CD80

Gene Summary

Gene:CD80; CD80 molecule
Aliases: B7, BB1, B7-1, B7.1, LAB7, CD28LG, CD28LG1
Location:3q13.3-q21
Summary:The protein encoded by this gene is a membrane receptor that is activated by the binding of CD28 or CTLA-4. The activated protein induces T-cell proliferation and cytokine production. This protein can act as a receptor for adenovirus subgroup B and may play a role in lupus neuropathy. [provided by RefSeq, Aug 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:T-lymphocyte activation antigen CD80
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (18)
Pathways:What pathways are this gene/protein implicaed in?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD80 (cancer-related)

Jeon YK, Park SG, Choi IW, et al.
Cancer cell-associated cytoplasmic B7-H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation.
Biochem Biophys Res Commun. 2015; 459(2):277-83 [PubMed] Related Publications
Aberrant B7-H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7-H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7-H4 transcription in primary CD138(+) multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7-H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7-H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7-H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7-H4 expression. Furthermore, knockdown of cytoplasmic B7-H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7-H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7-H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment.

Turbica I, Gallais Y, Gueguen C, et al.
Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarization.
J Leukoc Biol. 2015; 97(4):737-49 [PubMed] Related Publications
DCs are the first immune cells to be exposed to allergens, including chemical sensitizers, such as nickel, a human TLR4 agonist that induces DC maturation. In ACD, DCs can interact with PMNs that are recruited and activated, leading, in particular, to ectosome release. The objective of this work was to characterize the effects of PMN-Ect on DC functions in an ACD context. We first developed a standardized protocol to produce, characterize, and quantify ectosomes by use of human PLB-985 cells, differentiated into mature PMN (PLB-Ect). We then studied the in vitro effects of these purified ectosomes on human moDC functions in response to NiSO4 and to LPS, another TLR4 agonist. Confocal fluorescence microscopy showed that PLB-Ect was internalized by moDCs and localized in the lysosomal compartment. We then showed that PLB-Ect down-regulated NiSO4-induced moDC maturation, as witnessed by decreased expression of CD40, CD80, CD83, CD86, PDL-1, and HLA-DR and by decreased levels of IL-1β, IL-6, TNF-α, and IL-12p40 mRNAs. These effects were related to p38MAPK and NF-κB down-regulation. However, no increase in pan-regulatory DC marker genes (GILZ, CATC, C1QA) was observed; rather, levels of effector DC markers (Mx1, NMES1) were increased. Finally, when these PLB-Ect + NiSO4-treated moDCs were cocultured with CD4(+) T cells, a Th2 cytokine profile seemed to be induced, as shown, in particular, by enhanced IL-13 production. Together, these results suggest that the PMN-Ect can modulate DC maturation in response to nickel, a common chemical sensitizer responsible for ADC.

Denkert C, von Minckwitz G, Brase JC, et al.
Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers.
J Clin Oncol. 2015; 33(9):983-91 [PubMed] Related Publications
PURPOSE: Modulation of immunologic interactions in cancer tissue is a promising therapeutic strategy. To investigate the immunogenicity of human epidermal growth factor receptor 2 (HER2) -positive and triple-negative (TN) breast cancers (BCs), we evaluated tumor-infiltrating lymphocytes (TILs) and immunologically relevant genes in the neoadjuvant GeparSixto trial.
PATIENTS AND METHODS: GeparSixto investigated the effect of adding carboplatin (Cb) to an anthracycline-plus-taxane combination (PM) on pathologic complete response (pCR). A total of 580 tumors were evaluated before random assignment for stromal TILs and lymphocyte-predominant BC (LPBC). mRNA expression of immune-activating (CXCL9, CCL5, CD8A, CD80, CXCL13, IGKC, CD21) as well as immunosuppressive factors (IDO1, PD-1, PD-L1, CTLA4, FOXP3) was measured in 481 tumors.
RESULTS: Increased levels of stromal TILs predicted pCR in univariable (P < .001) and multivariable analyses (P < .001). pCR rate was 59.9% in LPBC and 33.8% for non-LPBC (P < .001). pCR rates ≥ 75% were observed in patients with LPBC tumors treated with PMCb, with a significant test for interaction with therapy in the complete (P = .002) and HER2-positive (P = .006), but not the TNBC, cohorts. Hierarchic clustering of mRNA markers revealed three immune subtypes with different pCR rates (P < .001). All 12 immune mRNA markers were predictive for increased pCR. The highest odds ratios (ORs) were observed for PD-L1 (OR, 1.57; 95% CI, 1.34 to 1.86; P < .001) and CCL5 (OR, 1.41; 95% CI, 1.23 to 1.62; P < .001).
CONCLUSION: Immunologic factors were highly significant predictors of therapy response in the GeparSixto trial, particularly in patients treated with Cb. After further standardization, they could be included in histopathologic assessment of BC.

Wu D, Tang R, Qi Q, et al.
Five functional polymorphisms of B7/CD28 co-signaling molecules alter susceptibility to colorectal cancer.
Cell Immunol. 2015; 293(1):41-8 [PubMed] Related Publications
Polymorphisms within the 3'-untranslated region (3'-UTR) of genes have been proved to contribute to the risk of cancers. Here, we determined 16 putatively functional polymorphisms in the 3'-UTR of 11 B7/CD28 genes in 382 colorectal cancer patients and 714 healthy controls. Statistical analysis revealed that ICOS rs4404254-C-allele carriers (p=0.0014), rs1559931-A-allele carriers (p=0.0027), and rs4675379-C-allele carriers (p=0.026) were significantly fewer in patients than those in controls. B7-H4-rs13505-GG homozygotes were more prevalent in patients (p=0.03). CD80-rs7628626-GT was apparently less in the patients with lymph node metastasis (p=0.004) or in advanced stage (p=0.037). Furthermore, we found that these polymorphisms impacted the regulatory role of miR-21-3p, miR-186-5p, miR-323b-5p, miR-1207-5p, miR-1279, miR-2117, and miR-3692-3p in the expression of the B7/CD28 molecules. Our findings suggest that rs7628626, rs13505, rs4404254, rs1559931, and rs4675379, through disrupting the regulatory role of miRNAs in the expression of B7/CD28 molecules, contribute to the occurrence and progress of colorectal cancer.

