis of ovarian cancer. Yet, the combined relationship of these unfavorable lifestyle factors on ovarian cancer survival has not been sufficiently investigated.
METHODS: Using data pooled from 13 studies, we examined the associations between combined exposures to smoking, overweight/obesity weight, and physical inactivity and overall survival (OS) as well as progression-free survival (PFS) among women diagnosed with invasive epithelial ovarian carcinoma (n = 7,022). Using age- and stage-adjusted Cox proportional hazards regression models, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) associated with joint exposure to these factors.
RESULTS: Combined exposure to current smoking, overweight/obesity, and physical inactivity prior to diagnosis was associated with a significantly increased risk of mortality compared to women who never smoked, had normal body mass index (BMI), and were physically active (HR = 1.37; 95% CI 1.10-1.70). The association for a joint exposure to these factors exceeded that of each exposure individually. In fact, exposure to both current smoking and overweight/obesity, and current smoking and physical inactivity was also associated with increased risk of death (HR = 1.28; 95% CI 1.08-1.52, and HR = 1.26; 95% CI 1.04-1.54, respectively). The associations were of a similar magnitude when former smoking was assessed in combination with the other exposures and when excessive weight was limited to obesity only. No significant associations were observed between joint exposure to any of these factors and PFS.
CONCLUSIONS: Joint exposure to smoking, excessive weight, and physical inactivity may negatively impact survival of ovarian cancer patients. These results suggest the importance of examining the combined effect of lifestyle factors on ovarian cancer patients' survival.

Lawrenson K, Song F, Hazelett DJ, et al.
Genome-wide association studies identify susceptibility loci for epithelial ovarian cancer in east Asian women.
Gynecol Oncol. 2019; 153(2):343-355 [PubMed] Related Publications
OBJECTIVE: Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) have focused largely on populations of European ancestry. We aimed to identify common germline variants associated with EOC risk in Asian women.
METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations.
RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10
CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.

Buendia Duque M, Pinheiro KV, Thomaz A, et al.
Combined Inhibition of HDAC and EGFR Reduces Viability and Proliferation and Enhances STAT3 mRNA Expression in Glioblastoma Cells.
J Mol Neurosci. 2019; 68(1):49-57 [PubMed] Related Publications
Changes in expression of histone deacetylases (HDACs), which epigenetically regulate chromatin structure, and mutations and amplifications of the EGFR gene, which codes for the epidermal growth factor receptor (EGFR), have been reported in glioblastoma (GBM), the most common and malignant type of brain tumor. There are likely interplays between HDACs and EGFR in promoting GBM progression, and HDAC inhibition can cooperate with EGFR blockade in reducing the growth of lung cancer cells. Here, we found that either HDAC or EGFR inhibitors dose-dependently reduced the viability of U87 and A-172 human GBM cells. In U87 cells, the combined inhibition of HDACs and EGFR was more effective than inhibiting either target alone in reducing viability and long-term proliferation. In addition, HDAC or EGFR inhibition, alone or combined, led to G0/G1 cell cycle arrest. The EGFR inhibitor alone or combined with HDAC inhibition increased mRNA expression of the signal transducer and activator of transcription 3 (STAT3), which can act either as an oncogene or a tumor suppressor in GBM. These data provide early evidence that combining HDAC and EGFR inhibition may be an effective strategy to reduce GBM growth, through a mechanism possibly involving STAT3.

Bi C, Liu M, Rong W, et al.
High Beclin-1 and ARID1A expression corelates with poor survival and high recurrence in intrahepatic cholangiocarcinoma: a histopathological retrospective study.
BMC Cancer. 2019; 19(1):213 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
BACKGROUND: Although surgical resection provides a cure for patients with intrahepatic cholangiocarcinoma (ICC), the risk of mortality and recurrence remains high. Several biomarkers are reported to be associated with the prognosis of ICC, including Beclin-1, ARID1A, carbonic anhydrase IX (CA9) and isocitrate dehydrogenase 1 (IDH1), but results are inconsistent. Therefore, a histopathological retrospective study was performed to simultaneously investigate the relationship of these four potential biomarkers with clinicopathological parameters and their prognostic values in patients with ICC.
METHODS: A total of 113 patients with ICC were enrolled from Cancer Hospital of Chinese Academy of Medical Sciences between January 1999 and June 2015. The expression of Beclin-1, ARID1A, IDH1 and CA9 were determined by immunohistochemical staining. The prognostic values of the four biomarkers were analyzed by Cox regression and the Kaplan-Meier method.
RESULTS: Beclin-1, ARID1A, CA9 and IDH1 were highly expressed in ICC tumor tissues. Higher mortality was positively associated with Beclin-1 expression (HR = 2.39, 95% CI = 1.09-5.24) and higher recurrence was positively associated with ARID1A expression (HR = 1.71, 95% CI = 1.06-2.78). Neither CA9 nor IDH1 expression was significantly associated with mortality or disease recurrence. Kaplan-Meier survival curves showed that ICC patients with higher Beclin-1 and ARID1A expression had a lower survival rate and a worse recurrence rate than patients with low Beclin-1 and ARID1A expression (p < 0.05).
CONCLUSIONS: High Beclin-1 and ARIDIA expression are strongly associated with poor prognosis in ICC patients, and thus Beclin-1 and ARID1A should be simultaneously considered as potential prognostic biomarkers for ICC patients.

Donida BM, Tomasello G, Ghidini M, et al.
Epidemiological, clinical and pathological characteristics of gastric neoplasms in the province of Cremona: the experience of the first population-based specialized gastric cancer registry in Italy.
BMC Cancer. 2019; 19(1):212 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
BACKGROUND: The gastric cancer incidence rate differs widely across geographical areas. In Italy, in the province of Cremona the incidence is high, compared to the national situation. For this reason a specialized population-based registry was set up.
METHODS: The collection encompasses all gastric cancers diagnosed in the three districts of the province since January 1, 2010. The main data sources were the pathological and Hospital Discharge Records and patient clinical charts. Only diagnoses of primary gastric cancer were considered. For each case the following variables were registered: personal data, medical history and symptoms at diagnosis; imaging assessments performed, details on surgery and other treatments received; genetic background and biomolecular characteristics; social and environmental factors.
RESULTS: As of November 2017, 1087 cases were collected; of which 876, diagnosed up to December 2015, were analyzed. Male/female ratio was 1.4. The European Age-standardized Incidence Rate was 41.4 for males and 28.3 for females as compared to a national average of 33.3 and 17.0 respectively. Median age at diagnosis was 73 for male and 78 for female. Helicobacter Pylori infection was present in fewer than 20% of cases. HER-2 gene was amplified in about 25% of cases. Primary tumour location was the gastro-esophageal junction or cardia in 17.5% in males and 8.3% in females. The majority of cases (58.3%) were diagnosed at an advanced stage and overall only 41.2% underwent surgery. Median overall survival was 14.8 months for men and 18.5 for women. Age standardized 5-year relative survival was 31.4% for men and 40.5% for females. Neoadjuvant treatment was performed in fewer than 10% of patients who underwent surgery, and the rate of postoperative therapy adherence was low.
DISCUSSION: This study shows a high gastric cancer incidence in the province of Cremona, with a geographical spread across different districts. Moreover, a high percentage of gastric cancers were detected at an advanced stage of disease and a low rate of 5-year relative survival was registered. Based on these findings, effective preventive interventional health strategies and screening procedures need to be implemented to reduce the impact of this pathology in this geographical area.

Jiang L, Mino-Kenudson M, Roden AC, et al.
Association between the novel classification of lung adenocarcinoma subtypes and EGFR/KRAS mutation status: A systematic literature review and pooled-data analysis.
Eur J Surg Oncol. 2019; 45(5):870-876 [PubMed] Related Publications
OBJECTIVES: This study aims to determine the association of EGFR/KRAS mutation status with histological subtypes of lung adenocarcinoma (LAC) based on the IASLC/ATS/ERS classification.
METHODS: Pubmed and Cochrane databases were searched from January 2011 to June 2018 for studies that included patients with LAC who underwent surgical resection were classified according to the new IASLC/ATS/ERS classification. EGFR/KRAS status assessment was requireded. The primary outcome was determined by the odds ratio (OR) of the incidence of mutation status of certain of each histological subtype. The reference group consisted of EGFR/KRAS mutation negative patients.
RESULTS: Twenty-seven eligible studies involving 9022 patients with mutation gene detection were included for analysis. Among them, 6717 (74.5%) patients were from the Asian region and, 2305 (25.5%) patients were from Non-Asian regions. The most prevalent subtype was acinar (34.7%), followed by papillary (22.9%), lepidic (18.9%), solid (13.6%), micropapillary (6.3%), and invasive mucinous adenocarcinoma (3.5%). EGFR mutations were more common in patients with resected lepidic predominant adenocarcinoma (OR,1.76; 95%CI, 1.38-2.24;p < 0.01) and were rarely found in solid predominant adenocarcinoma (OR,0.28; 95%CI, 0.23-0.34;p < 0.01) or IMA (OR,0.10; 95%CI, 0.06-0.14;p < 0.01). Conversely, KRAS mutations were characterized by IMA (OR,7.01; 95%CI, 5.11-9.62;p < 0.01), and were less frequently identified in lepidic (OR,0.58; 95%CI, 0.45-0.75;p < 0.01) and acinar (OR,0.65; 95%CI, 0.55-0.78;p < 0.01) predominant subtypes. Further analyses were performed in Asian and Non-Asian groups and the results were consistent.
CONCLUSIONS: The current study confirms that the IASLC/ATS/ERS classification is associated with driver gene alterations in resected LAC.