Herbst RS, Soria JC, Kowanetz M, et al.
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.
Nature. 2014; 515(7528):563-7 [PubMed] Related Publications
The development of human cancer is a multistep process characterized by the accumulation of genetic and epigenetic alterations that drive or reflect tumour progression. These changes distinguish cancer cells from their normal counterparts, allowing tumours to be recognized as foreign by the immune system. However, tumours are rarely rejected spontaneously, reflecting their ability to maintain an immunosuppressive microenvironment. Programmed death-ligand 1 (PD-L1; also called B7-H1 or CD274), which is expressed on many cancer and immune cells, plays an important part in blocking the 'cancer immunity cycle' by binding programmed death-1 (PD-1) and B7.1 (CD80), both of which are negative regulators of T-lymphocyte activation. Binding of PD-L1 to its receptors suppresses T-cell migration, proliferation and secretion of cytotoxic mediators, and restricts tumour cell killing. The PD-L1-PD-1 axis protects the host from overactive T-effector cells not only in cancer but also during microbial infections. Blocking PD-L1 should therefore enhance anticancer immunity, but little is known about predictive factors of efficacy. This study was designed to evaluate the safety, activity and biomarkers of PD-L1 inhibition using the engineered humanized antibody MPDL3280A. Here we show that across multiple cancer types, responses (as evaluated by Response Evaluation Criteria in Solid Tumours, version 1.1) were observed in patients with tumours expressing high levels of PD-L1, especially when PD-L1 was expressed by tumour-infiltrating immune cells. Furthermore, responses were associated with T-helper type 1 (TH1) gene expression, CTLA4 expression and the absence of fractalkine (CX3CL1) in baseline tumour specimens. Together, these data suggest that MPDL3280A is most effective in patients in which pre-existing immunity is suppressed by PD-L1, and is re-invigorated on antibody treatment.

Jahn L, Hombrink P, Hassan C, et al.
Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b.
Blood. 2015; 125(6):949-58 [PubMed] Related Publications
Immunotherapy of B-cell malignancies using CD19-targeted chimeric antigen receptor-transduced T cells or CD20-targeted therapeutic monoclonal antibodies has shown clinical efficacy. However, refractory disease and the emergence of antigen-loss tumor escape variants after treatment demonstrate the need to target additional antigens. Here we aimed to target the B-cell receptor-associated protein CD79b by a T-cell receptor (TCR)-based approach. Because thymic selection depletes high-avidity T cells recognizing CD79b-derived peptides presented in self-HLA molecules, we aimed to isolate T cells recognizing these peptides presented in allogeneic HLA. Peptide-HLA tetramers composed of CD79b peptides bound to either HLA-A2 or HLA-B7 were used to isolate T-cell clones from HLA-A*0201 and B*0702-negative individuals. For 3 distinct T-cell clones, CD79b specificity was confirmed through CD79b gene transduction and CD79b-specific shRNA knockdown. The CD79b-specific T-cell clones were highly reactive against CD79b-expressing primary B-cell malignancies, whereas no recognition of nonhematopoietic cells was observed. Although lacking CD79b-cell surface expression, intermediate reactivity toward monocytes, hematopoietic progenitor cells, and T-cells was observed. Quantitative reverse transcriptase polymerase chain reaction revealed low CD79b gene expression in these cell types. Therefore, aberrant gene expression must be taken into consideration when selecting common, apparently lineage-specific self-antigens as targets for TCR-based immunotherapies.

Fan M, Zhuang Q, Chen Y, et al.
B7-H4 expression is correlated with tumor progression and clinical outcome in urothelial cell carcinoma.
Int J Clin Exp Pathol. 2014; 7(10):6768-75 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To investigate the mRNA and protein levels of B7-H4, a B7 family molecule, in human urothelial cell carcinoma (UCC), to analyze the relationship between B7-H4 protein expression level and pathological stage of UCC, and to examine the potential of B7-H4 as a prognostic factor in UCC.
METHODS: mRNA and protein levels of B7-H4 were measured in pairs of tumor tissues and matched adjacent nontumor tissue obtained from patients with UCC by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining, respectively. Association of the protein level of B7-H4 with pathological tumor stage and the overall survival of UCC patients were also analyzed.
RESULTS: B7-H4 mRNA and protein level were significantly higher in UCC tumor tissues compared with adjacent nontumor tissues as assessed by qRT-PCR and immunohistochemical staining, respectively. Higher B7-H4 protein levels were observed in patients with more advanced pathological stage of UCC and were also associated with decreased overall survival of patients with UCC.
CONCLUSIONS: The findings from this study indicate that B7-H4 has the potential to be an independent prognostic indicator for UCC.

Geng P, Zhao X, Xiang L, et al.
Distinct role of CD86 polymorphisms (rs1129055, rs17281995) in risk of cancer: evidence from a meta-analysis.
PLoS One. 2014; 9(11):e109131 [PubMed] Free Access to Full Article Related Publications
BACKGROUND AND PURPOSE: Previous studies concerning the role of CD86 polymorphisms (rs1129055 and rs17281995) in cancer fail to provide compelling evidence. The aim of this study was to investigate the role of common polymorphisms in the risk of cancer by meta-analysis.
METHODS: By using the search terms Cluster of Differentiation 86/CD86/B7-2/polymorphism/polymorphisms/cancer, we searched PubMed, Embase, CNKI, and Wanfang and identified four studies for rs1129055 (2137 subjects) and rs17281995 (2856 subjects) respectively. Cancer risk was estimated by odds ratio (OR) and 95% confidence interval (95% CI).
MAJOR FINDINGS: Overall, we observed significant reduced risk of cancer in relation to rs1129055. Compared with the individuals with AA genotype, the individuals with GG genotype appeared to have 62% decreased risk to develop cancer (GG versus AA: OR, 0.62; 95% CI, 0.49-0.79; P(het)., 0.996). Similar effects were indicated in the G versus A allele model and the GG versus GA+AA genetic model (OR, 0.83; 95% CI, 0.74-0.93; P(het)., 0.987; OR, 0.63; 95% CI, 0.50-0.79; P(het)., 0.973). In addition, we found genotypes of rs17281995 had a major effect on overall cancer risk (CC versus GG: OR, 2.38; 95% CI, 1.43-3.95; P(het)., 0.433; C versus G: OR, 1.23; 95% CI, 1.06-1.43; P(het)., 0.521; CC versus GC+GG: OR, 2.38; 95% CI, 1.45-3.93; P(het)., 0.443). The association was also observed in Caucasians and colorectal cancer. No obvious publication bias was detected in this meta-analysis.
CONCLUSIONS: These data reveal that rs1129055 may have protective effects on cancer risk in Asians and that rs17281995 is likely to contribute to risk of cancer, particularly colorectal cancer in Caucasians.