Brooks RA, Tritchler DS, Darcy KM, et al.
GOG 8020/210: Risk stratification of lymph node metastasis, disease progression and survival using single nucleotide polymorphisms in endometrial cancer: An NRG oncology/gynecologic oncology group study.
Gynecol Oncol. 2019; 153(2):335-342 [PubMed] Article available free on PMC after 01/07/2020 Related Publications
OBJECTIVES: The ability to stratify a patient's risk of metastasis and survival permits more refined care. A proof of principle study was undertaken to investigate the relationship between single nucleotide polymorphisms (SNPs) in literature based candidate cancer genes and the risk of nodal metastasis and clinical outcome in endometrioid endometrial cancer (EEC) patients.
METHODS: Surgically-staged EEC patients from the Gynecologic Oncology Group or Washington University School of Medicine with germline DNA available were eligible. Fifty-four genes represented by 384 SNPs, were evaluated by Illumina Custom GoldenGate array. Association with lymph node metastases was the primary outcome. Progression-free survival (PFS) and overall survival (OS) was also evaluated.
RESULTS: 361 SNPs with high quality genotype data were evaluated in 337 patients with outcome data. Five SNPs in CXCR2 had an odds ratio (OR) between 0.68 and 0.70 (p-value ≤ 0.025). The A allele rs946486 in ABL had an OR of 1.5 (p-value = 0.01) for metastasis. The G allele in rs7795743 in EGFR had an OR for metastasis of 0.68 (p-value = 0.02) and hazard ratio (HR) for progression of 0.66 (p-value = 0.004). Importantly, no SNP met genome wide significance after adjusting for multiple test correcting and clinical covariates. The A allele in rs2159359 SNP in NME1 and the G allele in rs13222385 in EGFR were associated with worse OS. Both exhibited genome wide significance; rs13222385 remained significant after adjusting for prognostic clinical variables.
CONCLUSION: SNPs in cancer genes including rs2159359 SNP in NME1 and rs13222385 in EGFR may stratify risk in EEC and are prioritized for further investigation.

Liang X, Dong Z, Bin W, et al.
PAX3 Promotes Proliferation of Human Glioma Cells by WNT/β-Catenin Signaling Pathways.
J Mol Neurosci. 2019; 68(1):66-77 [PubMed] Related Publications
The PAX3 (paired box 3) gene plays an important role in embryonic development, diseases, and cancer formation. Our preliminary studies have shown that PAX3 gene is upregulated in glioma cells, which is associated with a worse prognosis. Moreover, PAX3, by facilitating cell proliferation and invasion and inhibiting cell apoptosis, plays an oncogenic role in glioma. However, the specific molecular mechanism of PAX3 acting as an oncogene in glioma remains unclarified. In the present study, we have found that PAX3 overexpression was observed in high grade glioma and predicted a worse prognosis. PAX3 overexpression did not correlate significantly to IDH1 mutation and MGMT methylation. Moreover, the expression of PAX3 was positively correlated with that of β-catenin. In U87 glioma cells, PAX3 interacted with β-catenin, as was confirmed by CO-IP. Besides, PAX3 overexpression promoted cell proliferation and cell cycle progression, while it inhibited cell apoptosis by altering the expressions of important molecules associated with the Wnt signaling pathway, including β-catenin, Myc, VEGF, cyclinD1, MMP7, and Wnt1. In the meantime, it was also proved that PAX3 correlated to β-catenin through a negative regulatory mechanism with respect to the promotion of U87 glioma cell proliferation and cell cycle progression and inhibition of the cell apoptosis. Our experiment demonstrated the role of PAX3 in promoting glioma growth and development, possibly by interacting directly with β-catenin and regulating the Wnt signaling pathway.

Rauth M, Freund P, Orlova A, et al.
Cell Metabolism Control Through O-GlcNAcylation of STAT5: A Full or Empty Fuel Tank Makes a Big Difference for Cancer Cell Growth and Survival.
Int J Mol Sci. 2019; 20(5) [PubMed] Article available free on PMC after 01/07/2020 Related Publications
O-GlcNAcylation is a post-translational modification that influences tyrosine phosphorylation in healthy and malignant cells. O-GlcNAc is a product of the hexosamine biosynthetic pathway, a side pathway of glucose metabolism. It is essential for cell survival and proper gene regulation, mirroring the metabolic status of a cell. STAT3 and STAT5 proteins are essential transcription factors that can act in a mutational context-dependent manner as oncogenes or tumor suppressors. They regulate gene expression for vital processes such as cell differentiation, survival, or growth, and are also critically involved in metabolic control. The role of STAT3/5 proteins in metabolic processes is partly independent of their transcriptional regulatory role, but is still poorly understood. Interestingly, STAT3 and STAT5 are modified by O-GlcNAc in response to the metabolic status of the cell. Here, we discuss and summarize evidence of O-GlcNAcylation-regulating STAT function, focusing in particular on hyperactive STAT5A transplant studies in the hematopoietic system. We emphasize that a single O-GlcNAc modification is essential to promote development of neoplastic cell growth through enhancing STAT5A tyrosine phosphorylation. Inhibition of O-GlcNAcylation of STAT5A on threonine 92 lowers tyrosine phosphorylation of oncogenic STAT5A and ablates malignant transformation. We conclude on strategies for new therapeutic options to block O-GlcNAcylation in combination with tyrosine kinase inhibitors to target neoplastic cancer cell growth and survival.

Nakazawa S, Sakata KI, Liang S, et al.
Dominant-negative p53 mutant R248Q increases the motile and invasive activities of oral squamous cell carcinoma cells.
Biomed Res. 2019; 40(1):37-49 [PubMed] Related Publications
The tumor suppressor gene TP53 (gene) codes for a transcription factor which transactivates its target genes responsible for cell cycle arrest, DNA repair, apoptosis, and senescence. TP53 is well known to be the most frequent target of genetic mutations in nearly half of human cancers including oral squamous cell carcinoma (OSCC). Many p53 mutants including R248Q and R248W not only lose its tumor-suppressor activities, but also interfere with the functions of wild-type p53; this is so-called dominant-negative (DN) mutation. The DN p53 mutation is a predictor of poor outcome in patients with various cancers, and also a risk factor for metastatic recurrence in patients with OSCC. Recently it has been reported that DN p53 mutants acquire new oncogenic activities, which is named gain-of-function (GOF). This study aimed at determining whether R248Q and R248W were involved in OSCC cells' acquiring aggressive phenotypes, using SAS, HSC4 and Ca9-22 cell lines. First, two mutants p53, R248Q and R248W, were respectively transfected into SAS cells harboring recessive-type p53 (E336X). As a result, SAS cells expressing R248Q showed highly spreading, motile and invasive activities compared to parent or mock-transfected cells whereas those expressing R248W did not increase those activities. Secondly, in HSC4 cells harboring R248Q and Ca9-22 cells harboring R248W, expressions of the mutants p53 were inhibited by the transfection with siRNAs targeting p53. The inhibition of the mutants p53 decreased spreading, motile and invasive activities of HSC4 cells whereas it did not affect those activities of Ca9-22 cells. These findings suggest that R248Q p53 mutation, but not R248W p53 mutation, induces more motile and invasive potentials in human OSCC cells.

Margraf RL, VanSant-Webb C, Mao R, et al.
NF1 Somatic Mutation in Dystrophic Scoliosis.
J Mol Neurosci. 2019; 68(1):11-18 [PubMed] Related Publications
Scoliosis is a common manifestation of neurofibromatosis type 1, causing significant morbidity. The etiology of dystrophic scoliosis in neurofibromatosis type 1 is not fully understood and therapies are lacking. Somatic mutations in NF1 have been shown in tibial pseudarthrosis providing rationale for similar processes in neurofibromatosis type 1-associated dystrophic scoliosis. Spinal samples from surgical procedures with matched peripheral blood of two individuals with neurofibromatosis type 1 and dystrophic scoliosis were obtained and DNA extracted. Next generation sequencing of various spinal sections as well as the germline/blood sample were performed using a RASopathy gene panel (includes the NF1 gene). Variants were compared between the spinal tissue samples and the germline data. In addition, the next generation sequencing allele frequency data were used to detect somatic loss of heterozygosity. All samples had a detected potentially inactivating NF1 germline mutation. Both individuals demonstrated an allelic imbalance inclusive of NF1 in the next generation sequencing data. In addition, for the same two individuals, there was an increase in the % variant reads for the germline mutation in some of the surgical spinal samples corresponding to the allelic imbalance. Contra analysis did not show any deletion in Chromosome 17 next generation sequencing data. Microarray analysis verified somatic copy neutral loss of heterozygosity for these two individuals for the majority of the chromosome 17 q-arm, inclusive of the NF1 gene. These results suggest that the cause of dystrophic scoliosis is multifactorial and that a somatic NF1 mutation contributes to the etiology.