Maskey N, Li K, Hu M, et al.
Impact of neoadjuvant chemotherapy on lymphocytes and co-inhibitory B7-H4 molecule in gastric cancer: low B7-H4 expression associates with favorable prognosis.
Tumour Biol. 2014; 35(12):11837-43 [PubMed] Related Publications
Little is known on the immune response after neoadjuvant chemotherapy (NACT) in gastric cancer (GC). The present study aimed to investigate the effects of NACT on tumor cells and tumor-infiltrating lymphocytes (TILs) in patients with GC. Expressions of CD4+ and CD8+ TILs and identified co-inhibitory B7-H4 molecule were examined by immunohistochemical staining in GC tissues of 56 patients who received NACT (NACT group) and 46 patients who did not receive NACT (nNACT group). These markers, clinicopathological features, and overall survival (OS) time between both groups were compared. Results showed that the clinicopathological features of patients were not significantly associated with NACT (P > 0.05), but the rate of low expression of B7-H4 (78.6 vs. 47.8 %, P = 0.005) and rate of high expression of CD4+ TILs (58.9 vs. 39.1 %, P = 0.048) and CD8+ TILs (92.9 vs. 56.5 %, P < 0.001) were both significantly higher in NACT group than that in nNACT group. Further, Kaplan-Meier analysis indicated that there was no significant difference in OS time between the groups. However, in NACT group, those with low B7-H4 expression had significantly longer OS (P = 0.031). The study findings suggest that low expression of B7-H4 could serve as a candidate biomarker for predicting response to NACT and could provide favorable prognostic information in GC.

Flörcken A, Grau M, Wolf A, et al.
Gene expression profiling of peripheral blood mononuclear cells during treatment with a gene-modified allogeneic tumor cell vaccine in advanced renal cell cancer: tumor-induced immunosuppression and a possible role for NF-κB.
Int J Cancer. 2015; 136(8):1814-26 [PubMed] Related Publications
Tumor-induced immunosuppression remains a major challenge for immunotherapy of cancer patients. To further elucidate why an allogeneic gene-modified [interleukin-7 (IL-7)/CD80-cotransfected] renal cell cancer (RCC) vaccine failed to induce clinically relevant TH-1-polarized immune responses, peripheral blood mononuclear cells from enrolled study patients were analyzed by gene expression profiling (GEP) both prior and after vaccination. At baseline before vaccination, a profound downregulation of gene signatures associated with antigen presentation, immune response/T cells, cytokines/chemokines and signaling/transcription factors was observed in RCC patients as compared to healthy controls. Vaccination led to a partial reversion of preexisting immunosuppression, however, GEP indicated that an appropriate TH-1 polarization could not be achieved. Most interestingly, our results suggest that the nuclear factor-kappa B signaling pathway might be involved in the impairment of immunological responsiveness and the observed TH-2 deviation. In summary, our data suggest that GEP might be a powerful tool for the prediction of immunosuppression and the monitoring of immune responses within immunotherapy trials.

Ingebrigtsen VA, Boye K, Nesland JM, et al.
B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome.
BMC Cancer. 2014; 14:602 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: We have previously reported overexpression of the immunoregulatory protein B7-H3 in colorectal cancer and that nuclear expression predicted poor outcome in colon cancer patients. The present study was performed to examine the prognostic role of B7-H3 in an independent colorectal cancer cohort.
METHODS: Using tissue microarrays from 731 colorectal cancer patients, tumour B7-H3 expression was assessed by immunohistochemistry. Associations with clinicopathological parameters and patient outcome were investigated.
RESULTS: Nuclear expression of B7-H3 in cancer cells was present in 27% of the samples in the total study cohort, while cytoplasmic/membrane and stromal expression was seen in 86% and 77% of the samples, respectively. Nuclear B7-H3 had no prognostic relevance in the complete outcome cohort, neither in colon cancer patients. However, nuclear B7-H3 was significantly associated with reduced recurrence-free survival in TNM stage I colorectal cancer patients.
CONCLUSIONS: Overexpression of B7-H3 in colorectal cancer was confirmed, but in contrast to previous results, nuclear B7-H3 was not a strong prognostic biomarker in this cohort. The discrepancy might be related to the use of single-core tissue microarrays for detection of the heterogeneously expressed B7-H3, and the role of B7-H3 in colorectal cancer still needs further examination.

Wang W, Meng M, Zhang Y, et al.
Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor.
BMC Med Genomics. 2014; 7:49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cytokine-induced killer (CIK) cells are an emerging approach of cancer treatment. Our previous study have shown that CIK cells stimulated with combination of IL-2 and IL-15 displayed improved proliferation capacity and tumor cytotoxicity. However, the mechanisms of CIK cell proliferation and acquisition of cytolytic function against tumor induced by IL-2 and IL-15 have not been well elucidated yet.
METHODS: CIK(IL-2) and CIK(IL-15) were generated from peripheral blood mononuclear cells primed with IFN-γ, and stimulated with IL-2 and IL-15 in combination with OKT3 respectively. RNA-seq was performed to identify differentially expressed genes, and gene ontology and pathways based analysis were used to identify the distinct roles of IL-2 and IL-15 in CIK preparation.
RESULTS: The results indicated that CIKIL-15 showed improved cell proliferation capacity compared to CIK(IL-2). However, CIK(IL-2) has exhibited greater tumor cytotoxic effect than CIKIL-15. Employing deep sequencing, we sequenced mRNA transcripts in CIK(IL-2) and CIK(IL-15). A total of 374 differentially expressed genes (DEGs) were identified including 175 up-regulated genes in CIK(IL-15) and 199 up-regulated genes in CIK(IL-2)). Among DEGs in CIK(IL-15), Wnt signaling and cell adhesion were significant GO terms and pathways which related with their functions. In CIK(IL-2, type I interferon signaling and cytokine-cytokine receptor interaction were significant GO terms and pathways. We found that the up-regulation of Wnt 4 and PDGFD may contribute to enhanced cell proliferation capacity of CIK(IL-15), while inhibitory signal from interaction between CTLA4 and CD80 may be responsible for the weak proliferation capacity of CIK(IL-2). Moreover, up-regulated expressions of CD40LG and IRF7 may make for improved tumor cytolytic function of CIK(IL-2) through type I interferon signaling.
CONCLUSIONS: Through our findings, we have preliminarily elucidated the cells proliferation and acquisition of tumor cytotoxicity mechanism of CIK(IL-15) and CIK(IL-2). Better understanding of these mechanisms will help to generate novel CIK cells with greater proliferation potential and improved tumor cytolytic function.

Xiong HY, Ma TT, Wu BT, et al.
IL-12 regulates B7-H1 expression in ovarian cancer-associated macrophages by effects on NF-κB signalling.
Asian Pac J Cancer Prev. 2014; 15(14):5767-72 [PubMed] Related Publications
BACKGROUND AND AIM: B7-H1, a co-inhibitory molecule of the B7 family, is found aberrantly expressed in ovarian cancer cells and infiltrating macrophage/dendritic-like cells, and plays a critical role in immune evasion by ovarian cancer. IL-12, an inducer of Th1 cell development, exerts immunomodulatory effects on ovarian cancer. However, whether IL-12 regulates B7-H1 expression in human ovarian cancer associated-macrophages has not been clarified. Therefore, we investigated the effects of IL-12 on the expression of B7-H1 in ovarian cancer-associated macrophages and possible mechanisms.
METHODS: PMA induced THP-1-derived macrophages or human monocyte-derived macrophages were treated with recombinant IL-12 (rIL-12) or infected with adenovirus carrying human IL-12 gene (Ad-IL-12-GFP) for 24 h, then cocultured with the SKOV3 ovarian cancer cell line for another 24 h. Macrophages were collected for real-time PCR and Western blot to detect the expression of B7-H1, and activation of the NF-κB signaling pathway. Moreover, supernatants were collected to assay for IL-12, IFN-γ and IL-10 by ELISA. In addition, monocyte-derived macrophages treated with IFN-γ were cocultured with SKOV3 and determined for the expression of B7-H1. Furthermore, the expression of B7-H1 in monocyte-derived macrophages was also evaluated after blocking NF-κB signaling.
RESULTS: The expression of B7-H1 was significantly upregulated in monocyte-derived macrophages treated with rIL-12 or Ad-IL-12-GFP compared with the control groups (p<0.05), accompanied by a remarkable upregulation of IFN-γ (p<0.05), a marked downregulation of IL-10 (p<0.05) and activation of NF-κB signaling. However, the upregulation of B7- H1 was inhibited by blocking the NF-κB signaling pathway (p<0.05). Expression of B7-H1 was also increased (p<0.05) in monocyte-derived macrophages treated with IFN-γ and cocultured with SKOV3. By contrast, the expression of B7-H1 in THP-1-derived macrophages was significantly decreased when treated in the same way as monocyte-derived macrophages (p<0.05), and IL-10 was also significantly decreased but IFN-γ was almost absent.
CONCLUSIONS: IL-12 upregulates the expression of B7-H1 in monocyte-derived macrophages, which is possible though inducing the secretion of IFN-γ and further activating the NF-κB signal pathway. However, IL-12 downregulates the expression of B7-H1 in THP-1-derived macrophages, associated with a lack of IFN-γ and inhibition of expression of IL-10.

Mahgoub EO, Bolad AK
Construction, expression and characterisation of a single chain variable fragment in the Escherichia coli periplasmic that recognise MCF-7 breast cancer cell line.
J Cancer Res Ther. 2014 Apr-Jun; 10(2):265-73 [PubMed] Related Publications
BACKGROUND: A functional  single-chain fragment variable (scFv) recognizing the  MCF-7 breast cancer carcinoma cell line was constructed from the C3A8 hybridoma using phage display technology.
AIM OF STUDY: This study was conducted to evaluate the binding activity of scFv antibody recognise MCF-7 breast cancer cells carcinoma, the scfv antibody constructed and expressed in Escherichia coli periplasmic.
MATERIALS AND METHODS: The scFv coding sequence was cloned in frame with the pIII phage coat protein. The signal sequence included in the C terminus directed the expression of the scFv in the Escherichia coli periplasm. Following several rounds of biopanning, colonies that expressed a scFv that recognized MCF-7 cells in Western blots, ELISAs, and flow cytometry test were isolated.
RESULTS: A 750-bp scFv gene was successfully isolated. Cloning and two rounds of biopanning isolated the candidate with the highest activity (clone B7), as screened by ELISA. Following poly-acrylamide gel electrophoresis (SDS-PAGE) of the purified product, a 32-kDa band was observed. A similar-sized band was observed following Western blot analysis with an E tag-specific antibody. Binding reactivity of scFv antibody with MCF cells was determined using indirect ELISA and compared with monoclonal antibodies' reactivity. Also, flow cytometry was useful in further characterization to the binding reactivity of scFv antibody with MCF-7 cells.
CONCLUSIONS: The recombinant antibody technology used in this study is a rapid and effective approach that will aid in the development of the next generation of immunodiagnostic reagents.