Chen Y, Hou Y, Yang Y, et al.
Gene expression changes in cervical squamous cancers following neoadjuvant interventional chemoembolization.
Clin Chim Acta. 2019; 493:79-86 [PubMed] Related Publications
BACKGROUND: The efficacy of therapy for cervical cancer is related to the alteration of multiple molecular events and signaling networks during treatment. The aim of this study was to evaluate gene expression alterations in advanced cervical cancers before- and after-trans-uterine arterial chemoembolization- (TUACE).
METHODS: Gene expression patterns in three squamous cell cervical cancers before- and after-TUACE were determined using microarray technique. Changes in AKAP12 and CA9 genes following TUACE were validated by quantitative real-time PCR.
RESULTS: Unsupervised cluster analysis revealed that the after-TUACE samples clustered together, which were separated from the before-TUACE samples. Using a 2-fold threshold, we identified 1131 differentially expressed genes that clearly discriminate after-TUACE tumors from before-TUACE tumors, including 209 up-regulated genes and 922 down-regulated genes. Pathway analysis suggests these genes represent diverse functional categories. Results from real-time PCR confirmed the expression changes detected by microarray.
CONCLUSIONS: Gene expression signature significantly changes during TUACE therapy of cervical cancer. Theses alterations provide useful information for the development of novel treatment strategies for cervical cancers on the molecular level.

Arnoldussen YJ, Kringlen Ervik T, Samulin Erdem J, et al.
Mechanisms of Toxicity of Industrially Relevant Silicomanganese Dust on Human 1321N1 Astrocytoma Cells: An In Vitro Study.
Int J Mol Sci. 2019; 20(3) [PubMed] Article available free on PMC after 01/07/2020 Related Publications
Tremendous efforts are applied in the ferroalloy industry to control and reduce exposure to dust generated during the production process, as inhalable Mn-containing particulate matter has been linked to neurodegenerative diseases. This study aimed to investigate the toxicity and biological effects of dust particles from laboratory-scale processes where molten silicomanganese (SiMn) was exposed to air, using a human astrocytoma cell line, 1321N1, as model system. Characterization of the dust indicated presence of both nano-sized and larger particles averaging between 100 and 300 nm. The dust consisted mainly of Si, Mn and O. Investigation of cellular mechanisms showed a dose- and time-dependent effect on cell viability, with only minor changes in the expression of proteins involved in apoptosis. Moreover, gene expression of the neurotoxic biomarker

Güttler A, Theuerkorn K, Riemann A, et al.
Cellular and radiobiological effects of carbonic anhydrase IX in human breast cancer cells.
Oncol Rep. 2019; 41(4):2585-2594 [PubMed] Related Publications
Hypoxia‑induced carbonic anhydrase IX (CAIX) is involved in intracellular and extracellular pH regulation, which is critical for tumor growth and metastasis. CAIX is overexpressed in breast cancer and is associated with the poor survival of patients after radiotherapy. Therefore, we evaluated the cellular and radiobiological effects of CAIX inhibition in human breast cancer cells. We used CA9 siRNA and the CA inhibitor (CAI) U104, respectively, to inhibit CAIX expression and activity in basal triple‑negative MDA‑MB‑231 and luminal MCF‑7 cells under hypoxic conditions. We investigated the effects of CAIX inhibition on CA9 mRNA and CAIX protein level, as well as on CAIX activity, intracellular pH, proliferation, apoptosis, clonogenic survival, migration, cell cycle distribution and radiosensitivity. CA9 siRNA and CAI U104 decreased CA9 mRNA and CAIX protein level in MDA‑MB‑231 and MCF‑7 cells. Furthermore, incubation with CAI U104 significantly decreased carbonic anhydrase activity and reduced the intracellular pH. Additionally, CA9 siRNA or U104 reduced clonogenic survival, migration and the number of cells in the G0/G1 phase, induced apoptosis and demonstrated additive or synergistic effects in combination with irradiation. In conclusion, combination of CAIX inhibition and irradiation is a promising treatment strategy against breast cancer with hypoxia‑induced CAIX expression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CA9, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999