Nozières C, Zhang CX, Buffet A, et al.
p.Ala541Thr variant of MEN1 gene: a non deleterious polymorphism or a pathogenic mutation?
Ann Endocrinol (Paris). 2014; 75(3):133-40 [PubMed] Related Publications
CONTEXT: Multiple Endocrine Neoplasia Type 1 (MEN1) is an autosomal dominant inherited syndrome, related to mutations in the MEN1 gene. Controversial data suggest that the nonsynonymous p.Ala541Thr variant, usually considered as a non-pathogenic polymorphism, may be associated with an increased risk of MEN1-related lesions in carriers.
OBJECTIVE: The aim of this study was to evaluate the pathogenic influence of the p.Ala541Thr variant on clinical and functional outcomes.
PATIENTS AND METHODS: We analysed a series of 55 index patients carrying the p.Ala541Thr variant. Their clinical profile was compared to that of 117 MEN1 patients. The biological impact of the p.Ala541Thr variant on cell growth was additionally investigated on menin-deficient Leydig cell tumour (LCT)10 cells generated from Men1+/Men1- heterozygous knock-out mice, and compared with wild type (WT).
RESULTS: The mean age at first appearance of endocrine lesions was similar in both p.Ala541Thr carriers and MEN1 patients, but no p.Ala541Thr patient had more than one cardinal MEN1 lesion at initial diagnosis. A second MEN1 lesion was diagnosed in 13% of MEN1 patients and in 7% of p.Ala541Thr carriers in the year following preliminary diagnosis. Functional studies on LCT10 cells showed that overexpression of the p.Ala541Thr variant did not inhibit cell growth, which is in direct contrast to results obtained from investigation of WT menin protein.
CONCLUSION: Taken together, these data raise the question of a potential pathogenicity of the p.Ala541Thr missense variant of menin that commonly occurs within the general population. Additional studies are required to investigate whether it may be involved in a low-penetrance MEN1 phenotype.

Wu R, Li F, Zhu J, et al.
A functional variant at miR-132-3p, miR-212-3p, and miR-361-5p binding site in CD80 gene alters susceptibility to gastric cancer in a Chinese Han population.
Med Oncol. 2014; 31(8):60 [PubMed] Related Publications
A number of single-nucleotide polymorphisms within the 3'-UTR of genes have been shown to relate to the occurrence of cancers. In this study, by using polymerase chain reaction-restriction fragment length analysis method, we determined an SNP rs1599795 in the 3'-UTR of CD80 gene in 183 gastric cancer patients and 348 healthy controls. Statistical analysis results showed that SNP rs1599795 genotypes were significantly correlated with the risk of gastric cancer. Compared with the AA homozygotes, the TA heterozygotes were significantly more prevalent in the patients (OR 1.44, 95 % CI 0.98-2.11) with a larger tumor size (P = 0.001), deeper infiltration (P = 1.5 × 10(-5)), higher possibility of lymph node metastasis (P = 0.003), and more in the late stage (TNM stage III and IV; P = 0.003); the TT homozygotes had larger tumor size (P = 0.001) and lower degree of differentiation (P = 2.2 × 10(-4)). Dual-luciferase reporter assays showed that miR-132-3p, miR-212-3p, and miR-361-5p inhibited the expression of CD80 through binding with the CD80 3'-UTR, and this inhibitory role of miR-132-3p, miR-212-3p, and miR-361-5p was impacted by rs1599795. Our findings have shown that the SNP rs1599795 in CD80 3'-UTR, through disrupting the regulatory role of miR-132-3p, miR-212-3p, and miR-361-5p in CD80 expression, contributed to the occurrence of gastric cancer.

Scarpa M, Castagliuolo I, Castoro C, et al.
Inflammatory colonic carcinogenesis: a review on pathogenesis and immunosurveillance mechanisms in ulcerative colitis.
World J Gastroenterol. 2014; 20(22):6774-85 [PubMed] Free Access to Full Article Related Publications
Ulcerative colitis (UC) is characterized by repeated flare-ups of inflammation that can lead to oncogenic insults to the colonic epithelial. UC-associated carcinogenesis presents a different sequence of tumorigenic events compared to those that contribute to the development of sporadic colorectal cancer. In fact, in UC, the early events are represented by oxidative DNA damage and DNA methylation that can produce an inhibition of oncosuppressor genes, mutation of p53, aneuploidy, and microsatellite instability. Hypermethylation of tumor suppressor and DNA mismatch repair gene promoter regions is an epigenetic mechanism of gene silencing that contribute to tumorigenesis and may represent the first step in inflammatory carcinogenesis. Moreover, p53 is frequently mutated in the early stages of UC-associated cancer. Aneuploidy is an independent risk factor for forthcoming carcinogenesis in UC. Epithelial cell-T-cell cross-talk mediated by CD80 is a key factor in controlling the progression from low to high grade dysplasia in UC-associated carcinogenesis.

Cheung IY, Farazi TA, Ostrovnaya I, et al.
Deep MicroRNA sequencing reveals downregulation of miR-29a in neuroblastoma central nervous system metastasis.
Genes Chromosomes Cancer. 2014; 53(10):803-14 [PubMed] Related Publications
Central nervous system (CNS) is an increasingly common site of isolated metastasis for patients with Stage 4 neuroblastoma. To explore the microRNA (miRNA) profile of this metastatic process, miRNA sequencing was performed to identify miRNA sequence families with differential expression between tumor pairs (pre-CNS primary and CNS metastasis) from 13 patients with Stage 4 neuroblastoma. Seven miRNA sequence families had distinct expression in CNS metastases when compared with their corresponding pre-CNS primaries. MiR-7 was upregulated (3.75-fold), and miR-21, miR-22, miR-29a, miR-143, miR-199a-1-3p, and miR-199a-1-5p were downregulated (3.5-6.1-fold), all confirmed by quantitative reverse transcription-PCR. MiR-29a, previously shown to be downregulated in a broad spectrum of solid tumors including neuroblastoma, had the most significant decrease in all 13 CNS metastases (P = 0.001). Its known onco-targets CDC6, CDK6, and DNMT3A, as well as B7-H3, an inhibitory ligand for T cells, and natural killer cells, were found to have higher differential expression in these 13 CNS metastases when compared with their paired primaries. Additionally, miR-29a expression in primary tumors was significantly lower among patients who eventually relapsed in the CNS. Irrespective of the amplification status of MYCN, which is known to be associated with metastasis, pre-CNS primaries, and CNS metastases had significantly lower miR-29a expression than non-CNS primary tumors. Among MYCN amplified cell lines, those from CNS relapse also had lower miR-29a expression than non-CNS relapse. These findings raised the hypothesis that miR-29a could be a biomarker for neuroblastoma CNS metastasis, and its downregulation may play a pivotal role in CNS progression.

Quandt D, Jasinski-Bergner S, Müller U, et al.
Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation.
J Transl Med. 2014; 12:151 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The importance of B7-H molecules for the T cell/tumor communication and its impact on renal cell carcinoma (RCC) progression and prognosis has been recently described. Cytokine treatment of RCC has earlier been shown to be beneficial in preclinical settings, but its clinical implementation has not proven to be as effective. This might be partially explained by the yet incomplete picture of cellular alterations in tumor cells upon cytokine treatment investigated in detail in this study.
METHODS: RCC tumor cell lines were treated with different cytokines alone or in combination. The constitutive and/or cytokine-induced expression of cytokine receptors signaling components and B7-H molecules in RCC cells were analysed by qPCR and flow cytometry. A mcherry reporter gene construct containing B7-H1 promoter was cloned and its activity was determined upon transfection in cytokine-stimulated cells. Cytokine pretreated tumor cells were co-cultured with allogeneic CD8+ T cells from healthy donors and T cell proliferation as well as cytokine secretion was determined.
RESULTS: A heterogeneous, but constitutive B7-H1,-H2,-H3 and H4 expression was found on human RCC cell lines. IL-4 and TNFα treatment led to strong synergistic induction of B7-H1 in RCC cells, whereas B7-H2 was only increased by TNFα. In contrast, B7-H3 and B7-H4 expression were not altered by these cytokines. Treatment of RCC cells with TNFα and IL-4 was accompanied by an activation of signaling molecules like NF-κB, IκB and STAT6. The cytokine-mediated up-regulation of B7-H1 was due to transcriptional control as determined by an increased B7-H1 promoter activity in the presence of IL-4 and TNFα. Despite HLA class I and LFA-1 were also increased, the cytokine-mediated up-regulation of B7-H1 was more pronounced and caused an inhibition of allospecifc CD8+ T cell proliferation.
CONCLUSION: Thus, IL-4 and TNFα, which could be released by immune cells of the tumor microenvironment, are able to control the B7-H1 expression in RCC thereby altering T cell responses. These data are of importance for understanding the complex interplay of tumor cells with immune cells orchestrated by a number of different soluble and membrane bound mediators and for the implementation of check point antibodies directed against B7-H1.

Liao Y, Guo S, Chen Y, et al.
VSIG4 expression on macrophages facilitates lung cancer development.
Lab Invest. 2014; 94(7):706-15 [PubMed] Related Publications
Tumor-associated macrophages are a prominent component of lung cancer stroma and contribute to tumor progression. The protein V-set and Ig domain-containing 4 (VSIG4), a novel B7 family-related macrophage protein that has the capacity to inhibit T-cell activation, has a potential role in the development of lung cancer. In this study, 10 human non-small-cell lung cancer specimens were collected and immunohistochemically analyzed for VSIG4 expression. Results showed massive VSIG4(+) cell infiltration throughout the samples. Immunofluorescent double staining showed that VSIG4 was present on CD68(+) macrophages, but absent from CD3(+) T cells, CD31(+) endothelial cells, and CK-18(+) epithelial cells. Moreover, VSIG4 was coexpressed on B7-H1(+) and B7-H3(+) cells in these tumor specimens. Transfection of the VSIG4 gene into 293FT cells demonstrated that the VSIG4 signal could inhibit cocultured CD4(+) and CD8(+) T-cell proliferation and cytokine (IL-2 and IFN-γ) production in vitro. Interestingly, in a murine tumor model induced by Lewis lung carcinoma cell line, we found that tumors grown in VSIG4-deficient (VSIG4(-/-)) mice were significantly smaller than those found in wild-type littermates. All of these results demonstrate that macrophage-associated VSIG4 is an activator that facilitates lung carcinoma development. Specific targeting of VSIG4 may prove to be a novel, efficacious strategy for the treatment of this carcinoma.

Zhang EB, Yin DD, Sun M, et al.
P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression.
Cell Death Dis. 2014; 5:e1243 [PubMed] Free Access to Full Article Related Publications
Recently, a novel class of transcripts, long non-coding RNAs (lncRNAs), is being identified at a rapid pace. These RNAs have critical roles in diverse biological processes, including tumorigenesis. Here we report that taurine-upregulated gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is generally downregulated in non-small cell lung carcinoma (NSCLC) tissues. In a cohort of 192 NSCLC patients, the lower expression of TUG1 was associated with a higher TNM stage and tumor size, as well as poorer overall survival (P<0.001). Univariate and multivariate analyses revealed that TUG1 expression serves as an independent predictor for overall survival (P<0.001). Further experiments revealed that TUG1 expression was induced by p53, and luciferase and chromatin immunoprecipitation (ChIP) assays confirmed that TUG1 was a direct transcriptional target of p53. TUG1 knockdown significantly promoted the proliferation in vitro and in vivo. Moreover, the lncRNA-mediated regulation of the expression of HOX genes in tumorigenesis and development has been recently receiving increased attention. Interestingly, inhibition of TUG1 could upregulate homeobox B7 (HOXB7) expression; ChIP assays demonstrated that the promoter of HOXB7 locus was bound by EZH2 (enhancer of zeste homolog 2), a key component of PRC2, and was H3K27 trimethylated. This TUG1-mediated growth regulation is in part due to specific modulation of HOXB7, thus participating in AKT and MAPK pathways. Together, these results suggest that p53-regulated TUG1 is a growth regulator, which acts in part through control of HOXB7. The p53/TUG1/PRC2/HOXB7 interaction might serve as targets for NSCLC diagnosis and therapy.

Yang YF, Xue SY, Lu ZZ, et al.
Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer.
Gene Ther. 2014; 21(8):723-31 [PubMed] Related Publications
Advanced prostate cancer (PC) still remains incurable. Novel immunogene therapy shows promise as treatment strategy that can target both localized and metastasized PC. In this study, we have developed a PC-specific oncolytic adenovirus (Ad-PL-PPT-E1A) armed with fusion gene of prostate-specific antigen and CD40 ligand, and aimed to evaluate its therapeutic effect in vitro and in vivo. After they were rescued in human embryonic kidney 293 cells, we confirmed that Ad-PL-PPT-E1A could mediate the expression of E1A efficiently and produce abundant progeny viruses in PC cells in vitro. Our data showed that Ad-PL-PPT-E1A induced apoptosis and resulted in specific oncolytic toxicity in PC cells, which was detected by Annexin-V staining and crystal violet, respectively. After stimulation with lysates, immune phenotypes and cytokines expression of human dendritic cells was detected by flow cytometry and real-time polymerase chain reaction, respectively. And, the results showed that the lysate of Ad-PL-PPT-E1A-infected LNCaP cells upregulated the expression of CD80, CD83, CD86 and mRNA level of interleukin-6 (IL-6), IL-12, IL-23 and tumor necrosis factor-α significantly. In established PC3M cell-xenografted mouse models, Ad-PL-PPT-E1A treatment improved the survival and suppressed the tumor growth obviously. In conclusion, Ad-PL-PPT-E1A exhibited enhanced antitumor activity is a promising approach for gene therapy of advanced PC.

Polakova I, Duskova M, Smahel M
Antitumor DNA vaccination against the Sox2 transcription factor.
Int J Oncol. 2014; 45(1):139-46 [PubMed] Related Publications
As cancer stem cells (CSCs) are resistant to chemotherapy, radiotherapy and targeted molecular therapy, immunotherapy of tumors could be aimed at their elimination. Markers specific for CSCs have not been identified to date, but microarray analyses have shown that CSCs and embryonic stem cells use similar transcriptional programs, thus suggesting the production of shared transcription factors. In this study, we developed an experimental DNA vaccine against the transcription factor Sox2 that is important for self-renewal of stem cells and is overexpressed in numerous human cancers. The Sox2 gene was codon optimized for the expression in human cells, its sequences encoding two nuclear localization signals (NLSs) were mutagenized, and the sequence coding for the PADRE helper epitope was fused with its 5' terminus. While codon optimization did not increase Sox2 production and mutagenesis in NLSs only partially reduced nuclear localization of Sox2, the addition of the PADRE epitope was crucial for the enhancement of Sox2 immunogenicity. The antitumor effect was shown after immunization against mouse oncogenic TC-1/B7 cells derived from the lung cancer cell line TC-1 and characterized by high Sox2 production. Sox2-specific reactivity in an ELISPOT assay was further augmented by the depletion of regulatory T (Treg) cells, but this depletion did not enhance the antitumor effect. These data demonstrated the induction of immune responses against the Sox2 self-antigen, but did not confirm the usefulness of Treg depletion when combined with antitumor vaccination.

Wang F, Wang G, Liu T, et al.
B7-H3 was highly expressed in human primary hepatocellular carcinoma and promoted tumor progression.
Cancer Invest. 2014; 32(6):262-71 [PubMed] Related Publications
B7-H3 has been detected in different cancers and correlated to tumor progression and outcome in cancer patients. In this study, we investigated the expression of B7-H3 in tissues and cells of primary hepatocellular carcinoma (PHC) patients. The research showed that B7-H3 is aberrantly expressed in PHC tissues and cells, and its high expression on HepG2 cells significantly promotes cell proliferation, adhesion, migration, and invasion capacity; moreover, it inhibits the proliferation of CD8(+) T cells. Thus, B7-H3 may have a critical role in PHC and it may enhance tumor escape from the immune surveillance of CD8(+) T cells.

Schlecker E, Fiegler N, Arnold A, et al.
Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30.
Cancer Res. 2014; 74(13):3429-40 [PubMed] Related Publications
Natural killer (NK) cells are potent immune effector cells capable of mediating antitumor responses. Thus, during immunoediting, tumor cell populations evolve strategies to escape NK-cell-mediated recognition. In this study, we report a novel mechanism of immune escape involving tumor cell shedding of B7-H6, a ligand for the activating receptor NKp30 that mediates NK-cell binding and NK-cell-mediated killing. Tumor cells from different cancer entities released B7-H6 by ectodomain shedding mediated by the cell surface proteases "a disintegrin and metalloproteases" (ADAM)-10 and ADAM-17, as demonstrated through the use of pharmacologic inhibitors or siRNA-mediated gene attenuation. Inhibiting this proteolytic shedding process increased the levels of B7-H6 expressed on the surface of tumor cells, enhancing NKp30-mediated activation of NK cells. Notably, we documented elevated levels of soluble B7-H6 levels in blood sera obtained from a subset of patients with malignant melanoma, compared with healthy control individuals, along with evidence of elevated B7-H6 expression in melanoma specimens in situ. Taken together, our results illustrated a novel mechanism of immune escape in which tumor cells impede NK-mediated recognition by metalloprotease-mediated shedding of B7-H6. One implication of our findings is that therapeutic inhibition of specific metalloproteases may help support NK-cell-based cancer therapy.

Klar R, Schober S, Rami M, et al.
Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells.
Leukemia. 2014; 28(12):2355-66 [PubMed] Related Publications
T cells have been proven to be therapeutically effective in patients with relapsed leukemias, although target antigens on leukemic cells as well as T-cell receptors (TCRs), potentially recognizing those antigens, are mostly unknown. We have applied an immunopeptidomic approach and isolated human leukocyte antigen (HLA) ligands from primary leukemia cells. We identified a number of ligands derived from different genes that are restrictedly expressed in the hematopoietic system. We exemplarily selected myeloperoxidase (MPO) as a potential target and isolated a high-avidity TCR with specificity for a HLA-B*07:02-(HLA-B7)-restricted epitope of MPO in the single HLA-mismatched setting. T cells transgenic for this TCR demonstrated high peptide and antigen specificity as well as leukemia reactivity in vitro and in vivo. In contrast, no significant on- and off-target toxicity could be observed. In conclusion, we here demonstrate, exemplarily for MPO, that leukemia-derived HLA ligands can be selected for specific effector tool development to redirect T cells to be used for graft manipulation or adoptive T-cell therapies in diverse transplant settings. This approach can be extended to other HLA ligands and HLA molecules in order to provide better treatment options for this life-threatening disease.

Ngo MC, Ando J, Leen AM, et al.
Complementation of antigen-presenting cells to generate T lymphocytes with broad target specificity.
J Immunother. 2014; 37(4):193-203 [PubMed] Free Access to Full Article Related Publications
Antigen-specific T cells provide a therapy for cancer that is highly specific, self-replicating, and potentially devoid of toxicity. Ideally, tumor-specific T cells should recognize multiple epitopes on multiple antigens to prevent tumor immune escape. However the large-scale expansion of such broad-spectrum T cells has been limited by the availability of potent autologous antigen-presenting cells that can present antigens on the polymorphic array of each patient's HLA allotype. We evaluated a novel antigen-presenting complex (KATpx) in which antigens in the form of peptide libraries can be presented by autologous activated T cells, whereas costimulation is complemented in trans by an HLA-negative K562 cell line genetically modified to express CD80, CD83, CD86, and 4-1BBL (K562cs). The additional costimulation provided by K562cs significantly enhanced T-cell expansion in culture over autologous activated T cells alone while maintaining antigen specificity. We validated this antigen-presenting system by generating Epstein-Barr virus (EBV) antigen-specific T cells from healthy donors and from patients with EBV-positive malignancies including nasopharyngeal carcinoma and multiply relapsed EBV-positive lymphoma. These T cells were specific for EBNA1, LMP1, and LMP2, the viral antigens expressed in these type 2 latency EBV-associated malignancies. The KATpx system consistently activated and expanded antigen-specific T cells both from healthy donors and from 5 of 6 patients with lymphoma and 6 of 6 with nasopharyngeal carcinoma, while simplifying the process for generating APCs by eliminating the need for live virus (EBV) or viral vectors to force expression of transgenic EBV antigens. Hence, KATpx provides a robust, reliable, and scalable process to expand tumor-directed T cells for the treatment of virus-associated cancers.

Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A
CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γ production in response to mature dendritic cells.
J Immunol. 2014; 192(9):4184-91 [PubMed] Related Publications
NK cells express an array of activating and inhibitory receptors that determine NK cell responses upon triggering by cognate ligands. Although activating NK cell receptors recognize mainly ligands expressed by stressed, virus-infected, or transformed cells, most inhibitory receptors engage MHC class I, preventing NK cell activation in response to healthy cells. In this study, we provide insight into the regulation and function of additional receptors involved in mouse NK cell responses: CTLA-4 and CD28. CTLA-4 and CD28 engage the same ligands, B7-1 and B7-2, which are primarily expressed by APCs, such as dendritic cells. Our data demonstrate that activation of mouse NK cells with IL-2 induces the expression of CTLA-4 and upregulates CD28. CTLA-4 expression in IL-2-expanded NK cells was further up- or downregulated by IL-12 or TGF-β, respectively. Using gene-deficient NK cells, we show that CD28 induces, and CTLA-4 inhibits, IFN-γ release by NK cells upon engagement by the recombinant ligand, B7-1, or upon coculture with mature dendritic cells. Notably, we show that mouse NK cells infiltrating solid tumors express CD28 and CTLA-4 and respond to stimulation with recombinant B7-1, suggesting that the NK cell responses mediated by the CD28/CTLA-4:B7-1/B7-2 system could be of importance during malignant disease. Accordingly, our study might have implications for immunotherapy of cancer based on blocking anti-CTLA-4 mAbs.

Wang YH, Cao YW, Yang XC, et al.
Effect of TLR4 and B7-H1 on immune escape of urothelial bladder cancer and its clinical significance.
Asian Pac J Cancer Prev. 2014; 15(3):1321-6 [PubMed] Related Publications
BACKGROUND/AIM: Toll-like receptor 4 (TLR4) and B7-H1, both normally expressed restricted to immune cells, are found to be aberrantly expressed in a majority of human tumors and may play important roles in regulation of tumor immunity. It has been shown that urothelial bladder cancer (UBC) patients can manifest tumoral immune escape which may be a potential critical factor in tumor pathogenesis and progression. However, so far, the mechanisms of UBC-related immune escape have not been clarified. The aim of this study was to investigate the effect of TLR4 and B7-H1 on immune escape of UBC.
METHODS: Bladder cancer T24 cells were pre-incubated with LPS and co-cultured with tumor specific CTLs. CTL cytotoxicity and apoptosis rates were measured by MTT assay and flow cytometry, respectively. The effects of an ERK inhibitor on B7-H1 expression and CTL cytotoxicity against T24 cells were also evaluated. In addition, TLR4, B7-H1 and PD-1 protein expression was analyzed by immunohistochemistry in 60 UBC specimens and 10 normal urothelia.
RESULTS: TLR4 activation protected T24 cells from CTL killing via B7-H1 overexpression. However PD98059, an inhibitor of ERK, enhanced CTL killing of T24 cells by reducing B7-H1 expression. TLR4 expression was generally decreased in UBC specimens, while B7-H1 and PD-1 were greatly overexpressed. Moreover, expression of both B7-H1 and PD-1 was significantly associated with UICC stage and WHO grade classification.
CONCLUSIONS: TLR4 and B7-H1 may contribute to immune escape of UBC. Targeting B7-H1 or the ERK pathway may offer new immunotherapy strategies for bladder cancer.

Nygren MK, Tekle C, Ingebrigtsen VA, et al.
Identifying microRNAs regulating B7-H3 in breast cancer: the clinical impact of microRNA-29c.
Br J Cancer. 2014; 110(8):2072-80 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: B7-H3, an immunoregulatory protein, is overexpressed in several cancers and is often associated with metastasis and poor prognosis. Here, our aim was to identify microRNAs (miRNAs) regulating B7-H3 and assess their potential prognostic implications in breast cancer.
METHODS: MicroRNAs targeting B7-H3 were identified by transfecting two breast cancer cell lines with a library of 810 miRNA mimics and quantifying changes of B7-H3 protein levels using protein lysate microarrays. For validations we used western immunoblotting and 3'-UTR luciferase assays. Clinical significance of the miRNAs was assayed by analysing whether their expression levels correlated with outcome in two cohorts of breast cancer patients (142 and 81 patients).
RESULTS: We identified nearly 50 miRNAs that downregulated B7-H3 protein levels. Western immunoblotting validated the impact of the 20 most effective miRNAs. Thirteen miRNAs (miR-214, miR-363*, miR-326, miR-940, miR-29c, miR-665, miR-34b*, miR-708, miR-601, miR-124a, miR-380-5p, miR-885-3p, and miR-593) targeted B7-H3 directly by binding to its 3'-UTR region. Finally, high expression of miR-29c was associated with a significant reduced risk of dying from breast cancer in both cohorts.
CONCLUSIONS: We identified miRNAs efficiently downregulating B7-H3 expression. The expression of miR-29c correlated with survival in breast cancer patients, suggesting a tumour suppressive role for this miRNA.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD80, Cancer Genetics Web: http://www.cancer-genetics.org/CD80.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999